
Volume 7, Number 50 http://isedj.org/7/50/ June 5, 2009

In this issue:

Alice and the Introductory Programming Course: An Invitation to
Dialogue

Daniel V. Goulet Donald Slater
University of Wisconsin Stevens Point Carnegie Mellon University

Stevens Point, WI 54481 USA Pittsburgh, PA 15213 USA

Abstract: Alice, a 3D visual graphics environment, represents a breakthrough in teaching object-
oriented computing by making objects visible. The object-oriented paradigm, though intuitive in
its general form, is, for most students, a new way of thinking. The question is: How can we, as
educators, make the most of Alice’s unique teaching environment, and what can we do to enhance
student learning? The objective of this paper is two fold: (1) to create a dialogue about innovative
and effective ways to use Alice as a teaching and learning tool, and (2) to exhibit an approach for
relating the activities (features) of Alice to the teaching and learning requirements of the object-
oriented paradigm.

Keywords: Alice, Introduction to programming, Object-oriented paradigm, Pedagogy, Introduc-
tory programming course, CS1

Recommended Citation: Goulet and Slater (2009). Alice and the Introductory Programming
Course: An Invitation to Dialogue. Information Systems Education Journal, 7 (50).
http://isedj.org/7/50/. ISSN: 1545-679X. (A preliminary version appears in The Proceedings of
ISECON 2007: §2723. ISSN: 1542-7382.)

This issue is on the Internet at http://isedj.org/7/50/

ISEDJ 7 (50) Information Systems Education Journal 2

The Information Systems Education Journal (ISEDJ) is a peer-reviewed academic journal
published by the Education Special Interest Group (EDSIG) of the Association of Information
Technology Professionals (AITP, Chicago, Illinois). • ISSN: 1545-679X. • First issue: 8 Sep 2003.
• Title: Information Systems Education Journal. Variants: IS Education Journal; ISEDJ. • Phys-
ical format: online. • Publishing frequency: irregular; as each article is approved, it is published
immediately and constitutes a complete separate issue of the current volume. • Single issue price:
free. • Subscription address: subscribe@isedj.org. • Subscription price: free. • Electronic access:
http://isedj.org/ • Contact person: Don Colton (editor@isedj.org)

2009 AITP Education Special Interest Group Board of Directors

Don Colton
Brigham Young Univ Hawaii
EDSIG President 2007-2008

Thomas N. Janicki
Univ NC Wilmington
EDSIG President 2009

Kenneth A. Grant
Ryerson University
Vice President 2009

Kathleen M. Kelm
Edgewood College

Treasurer 2009

Wendy Ceccucci
Quinnipiac Univ
Secretary 2009

Alan R. Peslak
Penn State

Membership 2009
CONISAR Chair 2009

Steve Reames
Angelo State Univ
Director 2008-2009

Michael A. Smith
High Point

Director 2009

George S. Nezlek
Grand Valley State
Director 2009-2010

Patricia Sendall
Merrimack College
Director 2009-2010

Li-Jen Shannon
Sam Houston State
Director 2009-2010

Albert L. Harris
Appalachian St

JISE Editor

Paul M. Leidig
Grand Valley State University

ISECON Chair 2009

Information Systems Education Journal Editors

Don Colton
Brigham Young University Hawaii

Editor

Thomas N. Janicki
Univ of North Carolina Wilmington

Associate Editor

Information Systems Education Journal 2007-2008 Editorial Review Board

Sharen Bakke, Cleveland St
Alan T. Burns, DePaul Univ
Wendy Ceccucci, Quinnipiac U
Janet Helwig, Dominican Univ
Scott Hunsinger, Appalachian
Kamal Kakish, Lawrence Tech
Sam Lee, Texas State Univ
Paul Leidig, Grand Valley St
Terri L. Lenox, Westminster

Anene L. Nnolim, Lawrence Tech
Alan R. Peslak, Penn State

Doncho Petkov, E Connecticut
James Pomykalski, Susquehanna

Steve Reames, Angelo State
Samuel Sambasivam, Azusa Pac
Bruce M. Saulnier, Quinnipiac
Patricia Sendall, Merrimack C

Li-Jen Shannon, Sam Houston St
Michael A. Smith, High Point U
Robert Sweeney, South Alabama

Stuart A. Varden, Pace Univ
Judith Vogel, Richard Stockton

Bruce A. White, Quinnipiac Univ
Belle S. Woodward, S Illinois U

Charles Woratschek, Robert Morris
Peter Y. Wu, Robert Morris Univ

EDSIG activities include the publication of ISEDJ and JISAR, the organization and execution of
the annual ISECON and CONISAR conferences held each fall, the publication of the Journal of
Information Systems Education (JISE), and the designation and honoring of an IS Educator of the
Year. • The Foundation for Information Technology Education has been the key sponsor of ISECON
over the years. • The Association for Information Technology Professionals (AITP) provides the
corporate umbrella under which EDSIG operates.

c© Copyright 2009 EDSIG. In the spirit of academic freedom, permission is granted to make and
distribute unlimited copies of this issue in its PDF or printed form, so long as the entire document
is presented, and it is not modified in any substantial way.

c© 2009 EDSIG http://isedj.org/7/50/ June 5, 2009

ISEDJ 7 (50) Goulet and Slater 3

Alice and the

Introductory Programming Course:

An Invitation to Dialogue

Daniel V. Goulet
dgoulet@uwsp.edu

Computing & New Media Technologies
University of Wisconsin-Stevens Point

Stevens Point, WI 54481 USA

Donald Slater
dslater@cmu.edu

School of Computer Science
Carnegie Mellon University

Pittsburg, PA 15213 USA

Abstract

Alice, a 3D visual graphics environment, represents a breakthrough in teaching object-

oriented computing by making objects visible. The object-oriented paradigm, though intuitive

in its general form, is, for most students, a new way of thinking. The question is: How can

we, as educators, make the most of Alice’s unique teaching environment, and what can we do

to enhance student learning? The objective of this paper is two fold: (1) to create a dialogue

about innovative and effective ways to use Alice as a teaching and learning tool, and (2) to

exhibit an approach for relating the activities (features) of Alice to the teaching and learning

requirements of the object-oriented paradigm.

Keywords: Alice, Introduction to programming, Object-oriented paradigm, Pedagogy, Intro-

ductory programming course, CS1

1. INTRODUCTION

Students who now take an introductory pro-

gramming class are often exposed to the

same tools, problems, and pedagogical ap-

proaches that have been around for the last

20 years. There has been significant change

in the languages taught, and the program-

ming paradigms used in these courses. But

today’s students have a different experience

with computers than students of 20 years

ago.

In the introductory programming text (Miler,

1987), the first example of a Pascal program

that students saw was “Hello World”.

PROGRAM Example (INPUT, OUTPUT);

BEGIN

 WRITELN(OUTPUT, ‘Hello world)

END.

In the introductory programming text

(Horstmann, 2008), the first Java program

that students today see is “Hello World”.

public class HelloPrinter

{

 public static void

main(String[] args)

 {

 Sys-

tem.out.println(“Hello, World!”);

 }

}

The output to the console, that was reason-

ably exciting to students of 20 years ago,

now looks like a text message that today’s

students currently receive on their cell

c© 2009 EDSIG http://isedj.org/7/50/ June 5, 2009

ISEDJ 7 (50) Goulet and Slater 4

phone. Students have different expectations

of what they can and should be able to do

with a computer.

The object-oriented paradigm is the funda-

mental construct for modern programming

languages, and both teaching and learning

this paradigm are difficult tasks at best. As

ever, illustrations, using graphics, diagrams,

charts, cartoon, etc., are more effective than

excessive text. One of the oldest challenges

of object-oriented teaching is that students

are exposed to concepts, concepts that are

taught through other concepts. What stu-

dents need are hands-on experiences allow-

ing the mind-shift towards object-oriented

thinking to occur. (Alice, 2007) has opened

a door to make both teaching better and

learning more effective.

In a paper entitled Evaluating the Effective-

ness of a New Instructional Approach,

(Moskal, 2004) reports that at risk computer

science majors, i.e., students with limited

previous programming experience, in prepa-

ratory courses for CS 1 that used curricular

materials with the Alice software exhibited

improved performance (average grade from

C to B in CS 1), and more students went on

to CS 2. (Without the Alice experience, only

47% of these students went on to CS 2.

With the Alice experience, 88% of the stu-

dents went on to CS 2).

Alice is both an innovative software tool and

a pedagogical approach designed to allow

traditional programming concepts to be

more easily taught and more readily unders-

tood by today’s students.

The question is: How can we, as educators,

make the most of Alice’s unique teaching

environment and what can we do to enhance

/ increase student learning?

In this paper the authors pursue two objec-

tives:

1. to create a dialogue about innovative

and effective ways to use Alice as a teaching

and learning tool, and

2. to exhibit one strategy for relating

the activities of Alice to the teaching / learn-

ing of requirements of the object-oriented

paradigm, with Java as the example target

language.

2. THE OBJECT-ORIENTED

PARADIGM

The object-oriented paradigm, as seen by

the authors, has the following characteris-

tics:

• The world is viewed as a collection of

objects.

• An object is a realization [instance]

of a class.

• A class is a definition or template for

creating objects.

• Objects know things.

• Objects know how to do things.

• Objects are assigned responsibilities,

and when asked, carry out that re-

sponsibility.

• Objects interact by passing messag-

es.

• An object-oriented program is a col-

lection of interacting objects.

• Simple object-oriented programs

implement a 3-tier architecture

Figure 1: Author's View of 3-Tier

Architecture

We use our view of the object-oriented pa-

radigm and our understanding of Alice to

create and exhibit the following mapping:

(i) identify the object-oriented paradigm

characteristic, (ii) show the characteristic’s

realization in Alice, (iii) for concreteness

and to focus the discussion, map the Alice

realization into Java. Before we can do this,

however, we

• need to have a basic understanding

to the question: “What is Alice?”,

and

• have to understand the strengths

and limitations of Alice when used as

the authors are proposing.

c© 2009 EDSIG http://isedj.org/7/50/ June 5, 2009

ISEDJ 7 (50) Goulet and Slater 5

3. WHAT IS ALICE?

Alice populates a 3D microworld with tangi-

ble and visible objects, supporting the crea-

tion of movies and interactive games. These

movies and games, or programs, are created

by dragging and dropping instructions, ex-

pressions, and control structures using an

integrated GUI. This not only eliminates

common syntax errors, but allows for the

rapid building of an experiment in an inter-

active manner.

The visual feedback provided by the interac-

tion of the objects in the microworld allows

changes in the properties, or state, to be

easily seen. This same feedback also allows

errors in the design or implementation of the

story or game to be readily identified.

The Alice system provides a powerful, mod-

ern programming system that supports me-

thods, functions, variables, parameters, re-

cursion, arrays, and events. Alice seeks to

provide a means to help overcome four pri-

mary obstacles encountered by beginners in

early programming courses:

1. The perils of program creation, particu-

larly in navigating the complexities of

programming languages syntax.

2. The difficulty in mastering the complex

tools (programming environments) used

in creating programs in modern pro-

gramming languages.

3. The difficulty in seeing the ongoing

process and intermediate results of

computation as the program runs.

4. The lack of a rich, motivating, and en-

gaging problem set to stimulate the

learner’s curiosity and desire to master

the skills necessary for program crea-

tion.

The figures in the Appendix provide a brief

overview of the Alice interface and its use.

Figure 2 shows the interface of the Alice

software, which includes the Object Tree, a

listing of all the objects in the current world,

the Details Pane which lists the properties,

methods, and functions of the selected ob-

ject in the Object Tree, the World View

which displays the world being created, the

Editor for creating the program, and the

Events Editor, for creating interactive

worlds.

Figures 3 and 4 illustrate how to create new

worlds in Alice, and how to add objects to

the world from the Object Gallery. Figure 5

shows how to write program code in the edi-

tor by dragging available behaviors from the

Details Pane.

4. STRENGTHS AND CHALLENGES OF

TEACHING THE OBJECT-ORIENTED

PARADIGM USING ALICE

The strengths of Alice, as seen by the au-

thors, in helping students to develop a solid

understanding of the Object-Oriented Para-

digm are as follows:

Conceptual Strengths

After working with Alice, students should

understand:

• The distinction between a class and

those objects that are a realization of

the class.

• That there are often many instances of a

particular class in a world, all with their

own properties and behaviors.

• The distinction between properties and

behaviors.

• That multiple objects, operating inde-

pendently and yet cooperatively within

the world, make unique and important

contributions to the completion of the

world’s mission (story, interactive game,

program.)

• That messages are used to prompt the

behaviors of or elicit information from

particular objects.

• That every message must be addressed

to a particular object.

• And have seen that the same message,

sent to different objects, can promote

different, yet related behavior from each

object.

• That a programmer may create new be-

haviors for an object, expanding the set

of behaviors for that object.

• The role parameters play in qualifying

the message to the object, allowing the

object to be more specific in the beha-

vior that is generated.

• That the use of parameters allows the

creation of new methods that are more

c© 2009 EDSIG http://isedj.org/7/50/ June 5, 2009

ISEDJ 7 (50) Goulet and Slater 6

general purpose, allowing an object to

exhibit the same behavior in different

contexts.

• The difference between messages that

elicit behaviors from an object (methods

in Alice terms), and messages that elicit

a response to a query (functions in Alice

terms.)

• Conditional control structures which may

be sequenced and nested in ways to

handle complex alternatives.

• Relational and Boolean operations, gen-

erate appropriate Boolean expressions,

and know that iterative control struc-

tures come in different forms.

• Different iterative control structures,

how to successfully use these control

structures in problem solving, and

choose the appropriate iterative struc-

ture in their program design and imple-

mentation.

• Type, and its significance in modern

programming languages.

• Recursion intuitively, and have had the

chance to implement one recursive solu-

tion.

• The idea of the variable and the role va-

riables can play in program design and

implementation.

Intangible Strengths

Experience seems to indicate that working

with Alice helps develop persistence in creat-

ing solutions to problems and the debugging

of solutions that have gone awry. This

seems to come from the visual nature of the

Alice environment. Students can see that

they are making progress toward their goal,

the solution, story, or game. They can see

the impact of the addition, subtraction, or

modification of any one statement in their

code, and whether such a change is getting

them closer to their desired outcome or fur-

ther away. They see that they are making

progress, are visually rewarded as they

make progress, and develop a sense that

further effort is justified and will pay off.

They get intrinsic motivation in telling their

story, or building their game, having some-

thing to share with others in the class also

supports this notion of persistence because

they are working on something that is en-

gaging and motivating.

Persistence in debugging is also developed,

for many of the same reasons that persis-

tence in creating the code is developed. The

students can see their mistakes; they can

interpret what has gone wrong by analyzing

the action as it unfolds on the screen. The

fact that visual mistakes in the Alice envi-

ronment are often amusing reduces the fru-

stration that students may otherwise feel in

having their code go bad.

Self confidence is developed as students

realize that they are capable of telling a

complex story or building a game that their

friends want to play. They recognize that

they have worked hard, but that it is good

work, and they are often surprised to realize

that they can work harder, and more effec-

tively than perhaps they realized.

Interest in computing is often developed, as

students realize that developing a set of

programming tools will allow them to do cool

things that are interesting. They realize that

programming is not about developing the

discipline to solve intrinsically uninteresting

problems, but rather developing skills to do

cool things.

Syntax and Typing Challenges

As the students move from the safety and

support of the Alice development environ-

ment and start to work with a professional

programming language, they confront the

same problems all introductory program-

ming students encounter when faced with

the syntax and rigors of a formal program-

ming language.

The students are often confronted with the

complexities of a full blown, professional

programming environment. But even those

programming environments, developed to

support introductory programming classes,

possess some intricacies that are not easily

and intuitively mastered.

The advantage of working with Alice is that

confronting both of these obstacles comes

after students have had a chance to develop

the conceptual understanding of many im-

portant ideas in introductory programming,

and have been able to develop the self-

confidence and persistence to overcome

these hurdles. Alice also has some tools to

help with this transition, including the ability

c© 2009 EDSIG http://isedj.org/7/50/ June 5, 2009

ISEDJ 7 (50) Goulet and Slater 7

to display Alice code in traditional Java form,

including braces, semicolons, and paren-

theses.

But the hurdles are there nevertheless, and

the instructor has to be prepared to support

the students through this transition from

Alice to the next language in the course. It

is our experience that it takes students

about a week to become comfortable typing

Java / C++ code. In addition, the time ne-

cessary to learn how to use a particular IDE

must also be factored in to this transition

period.

Design Challenges

The Alice model uses storyboards, as seen in

the professional development of movies,

animated features, and interactive games as

the design tool for building Alice projects.

Work is still being done determining how this

design paradigm may be carried forward

through the rest of the introductory pro-

gramming course.

Mediate the Transfer Challenge

Instructors often assume that concepts that

students master during the Alice portion of

the course will automatically be mapped to

related topics in the second part of the

course. Unless the instructors explicitly and

repeatedly make the connection between the

work in Alice with the new work being done

with Java / C++, the students will generally

not make the connection on their own.

Students like to see a course as unrelated

topical units. This reduces the perceived

workload in the entire course for the stu-

dent. Once they have taken and passed the

Alice exam, they no longer have to worry

about Alice. There is some resistance to

going back and learning topics that students

think were already covered, even though

those topics are now being explored in more

depth, with more nuance and subtlety,

which students would prefer not to have to

pay attention to in any circumstance. The

instructor should make sure that the stu-

dents understand the pedagogical approach

being employed. That there will be a turning

back and new exploration of topics already

introduced to develop a deeper and more

comprehensive understanding of these top-

ics.

When students are explicitly supported in

mediating the transfer of content under-

standing in Alice to the content being ex-

plored in Java / C++, when they understand

the pedagogical approach being employed,

they seem to be able to develop the hoped-

for deeper understanding, with many “Ah-

Hah!” moments. They also tend to appre-

ciate the effort the instructor is now per-

ceived to be putting forth in supporting their

learning.

5. TOPICS LIGHTLY INTRODUCED

OR NOT INTRODUCED IN ALICE

Alice is object based, more than object-

oriented. There are some topics important

in an introductory programming course that

Alice does not or cannot cover in great

depth. Thus the instructor must put more

focus on these areas in the Java / C++ por-

tion of the course. This focus will usually be

in deeper explanation, practice, labs and

assignments.

Alice only lightly covers mutable variables,

and the expression editor of Alice makes the

creation of complex numeric and Boolean

expressions cumbersome. There is some

exploration of Numeric types, but there is no

distinction made between integer and float-

ing point numbers.

The dirty little secret in Alice is that all refer-

ences are global, scoping is lightly enforced.

The instructor, in making sure that no ex-

amples are shown where the global nature

of the references is exposed, can finesse

this. But this takes careful thought and

planning of examples.

There is a very tight coupling between a par-

ticular object and its reference. A reference

may not be reassigned to a different object

during runtime. There is no notion of the

this operator, or the implicit this in Alice.

Every message is sent to a specific refer-

ence. There is no indirect object reference

in Alice, for example, the use of an indexed

array variable to access the members of a

particular object.

Some topics are just not covered in Alice.

There is no creation of a class definition from

scratch. There is no explicit idea of con-

structors. Dynamic object creation does not

exist in Alice. (There is no mechanism to

new an object during runtime.) There are

no interfaces, no notion of class members

using static, polymorphism.

c© 2009 EDSIG http://isedj.org/7/50/ June 5, 2009

ISEDJ 7 (50) Goulet and Slater 8

These topics must be carefully attended to in

the Java / C++ portion of the course.

6. THE AUTHORS CONTRIBUTION

TO THE DIALOGUE: ALICE

FOLLOWED BY JAVA – THE

TRANSFER

In the tables found in APPENDIX A, we will

identify each characteristic as defined in our

earlier stated view of the Object-Oriented

Paradigm. We will than show how that cha-

racteristic is or is not implemented in Alice.

We will then exhibit our view of a mapping

into Java, providing the reader with a con-

crete example of one pedagogical transfer.

7. SUMMARY AND THE INVITATION

The object-oriented paradigm of modern

programming languages is both difficult to

teach and difficult for students to learn. Our

objective in this paper was to use Alice as a

tool to teach the object-oriented paradigm,

and to begin a dialogue on how to use Alice

in this educational environment. Alice can

be used in many different ways to teach

many different topics, i.e., story telling, 3D

animation, gaming, and programming. We

exhibited how the content and concepts in

Alice give a concrete realization to object-

orientation. This realization, we believe, can

form a very solid and conceptual foundation

for the teaching and learning of the object-

oriented paradigm, and thus to provide a

better understanding of object-oriented pro-

gramming and object-oriented analysis and

design.

We invite others to bring forth their ideas

and join the discussion of innovative and

effective ways in how Alice can be used as a

teaching / learning tool.

8. REFERENCES:

Alice. (2007) The latest version of Alice

software and online galleries of 3D mod-

els can be downloaded from

http://www.alice.org.

Dann, Wanda P., Cooper, Stephen, Pausch,

Randy. (2006) Learning to Program with

Alice. Pearson-Prentice Hall. Upper Sad-

dle River, NJ.

From Method Summary for the Math class.

http://java.sun.com/j2se/1.3/docs/api/ .

Accessed: 30 July 2007.

Horstmann, Cay. (2008) Big Java. John

Wiley & Sons, Inc. Hoboken, NJ. p 13.

Miler, Philip L. and Lee W. Miler. (1987)

Programming by Design: A First Course

in Structured Programming. Wadsworth

Publishing Company. Belmont, CA. p 95.

Moskal, Barbara, Deborah Lurie Stephen

Cooper. (2004) “Evaluating the Effec-

tiveness of a New Instructional Ap-

proach.” Proceedings of the 35 SIGCSE

Technical Symposium on Computer

Science Education. SIGCSE 2004. pp

75-79.

c© 2009 EDSIG http://isedj.org/7/50/ June 5, 2009

ISEDJ 7 (50) Goulet and Slater 9

APPENDIX A

Characteristic: A class is a definition or template for creating objects

Alice Realization:

Pre-defined Classes:

Alice groups pre-defined classes into

‘Galleries’. The Galley is a collection of

all available 3D models that can be used

in an Alice microworld.

User Defined Classes:

Alice allows for the extension of pre-

defined classes. ‘save object’ would

create a new ‘joePenguin’ class.

Alice does not allow for completely new,

user-defined classes.

Mapping into Java:

Pre-defined Classes:

Java groups pre-defined classes into

‘packages’. Packages are collections of

similar classes that perform the same

function as a single gallery set in Alice.

java.util package

java.awt package

java.math package

java.io package

User Defined Classes:

Java allows for the extension of pre-

defined classes. Using the Alice example

and assume Penguin is a pre-defined

class, then:

public class joePenguin extends

Penguin

would extend the Penguin class.

Java permits the construction of new,

user-defined classes. Again, using the

Alice example and assume Penguin is

not a pre-defined class, then:

public class Penguin{ }

c© 2009 EDSIG http://isedj.org/7/50/ June 5, 2009

ISEDJ 7 (50) Goulet and Slater 10

Characteristic: An Object is a realization [instance] of a class

Alice Realization:

Objects in Alice are added by selecting one

of the models in the Gallery, and the user is

asked if they wish an instance of that class

to be placed in the world. Multiple realiza-

tions may be added to the world in this way,

each with its own attributes and behaviors.

Mapping into Java:

Objects in Java are added by declaring the

object and then sending a message to the

class to execute its constructor.

Declaring and sending a message to the

Penguin class:

Penguin joePenguin;

joePenguin = new Penguin ();

The Penguin Class:

public class Penguin()

public Penguin ()

{ }

Characteristic: Objects know things

Alice Realization:

Every object in Alice has a set of ‘properties’

that identifies ‘what the object knows’. Se-

lecting the Properties tab in the Details sec-

tion for ‘joePenguin’, we have:

Mapping into Java:

What an object in Java ‘knows’ is what is

declared in its attribute list. Using some of

what joePenguin ‘knows’ in Alice, we can

write:

public class Penguin()

/* Knows things */

private String color;

private float opacity;

private String vehicle = world;

private String skinTexture;

private String fillingStyle;

private Boolean isShowing;

c© 2009 EDSIG http://isedj.org/7/50/ June 5, 2009

ISEDJ 7 (50) Goulet and Slater 11

Characteristic: Objects know how to do things

Alice Realization:

Every object in Alice has a pre-defined set,

or primitives, of ‘methods’ and ‘functions’

identifying what it ‘knows how to do’ and are

listed in the Details windows. Methods are

behaviors that the object can perform, and

functions answer questions about the object

and its relationship to other objects in the

microworld. For ‘joePenguin’, we have the

following partial list:

Objects in Alice can also have user-defined

‘things it knows how to do’. Using the

‘create new method’ and ‘create new func-

tion’ in the above screen capture allows the

programmer to define new methods and

functions that become part of that instance’s

knowledge base. This new knowledge is not

automatically transferred to other realiza-

tions of that class in the microworld or in the

Gallery.

Mapping into Java:

Pre-defined objects instantiated from pre-

defined packages have pre-defined ‘me-

thods’, identifying what it ‘knows how to do’.

For the Math class taken from (Method

Summary), we have the following partial

list:

Method Summary

static double abs(double a)

 Returns the abso-

lute value of a double

value.

static float abs(float a)

 Returns the abso-

lute value of a float

value.

static int abs(int a)

 Returns the abso-

lute value of an int val-

ue.

static long abs(long a)

 Returns the abso-

lute value of a long val-

ue.

static double acos(double a)

 Returns the arc

cosine of an angle, in

the range of 0.0 through

pi.

Objects in Java, in general, have two groups

of things it ‘knows how to do’. One group is

usually known as the standard methods –

the ‘getters’ and the ‘setters’. And one

group is usually known as the custom me-

thods. For the Penguin defined above, a

custom method might be:

public void dance(int,seconds)

{ }

c© 2009 EDSIG http://isedj.org/7/50/ June 5, 2009

ISEDJ 7 (50) Goulet and Slater 12

Characteristic: Objects are assigned responsibilities, and when asked,

carry out that responsibility

Alice Realization:

Object can manipulate their properties in the

set up of the microworld, or may be accessed

and / or manipulated during the program

executions. ‘joePenguin’, below, is changing

his ‘isShowing’ during run time.

When assigned a different responsibility, the

Alice object can carry out that responsibility.

The object may be the primary actor in the

microworld (the subject) receiving a mes-

sage as a method, mediated with the dot (.)

operator, with accompanying parameter val-

ues to clarify the behavior specified in the

message (how far to move, for example).

The object may receive a request for infor-

mation it has, by receiving message as a

function, also mediated with the dot opera-

tor, and appropriate parameter values. For

example, we can give joePenguin the re-

sponsibility to ‘glide’. And when asked to

‘glide’, joePenguin will carry out that respon-

sibility by ‘gliding’ according to the ‘glide’

method.

Mapping into Java:

Objects in Java can manipulate their

attributes at compile time using default val-

ues, or during run time using the ‘setter’

methods. Carrying the Alice example of

joePenguin into Java, we could have:

public class Penguin

{

/* Knows things */

Boolean isShowing = false;

/* set methods */

public void setIsShowing(Boolean,

s)

{ isShowing = s;}

}

When assigned a different responsibility, the

Java object can carry out that responsibility

by executing a custom method for that re-

sponsibility. Again, following the Alice ex-

ample of joePenguin, and assuming some

liberties in the Java environment, we can

make joePenguin glide. First the request to

the joePenguin object to ‘glide’:

joePenguin.glide;

Now the way joePenguin ‘glides’ as an ob-

ject of the Penguin class:

public void glide ()

{

penguin.move(char u, float d,

float,t);

penguin.turn(char f, float d,

float t);

penquin.head.turn(char b,

float d, float t);

penguin.move(char u, float,d);

penquin.wing.flap(int n);

}

c© 2009 EDSIG http://isedj.org/7/50/ June 5, 2009

ISEDJ 7 (50) Goulet and Slater 13

Characteristic: Objects interact by passing messages

Alice Realization:

In Alice, an object, like joePenguin is com-

posed of object subparts, i.e. a head, body,

right and left legs, right and left wings.

‘joePenguin’, above, passes the message to

the wings to flap two times.

Mapping into Java:

In Java, when one object requests another

object to carry out some action, the first

objects sends a ‘message’ in the form of a

call to a method in the second object.

Characteristic: An object-oriented program is a collection of interacting

objects

Alice Realization:

In Alice, the objects in the microworld work

together to implement the story or game.

The subparts of an object will work together

to create a specific animation.

Mapping into Java:

In Java, everything is a class, and the ob-

jects instantiated from those classes create

the environment for the Java program. The

Java program defines the way these objects

interact.

Characteristic: The world is viewed as a collection of objects

Alice Realization:

Alice creates a ‘microworld’ that holds all the

objects under consideration. The object tree

identifies all the objects contained in the mi-

croworld.

Mapping into Java:

Java creates its world by defining classes

and then instantiating objects. For exam-

ple:

/* Defining classes */

public class Customer() {}

public class Boat() {}

/* Instantiating Customers and

Boats */

firstCustomer = new Customer();

secondCustomer = new Customer();

boatOne = new Boat();

boatTwo = new Boat();

c© 2009 EDSIG http://isedj.org/7/50/ June 5, 2009

ISEDJ 7 (50) Goulet and Slater 14

Characteristic: Simple object-oriented programs implement a 3-tier architecture

The UIForm, or 1st-Tier, is some user interface that provides information to and receives

information from the set of Domain Classes.

The Domain Classes, or 2nd-Tier, are the template classes that are needed to implement

the particular scenario being addressed.

The Data Source, or 3rd-Tier, is where persistent information is stored, most easily

thought of as a database.

For our discussion of object-orientation and due to some limitations of Alice, we will re-

strict our remarks to the first two tiers – UIForm and Domain Classes. For ease of explana-

tion, the UIForm will take the form of a Director of a play in Alice and as a Controller in Ja-

va. The role of each is to ‘direct’ / ‘control’ the action by sending messages to the 2nd-Tier,

the Domain Classes. In each case, the Director’s / Controller’s sole responsibility is to ‘di-

rect’ – object-one, do this; object-two, do that. In this way, the 1st-Tier is loosely coupled

to the 2nd-Tier, implementing the idea of the tiered architecture.

Alice Realization:

The Alice world starts with a call to ‘my-

FirstMethod’.

Assign ‘myFirstMethod’ the role of ‘director’.

Using a slightly different example from joe-

Penguin, we have ‘director’ giving instruc-

tions for the execution of Scene 1.

Mapping into Java:

The Java world starts with a call to ‘main’.

public static void main(String[]

args)

‘main’ will take on the role of the ‘controller’,

and directs the action. Here, we will use a

very simple example to get the concept

across.

/* declare two objects */

Customer aCustomer;

Boat aBoat;

/* Instantiate the objects */

aCustomer = new Customer();

aBoat = new Boat();

/* Direct the action */

aCustomer.setName(String Sally);

aBoat.setRegNumber(Int 1234);

aBoat.assignBoatToCustomer();

c© 2009 EDSIG http://isedj.org/7/50/ June 5, 2009

ISEDJ 7 (50) Goulet and Slater 15

APPENDIX B

Figure 2: The Alice Interface

FROM FILE MENU, SELECT NEW WORLD

Figure 3: Creating a Microworld

Object Tree World View Events Editor

Details Pane
Editor

Select Template

Select Open

Add Objects Button

c© 2009 EDSIG http://isedj.org/7/50/ June 5, 2009

ISEDJ 7 (50) Goulet and Slater 16

CLICK THE ADD OBJECTS BUTTON, AND FIND THE CLASS MODEL IN THE GALLERY

Figure 4: Adding an Object to the World

Figure 5: Creating the Program Code

Click on model in Gallery
Add instance to the world

After adding Objects

Select Object

Drag Instruction Tile to the Editor

Specify Parameters

c© 2009 EDSIG http://isedj.org/7/50/ June 5, 2009

