
Volume 4, Number 61 http://isedj.org/4/61/ August 23, 2006

In this issue:

Simulated Assembler-Objects and a Glass Bottom Computer (a
Polytechnic Approach)

William G. Verbrugge
California State Polytechnic University, Pomona

Pomona, CA 91768 USA

Abstract: Integrated Development Environments are excellent production tools for intermediate
and advanced programming students and even beginners after they have learned the core concepts
(stored data, stored programs, computer instructions, and the anatomy of the computer). Most
authors of introduction to programming books recognize this by their inclusion of one to twenty pages
on this topic. This paper presents how using a simulated assembler (a tool for learning) with a simple
assembly language can introduce the beginning student to the core concepts without having to be
concerned with all the exceptions and rigor of a full assembler language. The Simulated Assembler
with a full viewable Computer Machine (Glass Bottom Computer) and the easy procedures for
using it in a first programming course are illustrated. Using the assembler tool described here
should provide an increase in learning via a polytechnic (learn by doing) approach. A comparative
analysis of using the assembler in an introduction to object programming course is provided.

Keywords: assembler, simple machine, software tools, language, programming, object oriented,
machine language

Recommended Citation: Verbrugge (2006). Simulated Assembler-Objects and a Glass Bottom
Computer (a Polytechnic Approach) Information Systems Education Journal, 4 (61).
http://isedj.org/4/61/. ISSN: 1545-679X. (A preliminary version appears in The Proceedings of
ISECON 2005: §2524. ISSN: 1542-7382.)

This issue is on the Internet at http://isedj.org/4/61/

ISEDJ 4 (61) Information Systems Education Journal 2

The Information Systems Education Journal (ISEDJ) is a peer-reviewed academic journal
published by the Education Special Interest Group (EDSIG) of the Association of Information
Technology Professionals (AITP, Chicago, Illinois). • ISSN: 1545-679X. • First issue: 8 Sep 2003.
• Title: Information Systems Education Journal. Variants: IS Education Journal; ISEDJ. • Phys-
ical format: online. • Publishing frequency: irregular; as each article is approved, it is published
immediately and constitutes a complete separate issue of the current volume. • Single issue price:
free. • Subscription address: subscribe@isedj.org. • Subscription price: free. • Electronic access:
http://isedj.org/ • Contact person: Don Colton (editor@isedj.org)

2006 AITP Education Special Interest Group Board of Directors

Stuart A. Varden
Pace University

EDSIG President 2004

Paul M. Leidig
Grand Valley State University
EDSIG President 2005-2006

Don Colton
Brigham Young Univ Hawaii

Vice President 2005-2006

Wendy Ceccucci
Quinnipiac Univ
Director 2006-07

Ronald I. Frank
Pace University

Secretary 2005-06

Kenneth A. Grant
Ryerson University
Director 2005-06

Albert L. Harris
Appalachian St

JISE Editor

Thomas N. Janicki
Univ NC Wilmington

Director 2006-07

Jens O. Liegle
Georgia State Univ
Member Svcs 2006

Patricia Sendall
Merrimack College

Director 2006

Marcos Sivitanides
Texas St San Marcos
Chair ISECON 2006

Robert B. Sweeney
U South Alabama
Treasurer 2004-06

Gary Ury
NW Missouri St
Director 2006-07

Information Systems Education Journal 2005-2006 Editorial and Review Board

Don Colton
Brigham Young Univ Hawaii

Editor

Thomas N. Janicki
Univ of North Carolina Wilmington

Associate Editor

Samuel Abraham
Siena Heights U

Tonda Bone
Tarleton State U

Alan T. Burns
DePaul University

Lucia Dettori
DePaul University

Kenneth A. Grant
Ryerson Univ

Robert Grenier
Saint Ambrose Univ

Owen P. Hall, Jr
Pepperdine Univ

Jason B. Huett
Univ W Georgia

James Lawler
Pace University

Terri L. Lenox
Westminster Coll

Jens O. Liegle
Georgia State U

Denise R. McGinnis
Mesa State College

Therese D. O’Neil
Indiana Univ PA

Alan R. Peslak
Penn State Univ

Jack P. Russell
Northwestern St U

Jason H. Sharp
Tarleton State U

Charles Woratschek
Robert Morris Univ

EDSIG activities include the publication of ISEDJ, the organization and execution of the annual
ISECON conference held each fall, the publication of the Journal of Information Systems Education
(JISE), and the designation and honoring of an IS Educator of the Year. • The Foundation for
Information Technology Education has been the key sponsor of ISECON over the years. • The
Association for Information Technology Professionals (AITP) provides the corporate umbrella under
which EDSIG operates.

c© Copyright 2006 EDSIG. In the spirit of academic freedom, permission is granted to make and
distribute unlimited copies of this issue in its PDF or printed form, so long as the entire document
is presented, and it is not modified in any substantial way.

c© 2006 EDSIG http://isedj.org/4/61/ August 23, 2006

ISEDJ 4 (61) Verbrugge 3

Simulated Assembler-Objects and

a Glass Bottom Computer

(a Polytechnic Approach)

William G. Verbrugge
wgverbrugge@csupomona.edu

California State Polytechnic University, Pomona
3801 West Temple Avenue

Pomona, CA 91768 USA

Abstract

Integrated Development Environments are excellent production tools for intermediate and ad-

vanced programming students and even beginners after they have learned the core concepts

(stored data, stored programs, computer instructions, and the anatomy of the computer).

Most authors of introduction to programming books recognize this by their inclusion of one to

twenty pages on this topic. This paper presents how using a simulated assembler (a tool for

learning) with a simple assembly language can introduce the beginning student to the core

concepts without having to be concerned with all the exceptions and rigor of a full assembler

language. The Simulated Assembler with a full viewable Computer Machine (Glass Bottom

Computer) and the easy procedures for using it in a first programming course are illustrated.

Using the assembler tool described here should provide an increase in learning via a polytech-

nic (learn by doing) approach. A comparative analysis of using the assembler in an introduc-

tion to object programming course is provided.

Keywords: assembler, simple machine, software tools, language, programming, object ori-

ented, machine language

1. INTRODUCTION

The growth in hardware technology has al-

lowed the theories of modern programming

languages to become a reality. In the be-

ginning, developers of computer languages

were hindered by the lack of processing

speed and memory to implement their vi-

sion. Variable names and data were re-

stricted in size and thus not very descriptive

of their meaning. Most languages then fol-

lowed a close representation of the function

of the hardware in order to conserve on

memory and be resourceful. Still, research-

ers continued to work on natural languages.

One of the good outcomes from learning our

industry’s first languages is that the concept

of how the computer worked was inherited

in the language. Thus the logic of the appli-

cation and how the computer actually ran

the program was a natural outcome of learn-

ing the language.

Most computer languages taught today are

object oriented programming languages. In

these languages one builds objects (black

boxes that have attributes and behavior and

identity (a name)) that can be used by other

objects. To aid in covering all the essential

topics, production tools are used so more

time can be spent on logic and object con-

cepts. Many instructors use Integrated De-

velopment Environments (IDE) to aid in

writing the source code. Results of student

tests in introduction to object oriented pro-

gramming languages using an IDE, has indi-

cated that many students had a weak un-

derstanding of the concepts of stored pro-

grams, memory, the difference between in-

structions and data, the compilation process,

and simple execution logic. This poor out-

come was in spite of the Instructors clearly

covering these topics and providing dia-

grams of how a created object would be ref-

c© 2006 EDSIG http://isedj.org/4/61/ August 23, 2006

ISEDJ 4 (61) Verbrugge 4

erenced in memory. What seemed to be

missing were the hands on writing and view-

ing of a logical process in the core of a com-

puter.

This paper presents how using a simulated

assembler (a tool for learning) with a simple

assembly language can introduce the begin-

ning student to the basic concepts of how

programming languages will run on the

hardware. Although the Simulated Machine

(SM) can solve complicated procedures

(sorting, simulations, etc.), it is best used in

an introduction programming course to show

simple comparisons, arithmetic operations,

transfers, etc. The author has found that

thirty to forty minutes of class time and a

simple assignment provides an excellent ref-

erence when introducing an object oriented

programming language. Most authors of

introduction to programming books recog-

nize this by their inclusion of one to twenty

pages on this topic (Gittleman,

2002;Koffman, 2002). The Simulated As-

sembler is available at

www.csupomona.edu/~wgverbrugge and the

easy procedures for using it in a first pro-

gramming course are provided.

2. LEARN THE ANATOMY

The Simulated Machine (SM) illustrates the

anatomy of the computer. Its view allows

the student to see all phases of the pro-

gramming cycle (writing the source, compil-

ing the source to object code, and running

the object code) in one view. And with the

ability to execute one instruction at a time,

the student can see the program move data

(instructions, variable, or constants) from

memory to registrars to memory. A com-

mon practice in introduction programming

courses is for the instructor to display a

small set of numbers and ask the class to

tell them the average (answers come

quickly). Then the class is asked to explain

how they obtained the answer step by step

(answers come slowly). This leads to a flow

chart or pseudo code of the procedure and

then how one needs to tell the computer box

to perform the task (Malik, 2005). One can

then describe the anatomy of the computer

(Central Processing Unit (CPU) - machine

instructions and registers, memory, in-

put/output, etc.). Next with a simple as-

sembler language, described below, the

pseudo code can be translated into a com-

puter language that represents the instruc-

tions of the CPU. Subsequently the same

program could be illustrated in the language

being taught. Figure 1 (in the appendix)

shows a more general-purpose program that

uses a loop and test to accept a sequence of

numbers. Figure 1a illustrates the flow chart

that set the logic for writing the assembler

source code. The Java equivalent is also

shown.

A sequence of machine instructions is a pro-

gram. Each instruction command is repre-

sented by a binary pattern (0001 0100 0011

0100). If the first 6 bits (= 5 in decimal) of

this pattern represents the operation code

(opCode) and the remaining 10 bits (the op-

erand) represents the memory location (=

100 in decimal), then in the SM this instruc-

tion would mean - clear the accumulator

registrar and add the value at location 100

in memory. The SM illustrates the binary

using decimal so that the instructions and

memory locations are easy to read. Many

instructors teach binary to decimal conver-

sion. The SM provides an answer to the

question “Why are we doing this?” Pro-

gramming in the machines language would

be a real test of ones personal memory.

Thus a programming language called an as-

sembler was created that used a mnemonic

code for the instruction operation and used

numbers or variable names that represented

the operand. In Figure 1 the first assembler

instruction (Start: CLA 0) is shown in the

source code section. The compiler (transla-

tor), which is called when one presses the

Compile Code button, translates this in-

struction to its machine instruction equiva-

lent. “Start:” would have the value 0, since

the first instruction is in location zero of

memory. The operation code “CLA” is trans-

lated to a binary 5. The “0” gets stored in

location 100 of memory (the first location

that data is stored in this SM). The object

code section of Figure 1 shows the result “00

05100” of the translation to machine code.

This is the instruction CLA (5) - clear the

accumulator and add to it the value at

memory location 100.

Thus a source program is entered into the

Source Code panel. It is then submitted by

pressing the Compile Code button. Each

line is read sequentially, interpreted, and

stored into the Simulated Machine’s mem-

ory, which is fully viewable via the Glass

Bottom Computer concept. The instructions

are stored in addresses 000-099. All vari-

c© 2006 EDSIG http://isedj.org/4/61/ August 23, 2006

ISEDJ 4 (61) Verbrugge 5

ables and constants are stored in addresses

100-999. This is shown in the “Object Code

from Source” panel. After writing a program

it is easy to execute the code using the Sim-

ple Machine - "Run Object Code" or “Run

One Inst” button. The third panel shows

the execution results and the values in the

registrars as the program is executed in the

machine.

The Simulated Machine is an Applet and thus

can be run in most browsers. This makes it

very deployable. However, because of secu-

rity two very useful request buttons

“Save_Source”, which allows one to save

their source code to disk; and

“Load_Source”, which allows one to load a

saved source code back into the Simulated

Machine are not allowed when running in the

browser. “Why this is the case?” is a topic

for another paper. Programs that require

over fifteen lines of code probably need this

feature. To accommodate the use of these

two features, the web site that runs the

Simulated Machine allows for the download

of an executable Windows jar version. The

event buttons shown in figure 1 perform the

following actions:

• The "Insert Row" button allows one to

insert an instruction - click on the row to

insert and then click the "Insert Row"

button. A blank row is inserted above

the selected row. Once focus is set in a

table cell by clicking in it, the left or

right arrow key will move the cursor.

• The "Clear Code" button will clear the

source code panel.

• The "Compile Code" button will trans-

late the source code into object code and

display it in the Object Code from Source

panel. The instructions are shown start-

ing in memory location zero (0) and are

displayed in decimal. The last three dig-

its are the memory location of the oper-

and and the beginning digits represent

the operation code. Operands are as-

signed to memory locations starting at

memory location one hundred (100) and

their values are displayed.

• The "Save_Source" button will copy

the source code as a comma delimitated

file to the clipboard. To save the source

code so it may be reloaded at another

time, open Notepad and Save (Ctrl-V) it.

Then save the Notepad file with proper

name to a computer disk directory.

• The "Load_Source" button presents a

dialog box to paste the source copied

from the backup Notepad file and puts it

in the Source table.

• The "Print" button will print the output

of the execution and the source code.

• The "Run Object Code" button will run

the object code starting at memory loca-

tion zero. When the STP (01) operation

code is executed, clicking OK will print

the results in the Execution Results

panel.

• The "Run One Inst" button will run the

object code one instruction at a time -

thus letting you see the contents of the

registers and memory locations change

as the program runs.

3. THE HARDWARE

The simulated machine, like most com-

puters, consists of three major elements:

core memory, instruction control unit, and

registers (see figure 2). All these elements

store data in a five digit numerical format. In

a real computer these decimal digits are bi-

nary numbers (i.e. memory location 030 is

11110 in binary. We could make the ma-

chine all binary, but using decimal digits

does not lose any concepts and it makes it

much easier to visualize the internal hard-

ware.

Computer structure

Memory (RAM)
0…………….

1…………….

Central Processing Unit

Registrars

Accumulator, Multiply Quotient
Instruction, Instruction location, etc.

Control/Logic – Instructions

Add, Subtract, Transfer, etc.

Input Devices Output Devices

Secondary
Storage

Figure 2: The Simulated Machine (SM)

c© 2006 EDSIG http://isedj.org/4/61/ August 23, 2006

ISEDJ 4 (61) Verbrugge 6

The SM has:

• 1000 Memory Locations (Addressed 0 -

999)

o 000 - 099 Reserved for Instructions

o 100 - 999 Reserved for Variables

and Constants

• AC -- Accumulator Register

• MQ -- Multiplier-Quotient Register

o Both registers can hold any positive

or negative value greater than or

equal to –2,147,483,648 and less

than or equal to 2,147,483,647.

• Two controlling Registers

o Instruction Register -- Holds the bi-

nary instruction - viewed in Decimal

o Instruction Location Register --

Holds the binary value of the mem-

ory location where the instruction
was located - viewed in Decimal

The simple machine will execute instruction

sequentially beginning with address 000,

unless altered by a transfer statement.

4. THE ASSEMBLER LANGUAGE

The assembler language presents mnemonic

codes that represent the machine hard wired

bit code instructions. An instruction consists

of an operation code and an operand. The

operation code determines the action the

computer should perform and the operand is

the location in memory that the action is

performed on. An assembler program con-

sists of a list of instructions. Assembler in-

structions have the following format:

LABEL: OpCode Operand # Comment

The assembler is not case sensitive. Thus

cla, CLA, and Cla are the same. Some differ-

ent forms of an instruction are the following:

start: CLA 1 # 1 is a constant

 # start: is a label

 STO one #one is a variable

 # and holds 1

 TRA Next:

 ADD one # this instruction

 #will be skipped

Next: STP

Notice that labels and comments are not

essential for an instruction. However, all

operation codes except “STP” (Stop the pro-

gram) require an operand.Each instruction

may be comprised of the following four ma-

jor elements.

1. Labels

o Labels are used as a reference to a

specific memory location.

o Labels follow the following format.

Name:
� "Name:" is an identifier, which

refers to the current line. It can

be any word followed by a colon,

which is left to the programmer’s

discretion.

� The colon, (:), is used to signify

that it is a label. It follows di-

rectly after the name.

2. Operation Code

o An operation code is a special three-

character command, which informs

the computer to perform a specific

function, such as add or subtract.

o At run time, the operation code has

been translated into a two-digit

code, which the Machine simulator

can understand and manipulate.

o See Table 1 for a list of the opera-

tion codes and their function.

3. Operands

o Operands can consist of labels, vari-

ables, and constants.

o Using a label as an operand would

allow one to modify an instruction.

o Variables refer to memory locations,

which store binary data.

o Variables are formatted as follows.

variable or VARIABLE;

number1 or NUMBER1

� Any sequence of characters - the

compiler is not case sensitive.

o Constants are positive or negative

numbers, which can range from

negative 2,147,483,648 to positive

2,147,483,647. These do not have

any distinctive characters attached.

� To use a constant, simply use

the positive or negative number

after an operation code.

o At run time, the simulator will trans-

late the operand into its numerical

code and store it in the proper

memory address. For example, if

you had only one variable, the simu-

lator would store that variable at ad-

dress 100. Anytime it is referenced

in an instruction, the variable is re-

placed with its address.

4. Comments

o Comments are non-essential parts of

a program. They are there for the

sole purpose of readability of a pro-

c© 2006 EDSIG http://isedj.org/4/61/ August 23, 2006

ISEDJ 4 (61) Verbrugge 7

gram. The format of a comment is

as follows:

this is a comment

� Notice that a comment may be-

gin with a pound sign (#).

� The simulator will ignore any-

thing following the pound sign.

o At run time, the simulator will strip
all comments from the instructions.

5. THE MACHINE INSTRUCTIONS

The machine has fourteen instructions as

listed in Table 1. When reading the table,

note that (x) should be read as the contents

of x (e.g. (MQ) means the contents of the

Multiplier-Quotient Register). The "->" sym-

bol should be read as “is placed into". The

letters “bbb” refer to the memory address

of the operand. For example, the instruction

“ADD one” would be interpreted as opera-

tion code (OpCode) = ADD and operand =

one (a variable which is a reference to a

memory location). The effect ((bbb) + (AC)

-> (AC)) is read as "the contents of the

memory location of the variable (one) plus

the contents of AC are placed into the con-

tents of AC." Also, all operations except STP

need a memory location (represented by

bbb), which can be a constant, label, or a

variable. The letter sequence “iff” is read as

“if and only if.”

6. PRELIMINARY BENEFIT RESULTS

There is not enough data to perform a t-test

assessing whether the means of the two

groups (classes using the assembler and

classes not using the assembler) are statisti-

cally different from each other (Newcombe,

1998). The t-test gives the probability that

the difference between the two means is

caused by chance. It is customary to say

that if this probability is less than 0.05, that

the difference is 'significant' (the difference

is not caused by chance). The current data is

from the author’s experience and is illus-

trated in Table 2. Other professors at CSU-

Pomona are now using the Assembler, thus

the data analysis will become more stable.

Another outcome experienced by the author

was that the average percent of gain of ma-

terial offered using the Simulated Assembler

was 9 percent.

7. CONCLUSION

Experience has established that an under-

standing of how a stored program is exe-

cuted by a computer is one of the main

learning concepts to understanding how to

write a program in a procedural oriented

language. As one moves to object oriented

languages, where the running program cre-

ates objects and stores them in memory, the

understanding of the concept becomes even

more important (McKeachie, 2002; Brans-

ford,2000). The Simulated Assembler pre-

sented here should provide the student with

the fundamental concepts of developing and

running a computer program. Thus, the

learning progression of defining global and

local variables, operations, and objects will

have a foundation to build on. The Simu-

lated Assembler can be used as a root to

many courses – providing a time saving ref-

erence as new topics are presented. The au-

thor has found that using the Simulated As-

sembler in an introduction to programming

course using an object oriented language

provided at least a full class period extra for

introducing new topics. Open access to the

Simulated Assembler via an applet or win-

Table 2: The results of an
unpaired t-test

t = -1.96 ; Standard Deviation = 3.24 ; de-
grees of freedom = 7

The probability of this result, assuming the null
hypothesis, is 0.090

Data:
Group A: Final class average without using the
Simulated Machine. Number of items= 6
76.0, 76.0, 77.0, 78.0, 78.0, 82.0 - Mean =
77.8
95% confidence interval for Mean: 74.71 thru
80.96
Standard Deviation = 2.23
Hi = 82.0 Low = 76.0
Median = 77.5
Average Absolute Deviation from Median =
1.50

Group B: Final class average using the Simu-
lated Machine. Number of items= 3
79.0, 80.0, 88.0 - Mean = 82.3
95% confidence interval for Mean: 77.91 thru
86.76
Standard Deviation = 4.93
Hi = 88.0 Low = 79.0
Median = 80.0

Average Absolute Deviation from Median =
3.00

c© 2006 EDSIG http://isedj.org/4/61/ August 23, 2006

ISEDJ 4 (61) Verbrugge 8

dows version (which can be down loaded) is

on the University’s web server located at

www.csupomona.edu/~wgverbrugge. Some

courses of study require learning a full as-

sembler language (IBM, 2001) as the root to

their discipline. For those that do not have

this requirement, the SM can be illustrated

in one lecture. If a course requires more

profound study, the SM can be used to illus-

trate topics like setting up arrays, modifying

instructions, etc. The SM is easy to operate

and operating instructions are provided on

the web, since these will change as en-

hancements are added. The current version

(Version 2) provides more readability with

changing memory views, save/load source

code to provide more productivity in larger

programs, and a print capability for hard

copy results.

8. REFERENCES

Bransford, J.D., A.L. Brown, and R.R. Cock-

ing, eds. “How People Learn: Brain,

Mind, Experience, and School Committee

on Developments in the Science of

Learning. Commission on Behavioral and

Social Sciences and Education of the Na-

tional Research Council”, National Acad-

emy Press, 2000, ISBN: 0-309-07036-8.

Gittleman, Art (2002). “Computing with

JAVA Alternate second Edition”.

Scott/Jones. pp 2-5.

IBM - International Business Machines Cor-

poration (2001). “AIX 5L for POWER-

based Systems Assembler Language

Reference 2nd Edition.”

Kirk, J.J. “An Unofficial Guide to Web-based

Instructional Gaming and Simulation Re-

sources,” ERIC Document Reproduction

Service ED472675, 2001.

Koffman, Elliot and Wolz, Ursala (2002).

“Problem Solving with Java - 2nd Edi-

tion”. Addison Wesley. pp 1-16.

Kohn, A. “Students Don’t ‘Work’ – They

Learn,” Education week, September 3,

1977.

Larman, Craig (2002). “Applying UML and

Patterns: An Introduction to Object-

Oriented Analysis and Design and the

Unified Process (2nd Ed)”. Upper Saddle

River, NJ: Prentice Hall PTR.

Malik, D.S. (2005). “Java Programming –

From Problem Analysis to Program De-

sign 2nd Edition”. Thomson Course

Technology. pp 1-21.

McKeachie, W McKeachie’s “Teaching Tips:

Strategies, Research and Theory for Col-

lege and University Teachers, 11th ed”

Boston: Houghton Mifflin, 2002.

Newcombe RG. “Two sided confidence inter-

vals for the single proportion: Compari-

son of seven methods” Statistics in

Medicine 1998;17:857-872.

Null, Linda and Lobur, Julia (2003). “Marie-

Sim: The MARIE computer simulator”

Journal on Educational Resources in

Computing (JERIC),v.3 n.2, p’1-29, June

2003.

Sim, Edward R, and Wright, George “'The

Difficulties of Learning Object-Oriented

Analysis and Design: An Exploratory”

Journal of Computer Information Sys-

tems, XXXXII, 2, 95.

Yehezkel, Cecile (2002). “A taxonomy of

computer architecture visualizations”

ACM SIGCSE Bulletion, v.34 n.3, Sep-

tember 2002.

c© 2006 EDSIG http://isedj.org/4/61/ August 23, 2006

ISEDJ 4 (61) Verbrugge 9

Appendix

Table 1 – Instructions (Operation Codes and their Effect)

Machine Instructions
The structure of an instruction is [OpCode Operand]

Operation

Code
Numerical

Value
 (bbb) means contents of the memory location as specified

by the Operand; (AC) means contents of the Accumulator
STP 01 Stops the program
TRA 02 Transfer to next instruction at (bbb)

TLE 03 Transfer to next instruction at memory location specified by

the operand iff (AC) <= 0, else next instruction

TNZ 04 Transfer to next instruction at location bbb iff (AC) != 0, else

next instruction

TEZ 15 Transfer to next instruction at location bbb iff (AC) = 0, else

next instruction
CLA 05 (bbb) -> (AC)
STO 06 (AC) -> (bbb)
LDQ 07 (bbb) -> (MQ) ; MQ = Multiplier-Quotient Register
STQ 08 (MQ) -> (bbb)
ADD 09 (bbb) + (AC) -> (AC)
SUB 10 (AC) - (bbb) -> (AC)
MPY 11 (MQ) * (bbb) -> (MQ)
DIV 12 (MQ) / (bbb) -> (MQ), remainder -> (AC)
RD 13 Contents of input -> (bbb)
WRT 14 (bbb) -> Printed to output frame

c© 2006 EDSIG http://isedj.org/4/61/ August 23, 2006

ISEDJ 4 (61) Verbrugge 10

Figure 1 -- This program finds the average of a set of numbers input until a –9999 is entered.

See corresponding Java program below.

// The Java model class for the assembler find average program
public class Avg
{ public void computeAvg()
 { double num = Double.parseDouble(JOptionPane.showInputDialog("Enter A Number"));
 double count = 0;
 double sum = 0;

 while (!(num == -9999))
 { sum = sum + num;
 count = count + 1;
 num = Double.parseDouble(JOptionPane.showInputDialog("Enter A Number"));
 }
 JOptionPane.showMessageDialog(null, " Avg = " + sum / count);
 } // end computeAvg()
 } // end class

c© 2006 EDSIG http://isedj.org/4/61/ August 23, 2006

ISEDJ 4 (61) Verbrugge 11

Dr Verbrugge Simulated Machine

Simulated Machine

Flow logic of finding Average of any numbers

Get number

Sum = 0

Count = 0

Add number to Sum

Add 1 to Count

Stop

Start

Divide Sum by

Count giving Answer

Write Answer

Write number

Is number

= -9999?

No

1

1

Yes

Figure 1a – Flow Chart for the code in figure 1

c© 2006 EDSIG http://isedj.org/4/61/ August 23, 2006

