
Volume 4, Number 114 http://isedj.org/4/114/ November 10, 2006

In this issue:

A Web-based Automatic Program Grader

Don Colton Leslie Fife
Brigham Young University Hawaii Brigham Young University Hawaii

Laie, Hawaii 96762 USA Laie, Hawaii 96762 USA

Andrew Thompson
Brigham Young University Hawaii

Laie, Hawaii 96762 USA

Abstract: The ability to program is one of the core tools used by computer scientists, and pro-
gramming proficiency is a recommended requirement for ABET accreditation. In our experience,
students learn programming skills best by writing many programs, ranging from simple to complex.
Overworked teachers can be dismayed by the prospect of grading still more programs per student
as well as teaching introductory classes with large enrollments. The automatic grading approach
offers substantial advantages and opportunities, but also some challenges. We present WebBot, a
web-based automatic grader for computer programming assignments. This program is an expansion
of GradeBot, an automatic program grader used for several years. This newest version of GradeBot
introduces a web-based interface. GradeBot evaluates student programs written in any of several
languages, including C, C++, Java, Perl, Python, Tcl, and MIPS assembler. Guidance for similar
projects is provided through a discussion of the development and use of GradeBot and WebBot.

Keywords: automated grading, grading, courseware, CS1, CS2, web-based

Recommended Citation: Colton, Fife, and Thompson (2006). A Web-based Automatic
Program Grader. Information Systems Education Journal, 4 (114). http://isedj.org/4/114/. ISSN:
1545-679X. (Also appears in The Proceedings of ISECON 2006: §3522. ISSN: 1542-7382.)

This issue is on the Internet at http://isedj.org/4/114/

ISEDJ 4 (114) Information Systems Education Journal 2

The Information Systems Education Journal (ISEDJ) is a peer-reviewed academic journal
published by the Education Special Interest Group (EDSIG) of the Association of Information
Technology Professionals (AITP, Chicago, Illinois). • ISSN: 1545-679X. • First issue: 8 Sep 2003.
• Title: Information Systems Education Journal. Variants: IS Education Journal; ISEDJ. • Phys-
ical format: online. • Publishing frequency: irregular; as each article is approved, it is published
immediately and constitutes a complete separate issue of the current volume. • Single issue price:
free. • Subscription address: subscribe@isedj.org. • Subscription price: free. • Electronic access:
http://isedj.org/ • Contact person: Don Colton (editor@isedj.org)

2006 AITP Education Special Interest Group Board of Directors

Stuart A. Varden
Pace University

EDSIG President 2004

Paul M. Leidig
Grand Valley State University
EDSIG President 2005-2006

Don Colton
Brigham Young Univ Hawaii

Vice President 2005-2006

Wendy Ceccucci
Quinnipiac Univ
Director 2006-07

Ronald I. Frank
Pace University

Secretary 2005-06

Kenneth A. Grant
Ryerson University
Director 2005-06

Albert L. Harris
Appalachian St

JISE Editor

Thomas N. Janicki
Univ NC Wilmington

Director 2006-07

Jens O. Liegle
Georgia State Univ
Member Svcs 2006

Patricia Sendall
Merrimack College

Director 2006

Marcos Sivitanides
Texas St San Marcos
Chair ISECON 2006

Robert B. Sweeney
U South Alabama
Treasurer 2004-06

Gary Ury
NW Missouri St
Director 2006-07

Information Systems Education Journal 2005-2006 Editorial and Review Board

Don Colton
Brigham Young Univ Hawaii

Editor

Thomas N. Janicki
Univ of North Carolina Wilmington

Associate Editor

This paper is part of the group that was selected for inclusion in the journal based on preliminary
ratings in the top 30% of papers submitted, and a second review placing it in the top 15% by persons
unconnected with the conference or the journal, and whose names are withheld to preserve their
anonymity.

EDSIG activities include the publication of ISEDJ, the organization and execution of the annual
ISECON conference held each fall, the publication of the Journal of Information Systems Education
(JISE), and the designation and honoring of an IS Educator of the Year. • The Foundation for
Information Technology Education has been the key sponsor of ISECON over the years. • The
Association for Information Technology Professionals (AITP) provides the corporate umbrella under
which EDSIG operates.

c© Copyright 2006 EDSIG. In the spirit of academic freedom, permission is granted to make and
distribute unlimited copies of this issue in its PDF or printed form, so long as the entire document
is presented, and it is not modified in any substantial way.

c© 2006 EDSIG http://isedj.org/4/114/ November 10, 2006

ISEDJ 4 (114) Colton, Fife, and Thompson 3

A Web-based Automatic Program Grader

Don Colton
don@colton.byuh.edu

Leslie Fife

Andrew Thompson

School of Computing
Brigham Young University Hawaii

Laie, Hawaii 96762 USA

ABSTRACT

The ability to program is one of the core tools used by computer scientists, and programming

proficiency is a recommended requirement for ABET accreditation. In our experience, students

learn programming skills best by writing many programs, ranging from simple to complex.

Overworked teachers can be dismayed by the prospect of grading still more programs per

student as well as teaching introductory classes with large enrollments. The automatic grading

approach offers substantial advantages and opportunities, but also some challenges. We present

WebBot, a web-based automatic grader for computer programming assignments. This program

is an expansion of GradeBot, an automatic program grader used for several years. This newest

version of GradeBot introduces a web-based interface. GradeBot evaluates student programs

written in any of several languages, including C, C++, Java, Perl, Python, Tcl, and MIPS as-

sembler. Guidance for similar projects is provided through a discussion of the development and

use of GradeBot and WebBot.

Keywords: automated grading, grading, courseware, CS1, CS2, web-based

1. INTRODUCTION

When intermediate and advanced students in

Computer Science are given one program-

ming assignment each week throughout the

semester, they are generally successful.

However, when novice programming students

in CS1/CS2 were assigned programs at the

same pace, the results were not good. Stu-

dents experiencing difficulty at this pace often

gave up in frustration or acquired too much

“unauthorized help,” thus failing to learn the

material. This has an obvious negative effect

on retention and program completion.

We felt that inexperienced students were not

successful with the pace of one program per

week because it forced them to learn and

demonstrate too much new material per

program. Instead of weekly assignments fully

demonstrating a new concept more frequent

and smaller steps needed to be assigned and

graded. In addition, these smaller steps

needed to provide rapid feedback to allow the

students to progress quickly from one step to

the next. A change was made to better sup-

port the students by assigning and grading

four or five smaller programs per week. While

this is the right thing to do for student

learning it has obvious drawbacks. The re-

sulting grading burden on instructors and

teaching assistants was the problem for which

GradeBot became the solution.

The thesis of the GradeBot project is that

student learning in introductory programming

classes can be effectively facilitated by the

use of an automatic program grader sup-

porting multiple programming assignments

each week.

1.1 Additional Motivation

Students in the introductory programming

sequence are exposed to and taught the tools

of a computer scientist. One of these im-

portant tools is the ability to program (Chang

et al, 2001). Our primary motivation was to

support students learning by breaking the

c© 2006 EDSIG http://isedj.org/4/114/ November 10, 2006

ISEDJ 4 (114) Colton, Fife, and Thompson 4

learning process into smaller steps in a sup-

portable manner. Without learning to pro-

gram well, a student is at a clear disadvan-

tage throughout the curriculum. Other mo-

tivations include:

• Paradigm Shift: It is important to note that

automatic grading offers but does not

require a complete paradigm shift from

traditional grading. There are two poten-

tial differences. (1) With automatic

grading the student may be allowed to turn

in the assignment many times without

penalty, with the automatic grader evalu-

ating each one quickly and patiently.

Credit is only granted when the student

program works. (2) It is still possible and

may be desirable to involve a human

grader to ensure a program was written as

specified, including stylistic requirements.

However, such involvement is not re-

quired.

• More Programs per Student: Automatic

grading allows a move from 5 to 10 pro-

grams per student per semester toward a

target of 50 programs per semester.

Rather than the steep learning curve of

one program for each topic, one might

have many more programs, resulting in a

more gradual learning curve.

• Faster Response to Students: With an

automatic grader in place, students are

able to submit their lab work at any time

and find out immediately whether it was

accepted.

• Objective (not Subjective) Grading: When

student work is graded as a batch after the

due date, teachers frequently give partial

credit for incorrect work depending on how

close to correct they feel it is. But “how

close” is a subjective judgment, whereas

“works or fails” is an objective judgment.

Because students can resubmit incorrect

work before the due date, and know when

they are done, it becomes reasonable to

use objective, all-or-nothing grading

without partial credit, which effectively

requires perfect programs.

• Students Debug Their Programs: Instead

of showing or telling students where their

program is wrong, students are simply

given the test case led to their failure.

They must figure out why their program

failed and how to fix it. This is more true to

life and provides greater learning.

2. GRADEBOT BACKGROUND

The web-based automatic program grader,

WebBot, is built on and extends GradeBot. In

this section we provide an overview of

GradeBot. We then discuss the changes

provided by WebBot. A treatment of

GradeBot is available in Colton, Fife, and

Winters (2005).

2.1 The History of Automatic Grading

Automatic program grading is not a new idea.

What follows is a brief overview of the work in

this area.

The earliest report of automatic programming

was published in the CACM by Hollingsworth

(1960). Later Forsythe and Wirth (1965)

were using an automatic grading program in

introductory programming courses in Algol. A

significant drawback of this early system was

that routines had to be written for each pro-

gramming problem, and then the system was

recompiled. However, the system provided

random test data and checked student per-

formance. Students included the appropriate

procedure cards in order to have their pro-

grams graded. Forsythe and Wirth recom-

mend the use of automatic program graders.

Their system, while primitive, is a good ex-

ample of the possibilities of automatic pro-

gram grading.

BAGS (Hext and Winings, 1969) (Basser

Automatic Grading Scheme) from the Uni-

versity of Sydney was a later system. Their

system accepted work in three languages and

tested the user programs with two data sets.

The system gave 1 point for each of 5 activi-

ties: successful compile, complete run, data

set 1 correct, data set 2 correct, and time

sufficiently short. The program also penalized

a student for each submission after the first.

The ability to compile, run and test programs

without human intervention is an important

part of automatic grading. The philosophy of

WebBot, however, differs from BAGS. With

BAGS, you could get points for submitting the

wrong program if it compiled and ran. You

also get points for a program that works on

some data, but not all.

Kassandra (von Matt, 1994) was an automatic

grader used in the early 1990s. Kassandra

would test according to two test cases, and

give credit if both answers were correct.

Kassandra also had the ability to provide

students with a list of completed assignment.

c© 2006 EDSIG http://isedj.org/4/114/ November 10, 2006

ISEDJ 4 (114) Colton, Fife, and Thompson 5

Unfortunately, the two test cases were static.

This can lead to issues with cheating and

hard-coding results.

Finally, the submit program (Harris, Adams,

and Harris, 2004) in use at James Madison

University in 2004 shares some of the same

philosophies with WebBot. For example,

student programs must be precisely correct to

receive credit, the only penalty being late

submission. While submissions generate a

report, it is unclear if a complete schedule for

assignments done and pending can be cre-

ated automatically. In addition, submit is a

command line utility and not a complete

automatic grading suite. Many potential in-

structor and student features are not present.

2.2 Grading Model

GradeBot works by comparing the behavior of

a student program to a defined standard. The

behavior consists of the outputs that are

produced by the student program. If the

student program performs as required, it is

declared to be correct. If the student pro-

gram fails, GradeBot can only identify the

discrepancy in the student program output.

• Program Submission: Students submit

their programs as source code in any of the

target languages that the teacher permits.

Supported languages include C, C++,

Java, Perl, Python, Tcl, and MIPS assem-

bler (SPIM). Once the program compiles

cleanly, a series of zero or more tests are

performed.

• In the original model, each test followed a

standard in, standard out evaluation

model. Under the current model standard

in and standard out are interleaved as a

dialog, using Expect (Libes, 1995) to verify

that ins and outs happen in the right order.

• Test Cases: The original concept was to

provide a few hand-made, hand-verified

pairs of files for each test case. One file

would be the input and the other file would

be the output. The input file is fed into the

student program. The output results are

collected. Finally the collected results are

compared with the desired output. This is

repeated for all test cases.

• Failure Revealed: For instructional pur-

poses, if there is a discrepancy between

the desired output and the actual output,

the failed test case is revealed to the

student. This allows the beginning stu-

dents to debug their own programs. It also

avoids most cases of students protesting

that their program was actually right. A

counter-example serves as an effective

proof.

• Helpful Comments: As much as possible,

messages indicating the error cause or

location are provided. Examples are:

“Your first error is on line 5 of your output,”

“Please check your spacing,” or “Please

check your punctuation” Both the pro-

duced output and the correct output are

also provided for comparison. Ideally the

system would point out the place where

the student program was wrong, rather

than the place where the output was

wrong. Humans can often do this, but it is

beyond the capabilities of this system.

• Infinite Loops: Infinite loops were a

problem. To deal with this, a timed exe-

cution facility called timed-run was used.

It was already present on our Linux system

as part of the expect package (Libes,

1995). Not foreseen were infinite loops

with print statements nested inside. The

first occurrence was a program that gen-

erated 100,000 identical lines of output

before it timed out. It took an hour to

email the results to the student. Two

measures were adopted to mitigate the

infinite loop print problem. First, before

emailing, identical lines were eliminated.

When there were three or more lines that

were identical, only the first would be re-

turned, followed by a statement such as

“the next 183 lines are the same.” In ad-

dition, the size of the desired output was

used as a guide for what was reasonable,

and outputs that were too much longer

were simply truncated. The important

thing was to give the student a good view

of his output without falling into an infinite

output.

• Program and Machine Crashes: Core dump

files are created by failed compilations.

These took up a large amount of disk

space. A nightly “cron job” was set up to

remove all core files within the testing

directory tree. One or two clever and

motivated students have found ways to

crash the server, but they have been proud

of their achievements and have been

willing to accept acknowledgement for

their cleverness. They have not been an

ongoing source of annoyance. In seven

c© 2006 EDSIG http://isedj.org/4/114/ November 10, 2006

ISEDJ 4 (114) Colton, Fife, and Thompson 6

years there has been no need to deal with

this.

• Creating New Labs: In order to keep pro-

grams from becoming too well known it

was important that lab creation be simple.

Although it was anticipated that new labs

would be created frequently, in fact only a

few new labs are created each year, mostly

in response to new learning objectives

rather than to avoid student cheating. We

discuss cheating later.

2.3 Grading Engine

With the original grading model, students

could in n tries discover all n test cases being

used, since there were a finite number, and n

was generally small for hand-verified test

data.

• Plug-in Test Modules: To get beyond a

small number of hand-verified test cases a

plug-in was created to generate random

inputs and matching outputs to test the

student program. The plug-in ran each

time it wanted input. The random number

generator would create appropriate input.

The input was then saved for the student

program and also processed by the plug-in

program. Each time the plug-in generated

output, it was saved for comparison

against the student program. An expla-

nation of the random input generation

together with a complete and annotated

example can be found in Colton, Fife, and

Winters (2005).

• Interactive Dialogue: Over time, the in-

structor was occasionally confronted by

examples of student code that worked well

enough for GradeBot but was still wrong.

One typical example of this would be a

program to ask for a number, read it in,

add one to it, and print the result. The

student program could instead read in the

number, add one to it, and THEN ask for

the number and print the result. Using

standard in and standard out destroyed

the interleaving sequence, the “dialogue,”

between input and output. All inputs could

be read first, and then all outputs created.

But the intention of the instructor was to

have inputs and outputs interleaved.

• Longer Outputs: With computer-generated

test files, it became practical to have

longer input and output files. When all

inputs and outputs were hand-generated

and hand-verified, there was a strong

tendency to keep things short and simple.

A major overhaul of GradeBot was conducted

to get away from the batch input/output

model, add the plug-in and allow for the

longer running times of larger input. An in-

teractive dialogue model was adopted for

most program grading. Instead of comparing

a whole output file, the student program

outputs were verified one line at a time, as

they were generated. Similarly, the inputs

were provided one line at a time as they were

needed. With this improvement, the student

could be forced to prompt for input before

actually reading the input.

An unexpected benefit of this approach was

the fact that infinite printing loops were no

longer a problem. At the first sign of trouble,

the student program was terminated and the

remaining dialogue was modeled for the

student. Only the first error line was re-

ported.

3. GRADEBOT TO WEBBOT

The original version of GradeBot had no visi-

ble user interface. All interaction with

GradeBot occurred via email. A program was

submitted via mail and responses came via

email. The email facility was typically ac-

cessed from within emacs. While this in-

terface was sufficient for experienced stu-

dents, the time to teach novice students to

use the system was two to three weeks.

Novice students would have to learn to use

emacs. Then, they would need to learn how

to switch between edit and submit modes

within the editor to submit labs and read

responses.

A discussion began on adding a graphical user

interface to GradeBot. There were several

goals. The first goal was a graphical interface

that a novice student could start and use

immediately. This would allow the course

instructor to focus on the course content and

not the tool being used. Second, this inter-

face needed to be available from anywhere.

GradeBot was not limited to use in the de-

partmental computer labs. A student could

access GradeBot from anywhere they have

email access. To maintain this same level of

access, the upgraded GradeBot was devel-

oped as a web-based tool, WebBot.

A series of screen shots show the use of

WebBot. In Figure 1 we see the login page.

c© 2006 EDSIG http://isedj.org/4/114/ November 10, 2006

ISEDJ 4 (114) Colton, Fife, and Thompson 7

Students also have a link if they forget their

password. All students enrolled automatically

have an account.

FIGURE 1: WebBot Login Page

In Figure 2 we see the WebBot frame enabled

workspace. The workspace is divided into two

regions.

Figure 2: Frame Enabled Workspace

We see in Figure 3 that the non-frames ver-

sion has a slightly different layout, but the

same capabilities. The ability to switch be-

tween frames and no-frames gives the choice

of preference to the user.

In the top portion we have a drop down se-

lection of labs, buttons for control and a text

window for entering program code. This code

can be saved and loaded, so work can be

saved between sessions. A beautify (pretty

print) button formats the code for readability.

Figure 3: WebBot Non-Frames Workspace

At the bottom of the workspace is a message

area. Responses from WebBot are provided

in this space. A student can also review their

entire course performance by an appropriate

query to WebBot. This grade report is pro-

vided in the workspace message area. An

example is shown in Figure 4. We can see in

the design of WebBot that the interface

functionality remains very simple.

Figure 4: Student Status Report

The decision to keep the graphical interface

simple was intentional. One problem with

many IDEs is their complexity. It can be

challenging to learn a complex IDE while also

learning to program. When students are

frustrated the source of the frustration can be

the practice of programming or it may be

learning the new tool. WebBot has a simple

settings page, to change passwords. This is

shown in Figure 5.

c© 2006 EDSIG http://isedj.org/4/114/ November 10, 2006

ISEDJ 4 (114) Colton, Fife, and Thompson 8

Figure 5: WebBot Options Page

WebBot also allows multiple courses to use

the system. A student can enroll in multiple

classes and switch between them. Students

may also review past courses in which they

have been enrolled. The course page is

shown in Figure 6.

Figure 6: Course Selection Page

The web-based automatic program grader,

WebBot, is built on and extends the earlier

GradeBot. GradeBot was in use for more than

four years before the introduction of WebBot.

WebBot has now been functioning for three

years. Two issues remain with the use of

WebBot. First, students know how to pro-

gram but do not know how to use the tools of

programming, such as IDEs, editors and

compilers. This is due to WebBot hiding the

details of these tools from the student. While

arguably appropriate for a novice learning to

program, this is not acceptable for more ex-

perienced students. Second, the possibility of

cheating exists. Both of these will be dis-

cussed.

4. WEBBOT DISCUSSION

4.1 IDE Introduction

The inability of students to use the tools of

programming in an Integrated Development

Environment (IDE) became evident immedi-

ately. Students in the course following CS1

did not know the steps necessary to edit,

compile and run a program outside of Web-

Bot.

This turned out to be a reasonably simple

problem to address. The CS1 course was

modified to introduce IDEs to the students.

However, this introduction was delayed until

late in the course. By the time IDEs were

introduced, students were already comfort-

able writing and testing simple programs. At

this point, the complexity of the IDE and the

complexity of programming are separated in

time. This has been successful.

4.2 Cheating

Some students were able to complete the labs

but were still unable to perform on pro-

gramming quizzes and tests given in class.

Interviews with the department-provided

tutors revealed that the students were help-

ing each other, although explicitly forbidden.

There seemed to be two distinct elements

contributing to the behavior. First, students

seemed less upset about cheating in their

interactions with a machine than they would

in their interactions with a human. Second,

as demonstrated by the 2001 GRE CS Subject

Test cheating scandal (Pendell-Jones, 2003),

in some cultures there is a strong

us-versus-them mentality between students

and teachers. Students are culturally ex-

pected to assist each other, even in defiance

of instructor mandates. This cultural issue

was more difficult to address.

To identify cheaters, GradeBot incorporated a

complete history of all lab work ever sub-

mitted by students. When a new student

program is submitted, it is compared with the

c© 2006 EDSIG http://isedj.org/4/114/ November 10, 2006

ISEDJ 4 (114) Colton, Fife, and Thompson 9

database. If a match is found, an incident

report is emailed to the instructor. The in-

cident report details the “miraculous” fact

that two programs were identical.

The initial result was a lot of email. For simple

labs, or for labs that represented only a small

change from sample code given in the text-

book, the odds of duplicate programs were

quite high. This was also true for programs

that were explained thoroughly in class by the

instructor or in the lab by the tutors. Not all of

this activity is cheating.

The next step was to look at the predecessors

to any code match. For each match, the

miracle report was modified to list all the

previous identical submissions that had been

received. If many students shared the same

code there was generally an acceptable rea-

son. If only one or two students shared the

same code, it was more likely to be cheating.

One incident was cause to be cautious, but did

not provide enough evidence to convict.

The next step was to modify the report to

include past incidents of identical code in-

volving that student. This turned out to be

very helpful. When student A had code that

was like that of student B on one assignment,

and like that of student C on another as-

signment, and like that of student D on yet

another assignment, it could be attributed to

the fact that there were a limited number of

common ways to write the program. But if

student A had code like that of student B on

quite a few labs, this indicated a strong level

of collusion.

We concluded that technical means could

detect simple forms of copying, but effective

police action was not practical because of the

cultural desire to work together and the ease

with which students could modify their copied

work just enough to avoid being caught. It

became easier to quit trying to directly control

cheating on the labs and to allow students to

work together. We rely on testing in a con-

trolled setting to determine who has learned

the course material. A large share of the final

grade now rests on in-class tests. Students

are explicitly permitted to do their lab work

together, but are reminded that one impor-

tant goal is the learning they will need to

demonstrate on the in-class tests.

4.3 Test First Approach

There is a test-first philosophy that suggests

students should enumerate all the possible or

reasonable test cases before writing the

program. We agree with this approach once

students have gained a basic fluency in pro-

gramming, but we believe starting too early

with the test first approach can lead to the

“paralysis of analysis” where you cannot learn

to ride a bike because you cannot figure out

all the things that could happen, and how to

respond to each of them. Instead, we favor

the approach that says: get on the seat and

start pedaling; later you can think about what

you are doing.

5. CONCLUSIONS AND FUTURE WORK

WebBot handles an average of 325 students

per year, each submitting roughly 290 lab

assignments to complete 25 labs per class,

mostly in the CS1/CS2 courses. Table I

shows actual statistics for three courses in

2004 and 2005. These courses are CS1, CS2,

and Algorithm Analysis (CS 301). It has been

used with a variety of student programming

languages, including C, C++, Java, Perl, and

MIPS (in the computer organization / archi-

tecture class). For a detailed example of its

use, see the Appendix in Colton, Fife, and

Winters (2005).

Instructors are very pleased with this tool,

and desire to see it continued, but they are

not totally satisfied due to some of the

tradeoffs. Because the instructor is not re-

quired to see every submission by every

student, they can easily lose touch with the

abilities of their students. Additional tools not

reported here have been implemented to

allow the teachers to monitor the progress of

their students and identify those who are

falling behind on a daily basis.

Because student work is only reviewed by

WebBot, there are stylistic issues that are not

addressed, such as commenting and indent-

ing. Additionally, students can sometimes

short-circuit an assignment by writing a single

routine to achieve a goal when the assign-

ment was to create and use certain subrou-

tines or data structures, or do something in a

particular way. For these types of issues, a

human may need to review the code.

Students have reported having a love-hate

relationship with GradeBot. Most students

love the fact that they get immediate feed-

c© 2006 EDSIG http://isedj.org/4/114/ November 10, 2006

ISEDJ 4 (114) Colton, Fife, and Thompson 10

back, and can know that their assignment is

completed and accepted for full credit. A few

students hate the fact that GradeBot requires

extreme attention to such details as spelling

and spacing in their output, and that occa-

sionally the appearance of blank lines in the

output can be hard to plan (e.g., should the

blank line print outside the top of the loop,

inside the top of the loop, inside the bottom of

the loop, or outside the bottom of the loop).

The quality of student programming skills

seems to have improved, but this improve-

ment must be regarded as anecdotal. The

fact that the students who complete the in-

troductory classes have generally become

capable programmers supports the hypothe-

sis that automatic grading is feasible. How-

ever, we continue to monitor the performance

of students in intermediate and advanced

programming classes.

Table I: WebBot Submission History

Year 2004 2005

Crs CS 1 CS 2 Alg.

Anal

CS 1 CS 2 Algor

Anal

Stu-

dents

175 133 19 169 117 42

Sub-

mits

n.a. n.a. n.a. 73405 15043 5684

Suc-

cess

6995 1007 189 6518 767 385

Succ

%

 8.9% 5.1% 6.8%

One additional benefit is the creation of last

mile learning. One difficulty in evaluating

program assignments occurs when the as-

signment is only partially correct. Deter-

mining the amount of partial credit can be

very subjective. With WebBot, there is no

partial credit. As students get essentially

unlimited attempts and immediate feedback,

we require a program to be completely cor-

rect for credit. By debugging their own pro-

grams, students engaged in this “last mile

learning.” This is the learning that occurs

when one finally finishes something and

doesn’t stop with close enough. One could

easily argue that this is a behavior needed in

the workforce. No employer wants a program

that almost works. It is critical for students to

learn to stick with the assignment until it is

accurate and complete.

WebBot provides two other potential uses,

not yet attempted. WebBot may be suc-

cessfully deployed in distance education. It

may be possible to automate an introductory

programming course to such an extent that

lectures could be recorded on video and the

entire course could be delivered, conducted,

and graded anywhere Internet access is

available. Minimal human intervention would

be necessary.

WebBot also allows for open entry / early exit.

By using the idea of distance education, it

should be possible for on-campus students to

also start and complete the course on a

schedule outside of the typical semester.

Tutors available on campus could handle

questions and an instructor would be needed

only to resolve problems. Under this model, it

would be possible to let students enroll at any

time and complete at any time. Assignment

deadlines could be tailored to each student's

personal timeline. The GradeBot core pro-

vides evaluation of one assignment for one

student at a time. Pacing, credit, cheat de-

tection, and other functions are done in a

management layer distinct from the core.

Development work continues on WebBot.

Updates to the underlying tool and the in-

terface described here are being performed.

The most important development product

underway is an improved instructor interface.

Early versions required the instructor to be a

programmer / hacker, and the current version

still requires such a person to provide main-

tenance between semesters and to solve

special situations that arise. The software

engineering class is planning to develop an

improved graphical interface to GradeBot.

Both the student and instructor interfaces

may be reported in the future.

We are sometimes asked whether we have

any plans to share GradeBot and its associ-

ated tools. The answer is yes. We hesitate at

the current time because it does not have a

simple interface for maintenance activities,

such as creating a new class at the start of a

semester. The whole project carries the

flavor of an extended proof of concept dem-

onstration. It is efficient and robust for stu-

dents, and we get along very well with it, but

it would take a very interested colleague to

install it and make it work somewhere else in

its current form. However, we do want to

make it faculty friendly and sys admin friendly,

c© 2006 EDSIG http://isedj.org/4/114/ November 10, 2006

ISEDJ 4 (114) Colton, Fife, and Thompson 11

which in itself is probably a substantial project,

possibly open source.

REFERENCES

Chang, Carl, Peter J. Denning, James H. Cross

II, Gerald Engel, Robert Sloan, Doris

Carver, Richard Eckhouse, Willis King,

Francis Lau, Susan Mengel, Pradip Srimani,

Eric Roberts, Russell Shackelford, Richard

Austing, C. Fay Cover, Gordon Davies, An-

drew McGettrick, G. Michael Schneider,

Ursula Wolz (2001). “Computing Curricula

2001 Computer Science,” Final Report, 15

Dec 2001. Jointly published by IEEE-CS and

ACM.

Colton, Don, Leslie Fife, Randy Winters

(2005), Building a Computer Program

Grader, Information Systems Education

Journal 3(6).

Forsythe, George E. Forsythe and Niklaus

Wirth, (1965) “Automatic Grading Pro-

grams,” CACM 8(5), May 1965, pp.

275-278.

Harris, J. Archer, Elizabeth S. Adams and

Nancy L. Harris, (2004) “Making Program

Grading Easier (But Not Totally Auto-

matic),” Proc. CCSC: Rocky Mountain

Conference 2004, pp. 248-261.

Hext, J.B. and J.W. Winings, (1969) “An

Automatic Grading Scheme for Simple

Programming Exercises,” CACM 12(5), pp.

272-275.

Hollingsworth, J. (1960) “Automatic Graders

for Programming Classes,” CACM 3(10),

Oct. 1960, pp. 528-529.

Libes, Don. (1995) Exploring Expect. O'Reilly.

ISBN: 1-56592-090-2.

Pendell-Jones, Allison. (2003) Academic In-

tegrity and the Graduate Record Exam, in

Ethics Today Online 1(11), July 13, 2003,

http://www.ethics.org/resources/article_d

etail.cfm?ID=826, accessed 2006-09-27.

von Matt, Urs, (1994) “Kassandra The

Automatic Grading System,” SIGCUE Out-

look 22(1), January 1994, pp. 26-40.

c© 2006 EDSIG http://isedj.org/4/114/ November 10, 2006

