
Volume 7, Number 26 http://isedj.org/7/26/ April 14, 2009

In this issue:

Coaching Asynchronous Teams for Undergraduate Programming Projects

Ken T. N. Hartness
Sam Houston State University

Huntsville, TX 77341 USA

Abstract: Team collaborations are used both in commercial, open-source, and academic software
projects. More experience with team projects may be possible if intermediate students can receive
guidance in using tools that support collaborations without requiring excessive class and instructor
time to do so. This article makes a case for instructing students in the use of tools commonly used
to support collaborations, including open-source projects with fewer opportunities for face-to-face
meetings, and outlines a coach that aids the novice team member in using these tools. In this
way, the student gains valuable skills for teamwork and in using tools commonly used to support
teamwork.

Keywords: group projects, agents, coaching

Recommended Citation: Hartness (2009). Coaching Asynchronous Teams for Undergraduate
Programming Projects. Information Systems Education Journal, 7 (26). http://isedj.org/7/26/.
ISSN: 1545-679X. (Preliminary version appears in The Proceedings of ISECON 2007: §1744. ISSN:
1542-7382.)

This issue is on the Internet at http://isedj.org/7/26/



ISEDJ 7 (26) Information Systems Education Journal 2

The Information Systems Education Journal (ISEDJ) is a peer-reviewed academic journal
published by the Education Special Interest Group (EDSIG) of the Association of Information
Technology Professionals (AITP, Chicago, Illinois). • ISSN: 1545-679X. • First issue: 8 Sep 2003.
• Title: Information Systems Education Journal. Variants: IS Education Journal; ISEDJ. • Phys-
ical format: online. • Publishing frequency: irregular; as each article is approved, it is published
immediately and constitutes a complete separate issue of the current volume. • Single issue price:
free. • Subscription address: subscribe@isedj.org. • Subscription price: free. • Electronic access:
http://isedj.org/ • Contact person: Don Colton (editor@isedj.org)

2009 AITP Education Special Interest Group Board of Directors

Don Colton
Brigham Young Univ Hawaii
EDSIG President 2007-2008

Thomas N. Janicki
Univ NC Wilmington
EDSIG President 2009

Kenneth A. Grant
Ryerson University
Vice President 2009

Kathleen M. Kelm
Edgewood College

Treasurer 2009

Wendy Ceccucci
Quinnipiac Univ
Secretary 2009

Alan R. Peslak
Penn State

Membership 2009
CONISAR Chair 2009

Steve Reames
Angelo State Univ
Director 2008-2009

Michael A. Smith
High Point

Director 2009

George S. Nezlek
Grand Valley State
Director 2009-2010

Patricia Sendall
Merrimack College
Director 2009-2010

Li-Jen Shannon
Sam Houston State
Director 2009-2010

Albert L. Harris
Appalachian St

JISE Editor

Paul M. Leidig
Grand Valley State University

ISECON Chair 2009

Information Systems Education Journal Editors

Don Colton
Brigham Young University Hawaii

Editor

Thomas N. Janicki
Univ of North Carolina Wilmington

Associate Editor

Information Systems Education Journal 2007-2008 Editorial Review Board

Sharen Bakke, Cleveland St
Alan T. Burns, DePaul Univ
Wendy Ceccucci, Quinnipiac U
Janet Helwig, Dominican Univ
Scott Hunsinger, Appalachian
Kamal Kakish, Lawrence Tech
Sam Lee, Texas State Univ
Paul Leidig, Grand Valley St
Terri L. Lenox, Westminster

Anene L. Nnolim, Lawrence Tech
Alan R. Peslak, Penn State

Doncho Petkov, E Connecticut
James Pomykalski, Susquehanna

Steve Reames, Angelo State
Samuel Sambasivam, Azusa Pac
Bruce M. Saulnier, Quinnipiac
Patricia Sendall, Merrimack C

Li-Jen Shannon, Sam Houston St
Michael A. Smith, High Point U
Robert Sweeney, South Alabama

Stuart A. Varden, Pace Univ
Judith Vogel, Richard Stockton

Bruce A. White, Quinnipiac Univ
Belle S. Woodward, S Illinois U

Charles Woratschek, Robert Morris
Peter Y. Wu, Robert Morris Univ

EDSIG activities include the publication of ISEDJ and JISAR, the organization and execution of
the annual ISECON and CONISAR conferences held each fall, the publication of the Journal of
Information Systems Education (JISE), and the designation and honoring of an IS Educator of the
Year. • The Foundation for Information Technology Education has been the key sponsor of ISECON
over the years. • The Association for Information Technology Professionals (AITP) provides the
corporate umbrella under which EDSIG operates.

c© Copyright 2009 EDSIG. In the spirit of academic freedom, permission is granted to make and
distribute unlimited copies of this issue in its PDF or printed form, so long as the entire document
is presented, and it is not modified in any substantial way.

c© 2009 EDSIG http://isedj.org/7/26/ April 14, 2009



ISEDJ 7 (26) Hartness 3

Coaching Asynchronous Teams for 
Undergraduate Programming Projects 

Ken T. N. Hartness 
hartness@shsu.edu 

Computer Science Dept., Sam Houston State University 
Huntsville, TX  77341, USA 

Abstract 

Team collaborations are used both in commercial, open-source, and academic software 
projects. More experience with team projects may be possible if intermediate students can 
receive guidance in using tools that support collaborations without requiring excessive class 
and instructor time to do so. This article makes a case for instructing students in the use of 
tools commonly used to support collaborations, including open-source projects with fewer op-
portunities for face-to-face meetings, and outlines a coach that aids the novice team member 
in using these tools.  In this way, the student gains valuable skills for teamwork and in using 
tools commonly used to support teamwork. 

Keywords:  group projects, agents, coaching 
 

1. INTRODUCTION 

Many technical undergraduate degrees in-
clude at least one class that requires stu-
dents to work together as a group. Given 
that many jobs related to their field of study 
require successful integration within a team 
collaborating towards a common goal, stu-
dents can certainly benefit from greater ex-
posure to collaborative team projects. Team 
collaboration may encourage social skills 
needed for individuals to work together, en-
hance the learning experience (Cronholm 
and Melin, 2006; Sloffer et al, 1999), make 
it possible for students to experience work 
on a more interesting project than they 
could tackle alone, and expose students to a 
problem that requires good design practices. 
However, team-based projects are difficult 
to coordinate and can lead to frustration 
from better students who worry about unre-
cognized efforts and ordinary students who 
feel inferior (Cronholm and Melin, 2006).  
These team-based projects are difficult to 
evaluate if the instructor wishes to assign 
grades based on individual effort, and some 
instructors are concerned about "deadbeat" 
students who learn nothing from the expe-
rience while relying on other team members 
to do the work. 

Source code management systems are 
commonly used to support team software 
development. This alone is a good reason for 
students to be exposed to such systems. 
However, these tools are sometimes used in 
conjunction with communication support (e-
mail being the simplest) to support devel-
opment by people in geographically sepa-
rated areas and, as such, may be of great 
help in allowing students with different 
schedules and living both on- and off-
campus to collaborate more easily. In addi-
tion, these tools maintain logs of individual 
submissions and do not necessarily require 
that the instructor's first exposure to the 
students' work wait until final submission. 
On the other hand, many instructors feel 
that only advanced students can handle 
these professional tools, and, even then, 
they require considerable class or lab time to 
educate the students in their proper use. 

The following sections describe the advan-
tages and disadvantages of using source 
code management tools for team projects 
and outline an automated coach that seeks 
to address some of the disadvantages. 

c© 2009 EDSIG http://isedj.org/7/26/ April 14, 2009



ISEDJ 7 (26) Hartness 4

2. SOURCE CODE MANAGEMENT OF 

STUDENT PROJECTS 

Gartner, Inc., a company specializing in re-
search and advice related to information 
technology (Gartner, 2007) has suggested 
that successful IT programs must learn to 
support, among other things, tools for distri-
buted, often asynchronous, collaboration, 
both in terms of tracking product as well as 
social interaction throughout the collabora-
tion. They have suggested that over half of 
an individual's work will depend on input 
from other team members, perhaps dis-
persed geographically with team members in 
different countries and time zones (Grigg, 
2001; Dwyer and Malani, 2006). Given that 
one of students' biggest complaints against 
team-based projects is the need to physical-
ly meet given disparate schedules and, 
sometimes, a lack of conveniently accessible 
meeting locations, training students in simi-
lar collaborative strategies makes sense. 

Although an instructor could certainly argue 
that an academic program is not necessarily 
responsible for anticipating and providing all 
training required for a student to be suc-
cessful in information systems careers, col-
laborative tools can provide other benefits to 
the learning process besides simply training 
a student in their use. Such tools can make 
it easier for students to work as a team 
without necessarily meeting physically, they 
can maintain a record of individual contribu-
tions, and an instructor can easily be in-
cluded in the definition of a team and offer 
advice prior to the final submission date. 

While a number of useful collaborative tools 
exist, Subversion (2006) and CVS (Harper, 
1999) are open-source systems available for 
free download and are in common usage in 
open-source and even commercial software 
development. All further discussion of source 
code management will assume the CVS 
model. Files shared by the team are stored 
in a shared repository accessible over a net-
work. Team members may check out copies 
of files, modify them, and submit the mod-
ified copy to the repository (Figure 1). Files 
are not locked by individual users as users 
routinely make changes to independent sec-
tions of files without conflict. If the modifica-
tion conflicts with another team member's 
submission, the team member should de-
termine how to handle this conflict and, 
then, resubmit the file. Tools are provided in 

the client software to recognize and locate 
these conflicts. A history of changes is main-
tained on each file, allowing earlier versions 
to be recovered. Any member can analyze 
this history to gain an understanding of indi-
vidual participation in terms of number and 
size of contributions. CVS began as a collec-
tion of tools for updating local copies, com-
mitting changes from the local copy to the 
repository, comparing the contents of files, 
both local and in the repository, etc. Subver-
sion is an attempt to address certain limita-
tions of CVS. 

 

Repository

up
da
te

co
m
m
it

u
p
d
a te

update

c
o
m
m
it

commit

File1,v1

File1,v2

File1,v3

File2,v1

File2,v2

File2,v3

File2,v4

File3,v1

File3,v2

File1

7/7/2007

File1

7/8/2007

File2 File3

7/7/2007

 

Figure 1 - Source Manager Server 

Reid and Wilson (2005) used CVS as an as-
signment submission system. The shared 
repository makes it easy for students to 
move from one machine to another without 
physically carrying current copies of their 
work. Instructors and teaching assistants 
were able to assist students with problems 
while viewing a current copy of the student’s 
work. Patterns of behavior, like waiting until 
the night before to begin an assignment, 
could be observed, and relevant suggestions 
could be made. In some cases, the history 
stored in a source code management system 
can be used as evidence in cases of sus-
pected plagiarism. 

Team projects are more easily supported. 
Students know where the most up-to-date 
versions of their teammates’ work may be 
found. File comparison tools and comments 
logged during a commit of changed files al-
low students to discover what their team-
mates have changed. If an instructor or 
teaching assistant is included in each team, 
the team may even receive unsolicited ad-

c© 2009 EDSIG http://isedj.org/7/26/ April 14, 2009



ISEDJ 7 (26) Hartness 5

vice as the work is being done, potentially 
resulting in a deeper level of instruction than 
is possible in an environment limited to lec-
ture and evaluation of completed work 
(Glassy, 2006). In any case, a deeper level 
of evaluation should be possible given that 
progress can be monitored in real-time or 
reconstructed from historical data. 

Brereton et al (2000) were able to success-
fully manage student teams composed of 
students from different universities, and the 
indirect communication implied by interac-
tion through the shared repository encour-
aged and guided explicit communication be-
tween the students. Their work indicates 
that a shared repository clearly reduces the 
significance of geographical collocation be-
tween team members. The same historical 
version information that could be used for 
evaluation of individual participation also 
helps team members remain aware of each 
others' activities; combined with e-mail or 
more sophisticated communication support, 
students are able to work together asyn-
chronously with fewer face-to-face meetings. 
Superior support for asynchronous commu-
nication and tools that interpret CVS or Sub-
version logs in order to better visualize 
member activities will undoubtedly improve 
team members' ability to function asyn-
chronously. Face-to-face status meetings, at 
least, become unnecessary if interested par-
ties can simply view a summary of changes 
logged within the source code management 
system. 

These advantages are easily eliminated by 
team members who fail to utilize the source 
code management system properly. If the 
repository is only used as a submission sys-
tem, the history logs will be useless for de-
termining individual participation. Instructors 
and teaching assistants can encourage use 
of the repository by refusing to assist stu-
dents with work that is not accessible 
through the repository and, possibly, by 
evaluating progress points prior to the due 
date. A student who fails to update her work 
may prevent other team members from test-
ing their own work in a timely manner; while 
this is nothing new for group projects, it is 
particularly frustrating in this case if a stu-
dent is working diligently but forgetting to 
share her work with the others, even though 
it is easy to do so. 

3. SOURCE CODE 

MANAGEMENT PROTOCOLS 

Some instructors are naturally concerned 
about using valuable class time to teach stu-
dents how to properly use a source code 
management system. Reid and Wilson 
(2005) claim to have spent one session on 
team work and version control and provided 
students with a tutorial on the details of us-
ing CVS (or another version control system 
used to manage source code). A single class 
may suffice to describe team programming, 
at least in a course where team program-
ming is a means for gaining experience with 
other material and not an end in itself. The 
time spent training students to use a specific 
tool will vary depending, at least in part, on 
the availability of a good tutorial. By inte-
grating a coach into the software develop-
ment environment, I hope to include, among 
other things, the elements of a good tutorial 
in a tool that monitors day-to-day usage and 
provides context-sensitive help as a student 
needs it. 

Students should be encouraged to follow a 
consistent protocol for incorporating the 
source code management system into their 
development process. Trytten (2005) en-
sured proper use of the system by automat-
ing it. Every file saved was committed to the 
repository. The following suggested proto-
cols assume greater flexibility. Students 
should log their progress frequently until 
they are ready to test a module. This beha-
vior helps eliminate any assumptions of in-
adequate participation on the part of other 
team members or an observing evaluator. 
However, once modules approach a point 
where they can be tested, several final mod-
ifications may be necessary before a collec-
tion of files are ready to be tested together, 
so students may prefer to wait to share all 
related files as one fully tested whole. Cer-
tainly, further modifications to files previous-
ly thought complete should probably be 
made locally until completed and tested so 
as to prevent temporarily replacing working 
code with incomplete changes that do not 
work. At this point, committed changes 
cease to be simply a log of gradual progress 
and become atomic steps forward from one 
(perhaps, partially) working solution to 
another (hopefully, superior) solution. 

c© 2009 EDSIG http://isedj.org/7/26/ April 14, 2009



ISEDJ 7 (26) Hartness 6

Begin team project work session: 

1. Synchronize with shared repository. 

a. View files modified since last up-
date from repository. 

b. Familiarize yourself with how 
these files have been changed. If 
the file is immediately important 
to your work, consider compar-
ing it with your local copy for a 
detailed list of changes; other-
wise, trust the comments logged 
by the user to summarize 
changes. 

2. If the changes do not conflict with 
your own work, update the local 
copies; otherwise, communicate with 
other users, if necessary, and de-
termine how to repair the conflict. 

3. If you forgot to commit changes at 
the end of the last session, commit 
all changes ready to be shared with 
the team. 

Create a new file: 

1. If file needs to be shared with the 
team, check it into the repository. 

2. If file contains a vital component 
that other members need, you may 
even wish to send them a message 
announcing its availability. 

Save changes to a file: 

• If file has never been tested and is 
not yet ready for testing, or another 
is responsible for testing it, commit 
the changes to the repository, im-
mediately (otherwise, you may work 
until you are out of time and put off 
committing to the repository). 

a. Perform a file comparison be-
tween your local copy and the 
repository if you are not clear on 
all of the changes that you have 
made. 

b. Commit the file. 

c. Add a log comment that summa-
rizes your changes so other us-
ers can quickly determine how 
the file has changed. 

d. If your changes conflict with 
changes committed by another 

member since your last update, 
communicate with other mem-
bers, if necessary, and attempt 
to resolve the conflict (this may 
require waiting until later to 
complete the commit operation). 

Complete successful testing of module(s) 
or end team project work session: 

• If relevant files have not been com-
mitted, initiate commit operations 
for all files involved in the testing 
(follow same procedure for each file 
as above). 

4. COACHING THE STUDENTS 

4.1 Overview 

The coach is an advising agent that monitors 
its owner's activities and shares this infor-
mation with other coaches in a team. When-
ever the coach determines that its owner 
needs some advise, it interrupts the owning 
user or alters one of the views visible to the 
user, depending on the nature of the advise. 
The coach combines the attributes of a ver-
sion control assistant with those of a group 
awareness agent similar to Palantír (Sarma, 
2003). Inexperienced users of CVS or Sub-
version will be assisted both in the proper 
use of the tool and in tracking their fellow 
group members' activities. 

The coach attempts to model users in order 
to gauge the type and appropriateness of an 
intervention. Initially, the coach is quick to 
suggest that a student keep local copies of 
files synchronized with the shared repository 
files. It gradually learns to identify a work 
pattern, judge the experience level of the 
user, and use this information to adjust the 
likelihood and nature of an interruption. 

The coach can encourage users to consider 
certain behaviors through a range of me-
thods. These include marking a file that 
needs to be synchronized with the repository 
or displaying a warning in the status bar of a 
window. In important cases where this type 
of behavior is ignored, the coach can bring a 
warning box to the front or even steal the 
user's focus, truly interrupting their work in 
order to ensure that they see the advice. 
Naturally, this more extreme behavior is re-
served for beginners who ignore other me-
thods. 

c© 2009 EDSIG http://isedj.org/7/26/ April 14, 2009



ISEDJ 7 (26) Hartness 7

4.2 Implementation 

Students access the shared repository via a 
modified shell or IDE (the author uses Ec-
lipse [Eclipse.org, 2007] because of its ex-
tensibility). The subversion coach is initiated 
as a separate thread and tracks new re-
source creation, opening an existing re-
source, and modifying or saving changes. 
Common subversion commands are ex-
tended to keep the coach informed of check-
outs from the repository as well as project 
synchronization commands to commit 
changed files to the repository and update 
local files from the repository. 

File monitors track which files are open, how 
much they have been changed, and whether 
they have been committed back to the repo-
sitory or otherwise synchronized with 
changes in the repository.  Their findings are 
a major part of the data used by the coach 
to decide when to intervene.  The data can 
also be communicated with other coaches so 
that a user's coach can anticipate conflicts 
and advise its user accordingly. 

The coach uses a simple rule base to decide 
when to intervene with its user. The rules 
reflect the protocols described in the pre-
vious section. However, the rules are aug-
mented to be triggered at different times for 
different users. Also, rules are included that 
reflect a philosophy of group awareness. 

For example, another member of the group 
opens a file and makes changes without 
committing those changes to the repository. 
The user initiates a group session, starting 
the coach who recognizes that the user is a 
novice and suggests synchronizing with the 
repository and verifying any recent changes. 
The user then opens the same file being 
modified by the other member of the group. 
The icon for the file in the project window is 
modified to indicate it is being used by 
another user and a message appears in the 
status window suggesting that the user 
could communicate with the other member 
in order to avoid complicated merging of the 
two versions at a later time. The user ig-
nores this and makes modifications to the 
file. 

The coach informs the other member's 
coach, but the other member is experienced 
with no history of strong proprietary res-
ponses, so her coach chooses to simply 
augment the file icon in the project window 

to reflect that someone is working on the 
same file. 

A third member, however, has already 
committed extensive changes to the file and 
has a history of proprietary behavior such as 
quickly viewing a modified file of interest 
and subsequently making further modifica-
tions to the file. At present, the coach would 
assist this user's desire to keep informed of 
changes to this file and warn its user. Later 
versions might explore methods that may 
assist proprietary users to view the work as 
a team effort. 

4.2.1 User model. A user model records 
the user's experience level, willingness to be 
interrupted, current working pattern, degree 
of involvement with the different files be-
longing to the group, tendency to respond to 
file modifications by others, and a history of 
the last time the coach advised the user on a 
particular topic. 

Experience levels reflect novice, interme-
diate, and expert experience with the 
coached group environment. 

Current working patterns include incremen-
tal and version-oriented. The current work-
ing pattern is primarily used to augment 
responses for more experienced users, sug-
gesting expectations for user behavior. In-
cremental working patterns reflect a tenden-
cy to associate the commit action with sav-
ing a file or the end of a work session; every 
modification is committed to the shared re-
pository soon after it is made, creating an 
up-to-date public record of the user's activi-
ty as well as providing a backup of current 
work. This behavior is useful at the begin-
ning of a project so that students have some 
awareness of the progress of the group as a 
whole. Once parts of a module are ready for 
testing, a user may choose a version-
oriented working pattern in which modifica-
tions are only shared when they have 
passed preliminary tests (or, at least, are 
believed capable of doing so). The coach 
does not pester users to commit all changes 
if it believes they are following the version-
oriented pattern. 

The measure of user involvement with a file 
is determined by the proportional amount of 
changes made by the user to the file and the 
intensity of their response to changes made 
by others (latency between modification and 
the user viewing the change, and whether 

c© 2009 EDSIG http://isedj.org/7/26/ April 14, 2009



ISEDJ 7 (26) Hartness 8

the user immediately made changes as 
well). In addition, a record is made of the 
type of response made by the user when a 
file of interest to the user is changed by 
another. 

The history of past advice is used to prevent 
the coach from pestering users, especially 
the more experienced ones, by repeatedly 
offering the same advice. Delays between 
one offer of advice and the next are related 
to the experience level of the user. 

The coach maintains a persistent model of 
its user utilizing the same repository as the 
group project. A coach is created in connec-
tion with a particular repository, group 
name, and user name. A folder is saved in 
the repository with the same name as the 
group and the text ".grp" appended to the 
end. The coach updates its local copy of this 
folder and modifies it to reflect its owner's 
current IP address for peer-to-peer commu-
nication between active coaches.  Each file in 
the folder contains the user's long name, 
current IP address (or zero), a list of mod-
ified files since last commit, a list of commit-
ted files that haven't been locally updated, 
and the serialized data of the user model. 
Since each coach maintains its own models 
of team members using identical algorithms, 
it is sufficient for a user to save his or her 
own model for all to share. In a system of 
heterogeneous coaches, a different method 
would be desirable. 

4.2.2 Rule-based system: The rule base is 
consulted whenever any repository synchro-
nization is attempted, after a changed re-
source is saved or committed, and after re-
ceiving a change notification from one of the 
file monitors. 

Rules indicate behaviors such as the follow-
ing: 

If commit of resource by another and re-
source is important to owner then en-
courage synchronization with the reposi-
tory based on importance. 

If owner is requesting a commit of a re-
source that has been committed by 
another, then encourage synchronization 
with the repository (top priority) and de-
scribe merging. 

If resource modified by owner that is 
very important to someone else, encour-

age a commit immediately (medium 
priority). 

Each rule is primarily triggered by an event. 
Recognized events include 

• ACTIVE_USER 

• OPEN_RESOURCE 

• LOCAL_UPDATE,  

• CHANGE_NOTIFICATION 

• GLOBAL_UPDATE 

• INACTIVE_USER 

ACTIVE_USER (remote message) includes a 
user's name and IP address. It simply adds a 
user's IP address to the list of active group 
members. The coach also sends the contact-
ing coach a list of open files since it may not 
have been active when OPEN_RESOURCE 
events were sent to the group, initially. 

OPEN_RESOURCE includes the name of the 
user opening the resource and the name of 
the resource. Local events are shared with 
other active coaches. A resource monitor is 
established to track the degree to which a 
resource is modified. If the event is generat-
ed remotely, the resource's icon is updated 
in the explorer view. If the user's model in-
dicates that the resource is important to the 
user and the user would want to be informed 
of changes, advise the user that the re-
source is being modified, remotely. 

CHANGE_NOTIFICATION includes a user's 
name, the resource's name, and a measure 
of how much the resource has been mod-
ified. If generated locally, beginners are en-
couraged to commit changes if the degree of 
change is sufficiently large. Other levels are 
also encouraged to commit changes if the 
work pattern is incremental, although the 
degree of change must be larger before the 
coach gets involved. The event is sent from 
a remote coach to maintain team aware-
ness. The user's interest in the modified re-
source, the presence of an altered local copy 
of the resource, and a record of the user's 
tendency to respond to these changes will 
influence the level of response from the 
coach, ranging from notifying the user of the 
change to instructing the user in how to 
coordinate each others' changes. 

LOCAL_UPDATE indicates that a changed 
resource has been saved but not yet com-
mitted to the repository. Beginners and us-

c© 2009 EDSIG http://isedj.org/7/26/ April 14, 2009



ISEDJ 7 (26) Hartness 9

ers with incremental work patterns may be 
encouraged to commit changes, depending 
on level of user and time since coach last 
advised user in this way. A remote message 
of this form is handled in much the same 
way as a remote CHANGE_NOTIFICATION. 

GLOBAL_UPDATE indicates that a changed 
resource has been committed to the shared 
repository. If local, the message is shared 
with other active coaches. If remotely gen-
erated, then factors similar to those men-
tioned in the previous paragraph are used to 
decide if the user needs to be notified and 
possibly encouraged to synchronize in order 
to get the most up-to-date version of the 
resource. 

Factors such as the user's willingness to be 
interrupted, the user's skill level, and the 
time since a similar piece of advice was is-
sued are considered before a user is inter-
rupted or distracted by advice. 

5. CONCLUSIONS 

Students need experience with teamwork, 
especially in business and technical fields. 
Group software projects are often difficult to 
coordinate and evaluate, but CVS, Subver-
sion, and similar source code management 
systems may offer ways to manage student 
projects while teaching students valuable 
skills. I have introduced the concept of a 
coach, by itself not a new idea, for guiding 
novice users of source code management 
systems in their proper usage. The coach 
should also include conflict awareness and 
provide tools for helping team members re-
main aware of one another and encouraging 
them to avoid or resolve conflicts. 

In the future, I hope to add a chat tool that 
links with a source code development sys-
tem, allowing messages to be linked to 
source code.  The chat tool would serve both 
as a log of synchronous chats and an asyn-
chronous message system. Radar views that 
summarize student activities or the degree 
to which files have been changed would also 
be useful for maintaining team awareness. 
The coach could include rules for when these 
tools might be most needed and automate 
or advise their use. 

6. REFERENCES 

Brereton, O., S. Lees, R. Bedson, C. Boldy-
reff, S. Drummon, P. Layzell, L. Macau-

lay, and R. Young (2000). Student colla-
boration across universities: A case study 
in software engineering. Thirteenth Con-
ference on Software Engineering Educa-

tion & Training. 

Cronholm, S., and U. Melin (2006). Project 
oriented student work: Group formation 
and learning. Proceedings of the Informa-

tion Systems Education Conference (ISE-

CON 2006), Dallas, TX, USA. 

Dwyer, C., and P. M. Malani (2006). Low-
cost collaborative tools for virtual com-
munication. Information Systems Educa-

tion Journal 4 (78). 

Eclipse.org (2007).  Eclipse.org home. URL: 
http://www.eclipse.org.  Copyright 2007 
by The Eclipse Foundation. 

Gartner, Inc. (2007). Gartner delivers the 
technology-related insight necessary for 
our clients to make the right decisions, 
every day. http://www.gartner.com. 

Glassy, L. (2006). Using version control to 
observe student software development 
processes. Journal of Computing Sciences 

in Colleges 21 (3). 

Grigg, J. (2001). The Uncertain Future: 
Technology and Business Challenges for 

IT. The Gartner Group. 

Harper, D (1999).  cvsnt - Concurrent Ver-
sions System 2.0.51d, WinCvs 2.0.2.4, 
open source software published at 
www.wincvs. 
org (downloaded 9/1/2005). 

Reid, K., and G. Wilson (2005). Learning by 
doing: Introducing version control as a 
way to manage student assignments. 
ACM SIGCSE Bulletin 37 (1). 

Sarma, A. (2003). Configuration manage-
ment workspace awareness for distri-
buted software development. European 
Software Engineering Conference and 

ACM SIGSOFT Symposium on the Foun-

dations of Software Engineering 

(ESEC/FSE) Doctoral Symposium, Helsin-
ki, Finland, September 2003. 

Sarma, A., A. van der Hoek, and D. Red-
miles (2007). A comprehensive evalua-
tion of workspace awareness in software 
configuration management systems. IEEE 
Symposium on Visual Languages and 

c© 2009 EDSIG http://isedj.org/7/26/ April 14, 2009



ISEDJ 7 (26) Hartness 10

Human-Centric Computing, Coeur 
d'Aléne, Idaho, September 2007. 

Sloffer, S. J., B. Dueber, and T. M. Duffy 
(1999). Using asynchronous conferencing 
to promote critical thinking: Two imple-
mentations in higher education. Proceed-
ings of the 32nd Annual Hawaii Interna-

tional Conference on System Sciences, 
Wailea Maui, Hawaii, USA, 5-8 January 
1999. 

Subversion Home (2006). http://subversion. 
tigris.org, Collab-Net. 

Trytten, D. (2005). A design for team peer 
code review. ACM SIGCSE Bulletin 37 (1). 

c© 2009 EDSIG http://isedj.org/7/26/ April 14, 2009


