
Volume 7, Number 23 http://isedj.org/7/23/ April 9, 2009

In this issue:

Bringing OOAD&P Together: A Synthesis Approach

Daniel V. Goulet Robert Dollinger
University of Wisconsin Stevens Point University of Wisconsin Stevens Point

Stevens Point, WI 54481 USA Stevens Point, WI 54481 USA

Abstract: Modern software development draws on many concepts, strategies, processes, tools, and
techniques: 3-Tier Architecture, Model Driven Architecture, UML, Unified Process, visual modeling,
visual programming, round-trip engineering, object-think, use case driven, incremental and iterative,
documentable, etc. Each has a different objective. Each has a different point-of-view. Each has a
different level of abstraction. None address the melding of these various ’ways of doing’ software
development into a cohesive and coherent, ’best-of-breed’ approach to software development. Laying
out a strategy that can fall along a continuum from water-fall to agile, the authors bring their OOAD
& P ’best-of-breed’ decisions to select components for a synthesized strategy that is incremental,
iterative, traceable, documentable, and teachable to beginning undergraduate software developers.

Keywords: Object-Oriented Analysis, Design and Programming; software development strategies

Recommended Citation: Goulet and Dollinger (2009). Bringing OOAD&P Together: A
Synthesis Approach. Information Systems Education Journal, 7 (23). http://isedj.org/7/23/.
ISSN: 1545-679X. (Preliminary version appears in The Proceedings of ISECON 2006: §2333. ISSN:
1542-7382.)

This issue is on the Internet at http://isedj.org/7/23/

ISEDJ 7 (23) Information Systems Education Journal 2

The Information Systems Education Journal (ISEDJ) is a peer-reviewed academic journal
published by the Education Special Interest Group (EDSIG) of the Association of Information
Technology Professionals (AITP, Chicago, Illinois). • ISSN: 1545-679X. • First issue: 8 Sep 2003.
• Title: Information Systems Education Journal. Variants: IS Education Journal; ISEDJ. • Phys-
ical format: online. • Publishing frequency: irregular; as each article is approved, it is published
immediately and constitutes a complete separate issue of the current volume. • Single issue price:
free. • Subscription address: subscribe@isedj.org. • Subscription price: free. • Electronic access:
http://isedj.org/ • Contact person: Don Colton (editor@isedj.org)

2009 AITP Education Special Interest Group Board of Directors

Don Colton
Brigham Young Univ Hawaii
EDSIG President 2007-2008

Thomas N. Janicki
Univ NC Wilmington
EDSIG President 2009

Kenneth A. Grant
Ryerson University
Vice President 2009

Kathleen M. Kelm
Edgewood College

Treasurer 2009

Wendy Ceccucci
Quinnipiac Univ
Secretary 2009

Alan R. Peslak
Penn State

Membership 2009
CONISAR Chair 2009

Steve Reames
Angelo State Univ
Director 2008-2009

Michael A. Smith
High Point

Director 2009

George S. Nezlek
Grand Valley State
Director 2009-2010

Patricia Sendall
Merrimack College
Director 2009-2010

Li-Jen Shannon
Sam Houston State
Director 2009-2010

Albert L. Harris
Appalachian St

JISE Editor

Paul M. Leidig
Grand Valley State University

ISECON Chair 2009

Information Systems Education Journal Editors

Don Colton
Brigham Young University Hawaii

Editor

Thomas N. Janicki
Univ of North Carolina Wilmington

Associate Editor

Information Systems Education Journal 2006-2007 Editorial Review Board

Samuel Abraham
Siena Heights Univ

Janet Helwig
Dominican Univ

D. Scott Hunsinger
Appalachian State Univ

Terri L. Lenox
Westminster College

Doncho Petkov
Eastern Connecticut St U

Steve Reames
Angelo State Univ

Michael Alan Smith
High Point University

Belle S. Woodward
Southern Illinois Univ

Charles Woratschek
Robert Morris Univ

Peter Y. Wu
Robert Morris Univ

EDSIG activities include the publication of ISEDJ and JISAR, the organization and execution of
the annual ISECON and CONISAR conferences held each fall, the publication of the Journal of
Information Systems Education (JISE), and the designation and honoring of an IS Educator of the
Year. • The Foundation for Information Technology Education has been the key sponsor of ISECON
over the years. • The Association for Information Technology Professionals (AITP) provides the
corporate umbrella under which EDSIG operates.

c© Copyright 2009 EDSIG. In the spirit of academic freedom, permission is granted to make and
distribute unlimited copies of this issue in its PDF or printed form, so long as the entire document
is presented, and it is not modified in any substantial way.

c© 2009 EDSIG http://isedj.org/7/23/ April 9, 2009

ISEDJ 7 (23) Goulet and Dollinger 3

Bringing OOAD&P Together:

A Synthesis Approach

Daniel V. Goulet, Professor
dgoulet@uwsp.edu

Department of Mathematics and Computing
University of Wisconsin-Stevens Point

Stevens Point WI 54481 USA

Robert Dollinger, Associate Professor

rdolling@uwsp.edu
Department of Mathematics and Computing

University of Wisconsin-Stevens Point
Stevens Point WI 54481 USA

Abstract

Modern software development draws on many concepts, strategies, processes, tools, and

techniques: 3-Tier Architecture, Model Driven Architecture, UML, Unified Process, visual mod-

eling, visual programming, round-trip engineering, object-think, use case driven, incremental

and iterative, documentable, etc. Each has a different objective. Each has a different point-

of-view. Each has a different level of abstraction. None address the melding of these various

‘ways of doing’ software development into a cohesive and coherent, ‘best-of-breed’ approach

to software development. Laying out a strategy that can fall along a continuum from water-

fall to agile, the authors bring their OOAD & P ‘best-of-breed’ decisions to select components

for a synthesized strategy that is incremental, iterative, traceable, documentable, and teacha-

ble to beginning undergraduate software developers.

Keywords: Object-Oriented Analysis, Design & Programming. Software Development Strate-

gies

1. INTRODUCTION

Problem: Given the large number of con-

cepts and strategies that have evolved and

matured in the last ten years or so in object-

oriented analysis, design and programming

[OOAD&P], how does a professor organize

this material into a meaningful, cohesive and

consistent instructional approach for begin-

ning software developers? We have larger

organizational structures like 3-Tier Architec-

ture (Satzinger, 2005); Model Driven Archi-

tecture [MDA] (Brown, 2004); Unified Mod-

eling Language [UML] (Fowler et al., 2004);

Unified Process [UP] (Jacobson et al., 1999.

Krutchten, 2004). We have tools like Visual

Studio .NET [VS .NET] (Johnson et al.,

2003) ; Rational Software Architect [RSA]

(Mittal, 2005), XDE .NET (Rational 2003).

We have concepts like visual modeling, visu-

al programming, round trip engineering, ob-

ject-think (Satzinger et al., 2001; West,

2004); use case driven (Bittern, 2003;

Cockburn, 2001); iterative, traceable, do-

cumentable (Manassis, 2004; Boogs et al.,

2003). And we have texts like (Dennis et al.,

2002; Doke et al., 2002 & 2003; Satzinger

et al., 2001 & 2005; Schach, 2004). Each

provides a view of what is and what can be

in the area of OOAD & P. But, the authors,

when working in the classroom, found gaps

or points of disjuncture that did not fit the

idea of a seamless, traceable strategy of

developing a software system from the

statement of a business problem to the pro-

duction of code implementing a solution to

that problem. Their discomfort resulted in a

synthesis of the myriad of ideas and ap-

proaches listed above into their ‘best-of-

breed’ strategy that is both teachable and

c© 2009 EDSIG http://isedj.org/7/23/ April 9, 2009

ISEDJ 7 (23) Goulet and Dollinger 4

effective in educating a next generation of

software developers. In what follow, the

components of the synthesis are identified

first, followed by an example structure, and

finally populating the structure with a small

example to complete the synthesis develop-

ment.

2. COMPONENTS OF THE SYNTHESIS

Structural Architecture

The 3-Tier Model approach appears as the

design strategy in many places in the com-

puting literature, e.g. (Satzinger et al.

2005). The essence of the approach is to

divide a basic software system into three

tiers that are loosely coupled through mes-

sage passing. These three tiers are the (i)

User Interface, (ii) Problem Domain, and for

our purposes in this paper (iii) Data Source

– persistent storage in the operating envi-

ronment. The Appendix Figure 23 depicts

these tiers, along with some additional fea-

tures in each tier that will be addressed later

in the paper and forms the Structural Archi-

tecture for the synthesis.

Model Architecture

Model Driven Architecture, articulated by

(Brown, 2004), views software development

from three different models: the Computa-

tional Independent Model [CIM]; the Plat-

form Independent Model [PIM]; and the

Platform Specific Model [PSM]. These mod-

els view the problem through three different

levels of abstraction, from high level to de-

tail. The CIM, PIM and PSM form the Model

Architecture for the synthesis.

Figure 1: The Unified Process Life Cycle

Model (Satzinger, 2005, p54)

Solution Architecture

The Unified Process, Figure 1, developed by

Jacobson-Booch-Raumbaugh (Jacobson et

al. 1999) and extended through the work of

Krutchten (Krutchen 2004), forms the basis

for most modern day object-oriented soft-

ware development. The authors have taken

their life cycle model, modified it and simpli-

fied it for instruction to focus on the iterative

and incremental nature of the Unified

Process approach and the traceability re-

quirement. The “iterative nature” of the life

cycle will follow the MDA divisions of “Com-

putational Independent Model”, “Platform

Independent Model”, and “Platform Specific

Model” (Brown 2004). Figure 2 exhibits the

modification.

The Requirements Phase focuses on the

Computational Independent Model and has

two iterations: (i) the Business Model, and

(ii) the Requirements Model. The Elabora-

tion Phase focuses on the Platform Indepen-

dent Model and has two iterations: (i) the

Analysis Model, and (ii) the Design Model.

Each iteration adds more detail to the un-

derstanding and the solution of the problem.

The Implementation Phase focuses on the

Platform Specific Model. The iterative na-

ture, here, will appear slightly different. In

its most elemental form, iterations will occur

with the iterative coding and testing of each

structural segment of code, e.g., a class.

The Modified Unified Process Model forms

the Solution Architecture for the synthesis.

Model Expression Language

The Unified Modeling Language (e.g. Fowler

et al., 2004) is the lingua franca of object-

oriented system modeling. Use case dia-

grams, class diagrams, and sequence dia-

grams are the foundational expressions for

modeling object-oriented systems. The UML

forms the Model Expression Language for

the synthesis.

Define the Problem

MDA’s CIM

Business Model

Requirements Model

P
rio
ritiz

e

R
e
q
u
ire
m
e
n
ts

Elaborate Requirements
MDA’s PIM

Analysis Model

Design Model

Implement Requirements
MDA’s PSM

UML Model Synchronized

with Programming

Language of Choice

Increment

Iterate

HP– AP – EEVP

Define the Problem

MDA’s CIM

Business Model

Requirements Model

P
rio
ritiz

e

R
e
q
u
ire
m
e
n
ts

Elaborate Requirements
MDA’s PIM

Analysis Model

Design Model

Implement Requirements
MDA’s PSM

UML Model Synchronized

with Programming

Language of Choice

Increment

Iterate

HP– AP – EEVP

Figure 2: Modified Unified Process

Model

c© 2009 EDSIG http://isedj.org/7/23/ April 9, 2009

ISEDJ 7 (23) Goulet and Dollinger 5

Model Package Structure

IBM Rational XDE .NET (Rational, 2003) and

Microsoft’s Visual Studio .NET, version 2003,

together form the modeling package tool for

the .NET language world, while IBM Rational

Solution Architect is the modeling package

tool for the Java world. Within these IDEs

reside the UML models for the CIM and PIM,

and the UML model and implementation

coder of the PSM. Each IDE can be struc-

tured to explicitly show and contain the

models in the Modified Unified Process Mod-

el. These IDEs form the Model Package

Structure for the synthesis example.

3. BRINGING THE SYNTHESIS

TOGETHER

Basic Definition

The synthesis is based on the object-

oriented approach / program defined by

many authors as “a collection of interacting

or collaborating objects”, e.g. (Satzinger et

al. 2005, pp 60). Figure 3 is a visual model

of that definition.

Manager

Customer

Form

Customer

HNDLR
Customer

«dataAccess»

CustomerDA

Add New Customer AVOPC

Talks to target

database.

Manager

Customer

Form

Customer

HNDLR
Customer

«dataAccess»

CustomerDA

Add New Customer AVOPC

Talks to target

database.

Figure 3: Collaborating Objects

Example Structure

For this paper, the authors develop a struc-

ture in the XDE .NET / VS .NET IDE (a simi-

lar structure exists for RSA). The structure

is the repository for the components of the

Model Architecture: the UML models for the

CIM, PIM and the UML models and code for

the PSM. The structure has embedded in its

very fabric the ideas of iterative, incremen-

tal, traceable and documentable systems

development. In an instructional setting,

the authors develop the structure stepwise

as the topics are introduced, bringing the

new developer along in both an iterative and

incremental way, with their work traceable

from one step to the next.

CIM and PIM Structure

Create and name a ‘Blank Solution’ in VS.

NET.

Add two XDE .NET blank ‘Solution Items’ and

name one ‘Computational Independent

Figure 4: Solution Explorer for CIM &

PIM

Figure 5: Model Explorer for CIM & PIM

Model’ and the other ‘Platform Independent

Model’ (Figure 4). The ‘.mdx’ extension indi-

cates these Solution Items are XDE .NET

folders. Open the .mdx folder in Model Ex-

plorer and add packages for the Business

Model, Requirements Model, Analysis Model

and the Design Model, respectively (Figure

5).

Expand the Business Model package with

sub-packages to hold the appropriate UML

elements. Similarly, expand the Require-

ments Model package (Figure 6).

Figure 6: Expanded Business and Re-

quirements Model for UML Elements

c© 2009 EDSIG http://isedj.org/7/23/ April 9, 2009

ISEDJ 7 (23) Goulet and Dollinger 6

A note is in order for four of the sub-

packages: The Business and Requirements

Association sub-packages are simply for

house-keeping and reduce the clutter in the

structure. They have no functional UML val-

ue.

The Requirements Object Model sub-

package holds the domain class diagram for

the initial classes identified in the software

solution. The Requirements System Se-

quence Diagrams sub-package holds dia-

grams modeling the input and output mes-

sages between an actor and the system for a

particular use case.

Expand the Analysis Model package with

sub-packages to hold the appropriate UML

elements (Figure 7). Similarly, expand the

Design Model package.

Figure 7: Expanded Analysis Model for

UML Elements

PSM Structure

In VS .NET, the PSM is implemented through

the creation of Projects within the current

Solution holding the UML models. This is

done in the normal way within VS .NET for

project creation, e.g. a C# project.

The focus, here, is on the 2nd-Tier or Domain

Layer. A similar activity occurs for the 1st

and 3rd-Tiers or layers (Figure 8).

Next, the UML models created in the Design

Model need to be ‘hooked up’ to the C#

classes in the Domain Classes project. This

is done using a three-step process: (i) Syn-

chronize the C# Domain Classes Project

producing an .mdx file that will link C# code

with UML models (Figure 9). (ii) Open the

Domain Classes.mdx file in Model Explorer

(Figure 10).

Figure 8: C# Project for Domain Classes

Figure 9: Synchronization of Domain

Class Project

Figure 10: UML Structure Linking to

Code

Note, to also exhibit the flexibility of the

synthesis, later in the development of the

example a VB .NET implementation will be

c© 2009 EDSIG http://isedj.org/7/23/ April 9, 2009

ISEDJ 7 (23) Goulet and Dollinger 7

used for the UI and a C# implementation for

the data storage.

The package ‘Artifacts’ contains links to the

C# code that appear in the C# Domain

Classes Project. The Name Space, {} Do-

main_Classes, contains the design UML

models. Copy the classes from the Design

Model into the {} Domain_Classes name

space. (iii) After completing activity (ii), and

with the {} Domain_Classes name space

selected, execute the command ‘Generate

Code’. At this point, not all the UML classes

will generate code, since the Design Classes

may contain notation not recognizable by

the C# code generator, e.g., ‘create’ in the

design class will not generate the construc-

tor in the C# class. Correct the naming in-

compatibilities until the C# code generator

completes the code generation process. At

this point-in-time, C# code and UML models

are hooked together. Round-trip engineer-

ing activities of ‘Synchronize’ and ‘Generate

Code’ keep C# code and UML models in

synch. Complete Model Explorer’s organiza-

tion of with a structure similar to the Design

Model (Figure 11).

Figure 11: UML Code Model

4. POPULATING THE EXAMPLE

STRUCTURE

Bradshaw Marina Example

The Bradshaw Marina case study forms the

backdrop and example for populating the

synthesis’ example structure. It is simple

enough to be understood at an introductory

level, but complex enough to exhibit all the

basic synthesis and OOAD & P concepts.

The short version of the case study is that

the Manager would like an information sys-

tem that keeps track of leasing slips to cus-

tomers for docking of boats. However, for

simplification purposes, the ‘Add New Cus-

tomer’ use case will be the only one devel-

oped and tracked after the initial setting of

the problem via the Business and Require-

ments Models (Doke et al., 2003).

Computational Independent Model

Business Model: The objective of the

Business Model is to clearly state the Busi-

ness Objective for the problem being ad-

dressed and to identify the associated Busi-

ness Process / Functions. The authors use a

Word document template to guide the stu-

dent in both the collection and organization

of appropriate material. The completed

Word template is stored with the VS .NET

solution in a Documentation folder created in

the VS .NET solution folder, so that all de-

velopment artifacts travel as a unit – text

documents, UML diagrams, and later, code.

Figure 12 is skeleton version of the Business

Model and Figure 13 exhibits the populated

example structure.

Business Processes – Identified:

Relating to Leases

1. Customer leases a slip from Brad-

shaw Marina.

2. Customer transfers a lease to another

slip.

3. Customer renews a lease for their

current slip.

Relating to Customers

1. Manager creates a new Customer.

2. Customer changes some of their in-

formation.

3. Manager tracks Customers.

Relating to Boats

1. Customer registers a new boat [sail-

boat or powerboat].

2. Customer changes some information

about a registered boat.

c© 2009 EDSIG http://isedj.org/7/23/ April 9, 2009

ISEDJ 7 (23) Goulet and Dollinger 8

Relating to Docks and Slips

1. Manager adds a new dock with amen-

ities.

2. Manager updates dock information.

3. Manager adds slip information for a

dock.

4. Manager updates slip information for

a dock.

Relating to Management Activities

1. Manager searches for a vacant slip.

2. Manager searches for a slip leased to

a specific customer.

3. Manager receives standard opera-

tional reports on a regular basis.

Business Processes – Visual Model:

[See Appendix for Business Processes

Visual Model Figure]

Add New Customer Business Use

Case

«business use-case»

Add new customer
«business actor»

Customer

«business actor»

Manager

Use Case Name: Add new customer

ID Number: 6

Use Case Type: Business

Stakeholders/Interests:

Customer – wants to join Bradshaw Mari-

na

Manager – wants to increase customer

base

Business Description:

1. Customer wants to join Bradshaw

Marina.

2. Manager gives Customer a Customer

Information Form.

3. Customer fills out form.

4. Manager verifies that the information

is correct.

5. Manager files Customer Information

Form in the Customer Folder.

Requirements Model: The objective of the

Requirements Model is to identify those

Business Processes that appear in the soft-

ware solution. From the student’s point-of-

view, two conceptual things have happened:

(i) the focus has changed from the business

to the software solution, and (ii) a use case’s

initiator actor, ‘requirements actor’, has

hands and “actually touch the automated

system” (Satzinger, 2005; p 215).

Customer

Request to join

Bradshaw Marina

Fill-out Customer

Information Form

Manager

Provide Customer

Information Form

Verify Customer

Information

File Customer

Information Form

Customer Folder

Insert form

in Folder

[Errors in information]

[Correct information]

Add New Customer

Figure 12: The Skeletal Bradshaw Mari-

na Business Model

Figure 13: Completed Business Model

Structure

Like the Business Model, the Requirements

Model is a text listing of requirements and

their associated UML models. The use case

diagrams, descriptions and activity diagrams

are updated to the requirements perspective

and appropriately stereotyped.

Two modeling elements have been added to

the structure of the Requirements model: (i)

the Object Model (Appendix Figures 23 & 24)

– that models the domain class diagram for

the initial classes identified in the software

solution; (ii) the System Sequence Diagrams

(Appendix Figures 25 & 26) – that model

input and output messages between an actor

c© 2009 EDSIG http://isedj.org/7/23/ April 9, 2009

ISEDJ 7 (23) Goulet and Dollinger 9

and the system for a particular use case

(Satzinger, 2005; pp226-236)

Platform Independent Model

Analysis Model: The objective of the Anal-

ysis Model is to identify domain specific in-

formation as it relates to classes, i.e.

attributes and custom methods, and to start

fleshing out the 3-Tier, behavioral model

from the point-of-view of the user-interface

classes which are connected to or exchang-

ing messages with the domain classes which

are connected to or sharing messages with

the data source.

The package structure contained in the

Analysis Model is slightly different from the

Business and Requirements Models – a dif-

ference set of modeling requirements and a

different set of needs (Figure 14).

Figure 14: Analysis Model – Expanded

The new modeling elements that deserve

attention are the Increment 1 Participating

Classes (Appendix Figure 27), the Initial

Systems Statechart (Appendix Figure 28),

the Add Customer AVOPC [Analysis View Of

Participating Classes] (Appendix Figure 29),

and the Add Customer ASD-HP [Analysis

Sequence Diagram – Happy Path] (Appendix

Figure 30).

Taking them one at a time, the Increment 1

Participating Classes identifies a subset of

requirements classes that are only needed to

implement the Increment 1 Use Cases. The

added detail information includes domain

attributes, custom methods and visibility for

each. The Initial Systems Statechart shows

the overall communication structure of the

software system as it moves from one state

to another as a result of the occurrence of

an event. The Add Customer AVOPC identi-

fies those classes in the 3-Tier model that

are needed in the execution of the Add Cus-

tomer use case.

The Add Customer ASD-HP exhibits, visually

for the first time, the statement that ‘an ob-

ject-oriented program is a collection of inte-

racting or collaborating objects’.

Note that in the AVOPC and the ASD-HP dia-

grams, that the control class, Custo-

merHNDLR, and a facility for talking to the

data source have been added. The messag-

es in the ASD-HP have not been imple-

mented as methods at this point, but act as

a discovery activity for identifying addition

methods required in the target objects.

Design Model: The objective of the Design

Model, in general, is to add detail to the

Analysis Model so that the resulting model

can to be implemented on a target platform

in a target programming language. The

perspective within that general objective is

to satisfy four sub-objectives: (i) to flesh-

out the classes / class diagram; (ii) to add

detail to the AVOPC; (iii) to convert the

Analysis Sequence Diagrams to Design Se-

quence Diagrams with the appropriate ex-

pansion of interacting objects; and (iv) to

convert and then connect the identified per-

sistent classes with a persistent data source.

As part of the synthesis, a side trip into the

3-Tier model at the design level (Figure 1) is

needed before proceeding. The object-

oriented philosophies of encapsulation / re-

sponsibility and message passing are

brought into play.

Working Appendix Figure 29 in a left-to-right

direction, the actor only knows about the UI.

The actor never interacts directly with the

Problem Domain. The UI responds to events

c© 2009 EDSIG http://isedj.org/7/23/ April 9, 2009

ISEDJ 7 (23) Goulet and Dollinger 10

requested by the actor through its UI Event

Handler, which only knows that it has to

‘talk’ to a Domain Handler, even though it

appears that the UI is talking directly to the

Domain Class.

The Domain Handler talks to the Domain

Class and directs requests from the UI. The

Domain Class has the responsibility to carry

out the request passed to it by its Domain

Handler. If the request is, for example, to

place domain information into the Data

Source, the Domain Class carries out that

responsibility by talking to its data access

class, the DomainDA. The action of the Do-

main Class is transparent to both the UI and

the Data Source.

The DomainDA’s responsibility is to properly

form the information for interaction with the

Data Source; in our above scenario, to con-

struct a SQL Insert statement. The Do-

mainDA passes the interaction request onto

the manager for the Data Source, the Do-

mainDM Class, responsible to execute the

defined interaction request on the requested

Data Source.

 «Entity»

Customer

- name : String

- address : String
- phoneNo : Phone

- theBoat : Boat

- theLease : Lease

+ create ([in] aName , [in] anAddress , [in] aPhone)

+ setName ([in] aName)

+ setAddress ([in] anAddress)

+ setPhoneNo ([in] aPhoneNo)

+ setTheBoat ([in] aBoat : Boat)

+ setTheLease ([in] aLease : Lease)

+ getName ()

+ getAddress ()

+ getPhoneNo ()

+ getTheBoat ()

+ getTheLease ()

+ listAllCustomers ()

+ listAllCustomers&Boat ()

+ addNew ([in] me)

Figure 15: Customer Design Class

In this set of messages and structure, the

actions of the User Interface are encapsu-

lated and only loosely coupled to the Prob-

lem Domain; the actions of the Problem

Domain are encapsulated and only loosely

coupled to both the User Interface and the

Data Source; and the actions of the Data

Source are encapsulated and only loosely

coupled to the Problem Domain. The actor

‘feels’ that it has interacted directly with the

Data Source, but the encapsulation, loosely

coupling and message passing says other-

wise.

Flesh-out the Design Class Diagram:

The Customer Class will be used by way of

example.

Adding detail to a class appears in two loca-

tions in XDE .NET. It appears on the visual

model of the class (Figure 15), and in the

Model Explorer statement of the class (Fig-

ure 16).

Add Detail to the AVOPC: The DVOPC

appears in Appendix Figure 22 in its general

form. For the Customer class example, in-

sert ‘frmAddNewCustomer’ for UIForm,

‘addNewCustomerEventHandler’ for UI-

FormHNDLR, ‘CustomerHNDLR’ for Do-

mainHNDLR, ‘Cus tomer’ for Domain Class,

and ‘CustomerDA’ for DomainDA, and the

Add New Customer DVOPC is complete.

Figure 16: Portion of Expanded Cus-

tomer Class Structure

Convert Analysis Sequence Diagram to

Design Sequence Diagram: The Design

Sequence Diagram (Appendix Figure 31)

exhibits the most interesting set of changes

and additional information in the synthesis.

c© 2009 EDSIG http://isedj.org/7/23/ April 9, 2009

ISEDJ 7 (23) Goulet and Dollinger 11

First, all objects from the DVOPC are

present. Second, the messages, represent

method invocations in the target object to-

gether with appropriate parameters. The

complete structure for the object-oriented

program as a collection of collaborating ob-

jects is modeled.

Connectivity to the Data Source: In gen-

eral, Domain Classes are representations of

elements that need to be stored persistently.

The lens, focusing on the 3rd – Tier or Data

Access Layer, provides the information to

make the connection between the applica-

tion and the associated persistent storage or

data source. The role of the Data Access

Layer is two-fold: (i) provide the functionali-

ty for transferring data back and forth be-

tween the application and the data source,

and (ii) fill the conceptual gap between the

classes modeled in the ‘Participating Classes’

package and the classes used by the data

source.

Platform Specific Model

The Structural Architecture, the Model Archi-

tecture and the Solution Architecture all

come into complete focus in the develop-

ment of the PSM. Here, the synthesis pers-

pective of the 3-Tier Model is the driving

force. The traceability thread through the

CIM and PIM has provided UML models

ready for implementation in UML models in

the PSM. The iterative focus of the Modified

Unified Process has added detail ending with

a Design Model ready to be transformed into

code.

The 1st – Tier or UI Layer: The 1st-Tier or

UI Layer is the easiest to construct and im-

plement. Since the connection to the Do-

main Layer is a message to the Domain

Class Handler, any UI that can create this

message will work, e.g., a Windows Form, a

Web Form, or another system. Here, by

way of example, a simple VB .NET Windows

Form is used. The UIForm Handler in the

original 3-Tier model is nothing other than

the event handler in the Windows Form code

that accepts a ‘button click’ (Figure 17).

The 2nd – Tier or Domain Layer: The UML

Domain Classes of CustomerHNDLR and

Customer are used to generate target lan-

guage skeletal code, which is then populated

with internal method logic. Figure 18 has

code snippets for the CustomerHNDLR and

Customer classes.

frmAddNewCustomer

AddNewCustomerEventHandler
Private Sub btnAddCusto-
mer_Click(ByVal sender As Sys-
tem.Object, ByVal e As Sys-
tem.EventArgs) Handles btnAddCusto-
mer.Click
 ‘ Get customer attributes for
form’s text boxes
 customerName = txtName.Text
 customerAddress = txtAddress.Text
 customerPhone = txtPhone.Text
 ‘ Button click hands off event
to Customer Handler
 Custo-
merHNDLR.addNew(customerName,_
 customerAddress, customerPhone)
End Sub

Figure 17: Bradshaw Marina Add Cus-

tomer-Form and Event Handler

Customer Handler [abbreviated]
Public Class CustomerHNDLR
 Shared aCustomer As Customer
 Shared myDataManager As DataManager
 Public Shared Function addNew(
 ByVal aName As String, _
 ByVal anAddress As String, _
 ByVal aPhoneNo As String)
 aCustomer = New Customer(aName,
_ anAddress, _
 aPhoneNo)
 myDataManager =getDataManager()
 aCustomer.addNew(myDataManager)
 End Function
End Class

Customer Class [abbreviated]
Public Class Customer
 ‘ Attributes
 Private address As String
 Private name As String
 Private phoneNo As String

c© 2009 EDSIG http://isedj.org/7/23/ April 9, 2009

ISEDJ 7 (23) Goulet and Dollinger 12

 Public Sub New(_
 ByVal aName As String, _
 ByVal anAddress As String, _
 ByVal aPhone As String)
 setName(aName)
 setAddress(anAddress)
 setPhoneNo(aPhone)
 End Sub

‘ Data Access Methods
 Public Sub addNew(_
 ByVal myDataManager As _
 DataManager)
 myDataManager.Save(Me)
 End Sub
End Class

Figure 18: VB .NET Code Snippets for

the CustomerHNDLR and Customer

Classes

The 3rd – Tier or Data Access Layer:

Domain Classes need to be decoupled from

the details of persistently storing or of re-

trieving objects, and the discussion for doing

that is a little more detailed than for the 1st

and 2nd Tiers, as there are several ap-

proaches possible. The Data Access Layer

decouples the Domain Model from the spe-

cifics of persistent storage, which interposes

a layer of Data Access Classes where the

specifics of persistently saving, retrieving or

updating of each type of object are dealt

with. Two types of functionality are imple-

mented by the Data Access Classes. The

first deals with the specifics of the Domain

Class corresponding to the Data Access

Classes. The second deals with the specifics

of the persistent storage where the object is

saved. For example, as part of the first kind

of functionality, the Data Access Class would

take care of building the particular SQL

string such that the relevant fields of an ob-

ject would be inserted in a database table.

For another Domain Class the SQL string will

be different with a different Data Access

Class building it.

A compact, one class based solution called

the DataManager solves the problem. The

DataManager class is a useful abstraction

exposing the two kinds of functions a Data

Layer Class implements: (i) functions specif-

ic to the application, and (ii) functions spe-

cific to the data source used for persistent

storage. The understanding that one can

separate the two kinds of functions substan-

tially simplifies and almost completely auto-

mates the development of the DataManager

class and its specific subclasses. A two step

approach is needed: First, factor out the

data source specific functionality into a sub-

layer which is completely independent of the

specifics of the entity types of the given ap-

plication. Second, use reflection and dy-

namic code generation techniques (Troelsen,

2003) to automatically generate code for the

basic persistency related operations asso-

ciated to the application’s entity types. This

results in a data access class generator. The

advantages of the approach are two-fold.

The first step creates a prefabricated Data-

Manager class capturing the specifics of

dealing with the data source used as the

persistent storage for the application’s data.

The second step insures application inde-

pendence of the DataManager, which acts as

a code generator with the Domain Class

used as parameter to create the specific

code.

The DataManager Abstract Class: The

DataManager abstract class is a nice way to

provide a uniform access to datasource re-

lated functionality. Most of its methods are

abstract and are implemented in specialized

subclasses of the abstract class. All applica-

tions refer to this class in a manner that is

independent of the specifics of the applica-

tion itself or of the data source. The func-

tionality of the DataManager can be defined

at a platform independent level and defines

two categories of methods. The first catego-

ry refers to the data source and defines gen-

eral purpose operations related to the

housekeeping of all data sources like: Con-

nect(), Open(), Close(), etc. Each of these

methods will be implemented in a specific

way by the subclasses inheriting from the

DataManager class. The second category is

application related and includes methods

like: Save(), Modify(), Delete(), Retrieve().

The code for these methods will be generat-

ed automatically by the specialized sub-

classes in order to address both the specifics

of the application and the specifics of the

data source type.

The partial code for the DataManager ab-

stract class is given in Figure 19.

namespace DataManagers
{
 public class DataManager
 {
 //data source related methods

c© 2009 EDSIG http://isedj.org/7/23/ April 9, 2009

ISEDJ 7 (23) Goulet and Dollinger 13

 public abstract void Con-
nect(String dataSource);
 public abstract void Open();
 public abstract void Close();
 ...
 //application related methods
 public abstract void Save(Object
entityInstance);
 public abstract void Modify(
 Object en-
tityInstance);
 public abstract void Delete(
 Object en-
tityInstanceKey);
 public abstract void Retrieve(
 Object en-
tityInstanceKey);
 }
 }

Figure 19: Implementation Layout of

the Abstract DataManager Class

Observe the two categories of abstract me-

thods as previously described: data source

related and application related methods.

Applications never directly create an in-

stance of the DataManager abstract class;

instead instances of its specializations are

created. However, all calls to data source

related functions would be expressed in

terms of the methods defined by the Data-

Manager abstract class.

Managing the Data Source: Part of the

functionality of the abstract DataManager is

application independent, which means that it

can be prefabricated and reused across ap-

plications, and is specific to the type of the

data source used to persistently store the

data. It is represented at the level of the

abstract DataManager class by functions

like: locate/connect, login/authenticate,

open data source/connection, send data,

receive data, close data source/connection,

analyze and report errors. There can be

several types of data sources: flat files, rela-

tional databases, XML data sources, remote

data sources represented by a proxy etc.

Each and every type has its own implemen-

tation of these abstract functions, which

means that a specialized subclass is defined

for each type of data source.

The implementation for a version of the Da-

taManager class for relational databases is

the DBDataManager class shown in Figure

20.

namespace DataManagers
{

 public enum ConnectionType

{Odbc,OleDb,Oracle,Sql}
 public class DBDataManag-
er:DataManager
 {
 // override data source related
methods
 public override void Con-
nect(String dataSource)
 {
 //infer connection type
 switch(connectionType){
 case ConnectionType.Odbc:
 //create connection and command
for ODBC
 case ConnectionType.OleDB:
 //create connection and command
for OleDB
 ...
 }
 }
 public override void Open();
 public override void Close();
 //override application related me-
thods
 public override void Save(
 Object
entityInstance){…}
 public override void Modify(
 Object entityInstance){…}
 public override void Delete(
 Object entityInstance){…}
 public override void Retrieve(
 Object entityKey){…}
 //data source type specific me-
thods
 public void Execu-
teSQLString(String SqlString)
 {
 this.connection.Open();

 this.command.CommandText=SqlString
;
 try{

 this.command.ExecuteNonQuery();
 }catch(Exception ex)

 this.errorMessage=ex.Message;
 this.connection.Close();
 }

Figure 20: Implementation Layout of

the DBDataManager Class

The DBDataManager class inherits from the

DataManager abstract class and provides

implementations (overrides) for all abstract

c© 2009 EDSIG http://isedj.org/7/23/ April 9, 2009

ISEDJ 7 (23) Goulet and Dollinger 14

methods defined in the base class. Also

some data source specific methods are pro-

vided like ExecuteSQLString(). By instan-

tiating the DBDataManager class with the

right parameter and calling the right me-

thods, the basic database related tasks are

performed for connecting to, opening and

closing the database, etc.

Managing the Application: Managing the

application is more challenging in that new

code needs to be automatically generated in

each application in order to capture the spe-

cifics of the Domain Classes. The same code

cannot be used over several applications as

in the case of the data source functions.

The specifics of an available data source can

be known ahead of time before any applica-

tion would be developed, which is not the

case with the specifics of the Domain

Classes. What can done is to automate the

process of writing the code for these me-

thods, which means that our prefabricated

DataManager class would act as a code ge-

nerator and would be used to automatically

produce the code for saving, deleting, up-

dating or retrieving a Domain Class instance

given as a parameter. The code is applica-

tion dependent, and is different for each and

every Domain Type, since specific data

members and properties have to be dealt

with. The issue is addressed by identifying

at run time the type of the object given as a

parameter and by using reflection tech-

niques to reveal the structure of the object.

The code to be generated is also data source

specific, that is, each implementation of the

abstract Data Manager class will generate its

code for a function like Save(entityInstance)

in a different way. The sample code for the

Save(entityInstance) method of the DBDa-

taManager subclass is given in Figure 21.

The code generates the INSERT SQL state-

ment to save whatever object is given as a

parameter into the proper database table.

After building the INSERT statement, the

Save() method makes a call to the Execu-

teSQLString(sqlString) method with the SQL

string as parameter in order to actually save

the object.

Using the DataManager Class Imple-

menting the 3-Tier Model: Execution of

the Add New Customer Use Case: With

DataManager class and its implementations

for various data source types properly de-

veloped, it becomes easy to build persis-

tence related functionality in applications.

The application will create one or more in-

stances of the DataManager’s subclasses

according to the types of data sources used

in the application. The code inside the entity

classes will be entirely data source indepen-

dent, since all related operations will refer to

the abstract methods defined in the Data-

Manager class, called through the right data

manager object, instance of one of the Flat-

FileDataManager, XMLDataManager or

DBDataManager classes. Take for example,

the VB .NET application summarized in the

code snippets of Figure 17. The frmAddNew-

Customer form accepts the Customer infor-

mation, and upon the ‘Add Customer’ button

clip, invokes the AddNewCustomerEven-

tHandler, which scrapes the screen and

passes this information onto the Custo-

merHNDLR, which creates a Customer object

and it will have it to save himself by a call to

his addNew() method.

5. SUMMARY AND CONCLUSIONS

Working with the myriad of concepts,

processes and tools is a daunting task when

trying to create an understandable learning

environment for undergraduate OOAD & P

students. Though not perfect and with still

important issues remaining to be solved for

proper code structuring, the authors propose

a synthesis of many of these concepts,

processes and tools to create an approach

that is iterative, incremental, traceable, do-

cumentable and understandable for next

generation software developers. It solves

four of the most vexing problems in teaching

the OO process, namely, (i) the traceability

of the development process from a business

problem to code implementation, (ii) the

disjunction between UML modeling and code

generation, (ii) the process of keeping model

documentation in sync with code implemen-

tation, and (iv) resolving the disjuncture

when going from Domain Classes to persis-

tent storage. The key has been the recogni-

tion that, as developers, we view a systems

development project from many perspec-

tives and through many lenses. In recogniz-

ing that each perspective or lens has it

strengths and limitations, and that combin-

ing the best of which each has to offer, a

cohesive and coherent instructional envi-

ronment is possible.

c© 2009 EDSIG http://isedj.org/7/23/ April 9, 2009

ISEDJ 7 (23) Goulet and Dollinger 15

public void Save(Object entityIns-
tance)
{
 Type class-
Type=entityInstance.GetType();
 string sqlString="INSERT ";
 sqlString+=classType.Name;
 sqlString+="(";
 //generate comma separated list of
names
 PropertyInfo[] pIn-
fo=classType.GetProperties();
 int i;
 for(i=0;i<pInfo.Length-1;i++)
 sqlString+=pInfo[i].Name+",";
 sqlString+=pInfo[i].Name+")";
 sqlString+=" VALUES (";
 //generate comma separated list of
values
 for(i=0;i<pInfo.Length-1;i++)
 if(pInfo[i].PropertyType==
 sqlString.GetType())
 sqlString+="'"+pInfo[i].GetValue(
 entityInstance, new Ob-
ject[]{})+"',";
 else

qlString+=pInfo[i].GetValue(
 entityInstance, new Ob-
ject[]{})+",";
 if(pInfo[i].PropertyType==sqlStrin
g.GetType())

sqlString+="'"+pInfo[i].GetValue(
 entityInstance, new Ob-
ject[]{})+"')";
 else
 sqlString+=pInfo[i].GetValue(
 entityInstance, new Ob-
ject[]{})+")";
 ExecuteSQLString(sqlString);
}

Figure 21: Implementation Layout of

the Save Function in the Case of a Rela-

tional Database Used as Data Source

6. REFERENCES

Bittner, Kurt. Spence, Ian. Use Case Model-

ing. Addison-Wesley. Boston, MA.

2003.

Boggs, Wendy. Boggs, Michael. Master Ra-

tional XDE. Sybex. San Francisco, CA.

2003.

Brown, Alan. An Introduction to Model Drive

Architecture, Part I: MDA and Today’s

Systems.The Rational Edge. February

2004

 http://www-

128.ibm.com/developerworks/rational/lib

rary/3100.html .

Cockburn, Alistair. Writing Effective Use

Cases. Addison-Wesley. Boston, MA.

2001.

Doke, E. Reed. Satzinger, John W. Wil-

liams, Susan Rebstock. Douglas, David E.

Object-Oriented Application Development

using Microsoft Visual Basic .NET. Course

Technology. Boston, MA. 2003.

Doke, E. Reed. Satzinger, John W. Wil-

liams, Susan Rebstock. Object-Oriented

Application Development using Java.

Course Technology. Boston, MA. 2002.

Dollinger, Robert. Goulet, Daniel V. Gibbs,

David. “Structuring Databases from UML

to Code”. Proceedings of ED-MEDIA 2005

– World Conference on Educational Mul-

timedia, Hypermedia & Telecommunica-

tions. June 27-July 2, 2005. Montreal,

Canada.

Fowler, Martin. Scott, Kendall. UML Distill-

ed, 3e. Addison-Wesley. Boston, MA.

2004.

Jacobon, Ivar. Booch, Grady, Rumbaugh,

James. The Unified Software Develop-

ment Process. Addison-Wesley. Boston,

MA. 1999

Johnson, Brian. Skibo, Craig. Young, Marc.

Inside Microsoft Visual Studio .NET 2003.

Microsoft Press. Redmond, WA. 2003.

Krutchten, Philippe. The Rational Unified

Process: An Introduction. Addison-

Wesley. Boston, MA. 2004.

Manassis, Enricos. Practical Software Engi-

neering: Analysis and Design for the

.NET Platform. Addison-Wesley. Boston,

MA. 2004.

Mittal, Kunal. “Introducing IBM Rational

Software Architect”. http://www-

128.ibm.com/developerworks/rational/lib

rary/05/kunal/. 15 February 2005.

Rational XDE Model Structure Guidelines for

Microsoft .NET. IBM Staff paper.

http://www-

128.ibm.com/developerworks/rational/lib

rary/content/03July/2500/2554/2554_ne

t.pdf May 2003 version.

c© 2009 EDSIG http://isedj.org/7/23/ April 9, 2009

ISEDJ 7 (23) Goulet and Dollinger 16

Satzinger, John W. Jackson, Robert B.

Burd, Stephen D. Object-Oriented Analy-

sis and Design with the Unified Process.

Course Technology. Boston, MA. 2005.

Satzinger, John W. Orvik, Tore U. The Ob-

ject-Oriented Approach. Course Technol-

ogy. Boston, MA. 2001

Schach, Stephen R. Introduction to Object-

Oriented Analysis and Design with UML

and the Unified Process. McGraw Hill.

Boston, MA. 2004.

Troelsen, Andrew. C# and the .NET Plat-

form, 2e. Apress. Berkeley, CA. 2003.

West, David. Object Thinking. Microsoft

Press. Redmond, WA. 2004.

c© 2009 EDSIG http://isedj.org/7/23/ April 9, 2009

ISEDJ 7 (23) Goulet and Dollinger 17

Appendix

User Interface Problem Domain Data Source

Domain ClassManager
UIForm

HNDLR
Domain

HNDLR

«dataAccess»

DomainDA

«dataManager»

DomainDM

Data Manager

talks to the data

source UIForm

User Interface Problem Domain Data Source

Domain ClassManager
UIForm

HNDLR
Domain

HNDLR

«dataAccess»

DomainDA

«dataManager»

DomainDM

Data Manager

talks to the data

source UIForm

Figure 22: 3-Tier Model Example

«business use-case»

Lease slip

«business use-case»

Renew slip lease

«business use-case»

Transfer lease

«business use-case»

Add new boat

«business use-case»

Maintain boat

information

«business use-case»

Add a dock

«business use-case»

Add a slip to a dock

«business use-case»

Maintain dock

information

«business use-case»

Maintain slip information

«business use-case»

Generate standard

operational reports

«business use-case»

Query for slip leased to

specific customer

«business use-case»

Query for vacant slip

«business actor»

Customer

«business actor»

Manager

«business use-case»

Add new customer

«business use-case»

Maintain customer

information

Business Process – Visual Model for Figure 13

Figure 23: Object Model: Structure

Bradshaw Marina

Requirements Class Diagram

Sailboat PowerBoatLease

AnnualLease DailyLease

CoveredSlip
Dock

Customer Boat

Slip

0..11

1..*

1

0..1

0..1
0..1

0..1

Figure 24: Object Model: Visual

c© 2009 EDSIG http://isedj.org/7/23/ April 9, 2009

ISEDJ 7 (23) Goulet and Dollinger 18

Figure 25: SS Diagram: Structure

 : «requirements actor» Manager
 : System

1 : \request New Customer Form\
2 : \display [New Customer Form

[New Customer Form]

3 : \fill New Customer Form\ 4 : \display [filled New Customer
Form]\

[filled New Customer Form]

5 : \record New Customer Contact

Info\ 6 : \store [New Customer Contact

Info]\

[confirmation]

Customer provides

contact information

to Manager

Customer verifies
with Manager that

the information is

correct

Add New Customer SSD

Figure 26: Systems Sequence Diagram: Vis-

ual

«Entity»

Customer

- name

- address

- phoneNo

«Entity»

Boat

- stateRegistrationNo

- boatLength

- manufacturer

- year

+ AssignBoatToS lip ()

+ RemoveBoatFromS lip ()

1 0..1

«Entity»

Lease

- amount

- startDate

- endDate

+ CalculateFee ()

«Entity»

Slip

- slipID

- slipW idth

- slipLength

+ LeaseS lip ()

1

0..1

0..1

0..1

Figure 27: 1st Increment Class Diagram

Bradshaw Marina Information System Loop

[quit selected]

Adding Customer Adding Boat Creating Lease

[adding customer selected] [adding boat selected] [creating lease selected]

Figure 28: Initial Systems Statechart

c© 2009 EDSIG http://isedj.org/7/23/ April 9, 2009

ISEDJ 7 (23) Goulet and Dollinger 19

Manager

Customer

Form

Customer
HNDLR

Customer

«dataAccess»

CustomerDA

Talks to target
data source.

Figure 29: Add New Customer AVOP

 : CustomerForm : CustomerHNDLR

 : «dataAccess»

CustomerDA

aCustomer :

Customer

 : Manager

1 : \request\ (\CustomerForm\)

2 : \fill\ (\CustomerForm\)

3 : \addNew\ (\aName\, \anAddress\,

\aPhoneNo\) 4 : \create\ (\aName\, \anAddress\, \a
PhoneNo\)

5 : \addNew\

6 : \addNew\ (\aCustomer\)

7 : \build\ (\sqlInsert\)

Send sqlInsert statement
to data source.

Figure 30: Add New Customer [Analysis Sequence Diagram – HP]

 : «dataSource»
tblCustomer

 : frmAddNewCustomer : Manager

 : «dataAccess»
CustomerDA

aCustomer :
Customer

 : AddNewCustomer
EventHandler

 : «dataSource»
dsConnection

 : «dataManager»
DataSourcerDM

 : CustomerHNDLR

1 : \request\ (\frmAddNewCustomer\)

2 : display (frmAddNewCustomer)

3 : fillFrm (aName , anAddress , a
PhoneNo)

4 : btnClick (AddNewCustomer)

5 : addNew (aName , anAddress , a
PhoneNo)

6 : addNew (aName , anAddress , a
PhoneNo)

7 : create (aName , anAddress , a
Phone)

8 : addNew (me)

9 : addNew (aCustomer)

10 : buildSQL (aCustomer)

11 : addNew (SQL)

12 : initialize ()

13 : open (aConnection)

14 : execute (SQL)

15 : close (aConnection)

Figure 31: Design Sequence Diagram – Add New Customer

c© 2009 EDSIG http://isedj.org/7/23/ April 9, 2009

