INFORMATION SYSTEMS EDUCATION JOURNAL

Volume 23, No. 1 January 2025 ISSN: 1545-679X

In this issue:

- 4. A Comparison of Generative AI Solutions and Textbook Solutions in an Introductory Programming Course Ernst Bekkering, Northeastern State University Patrick Harrington, Northeastern State University
- 23. Teaching Case: Cleaning Out the Basement: Designing & Developing a Database to Support an Online Side Hustle Case Dana Schwieger, Southeast Missouri State University
- **32.** Empathy-Driven Student Transformations: Bridging the Gap in Software Development for Inclusive User Experiences

Jami Cotler, Siena College Eszter Kiss, James Cook University Dmitry Burshteyn, Siena College Megan Hall, Brockport College Aman Walker, Siena College John Slyer, SkyHigh Adventures

- 46. Teaching Case A Small Accounting Firm Must Meet the Challenge Posed by Artificial Intelligence Michael A. Smith
- 54. Examining Impacts on Digital Discrimination, Digital Inequity and Digital Injustice in Higher Education: A Qualitative Study Rachida F. Parks, Quinnipiac University Amy KB Paros, Quinnipiac University Mariama Yakubu, University of New Haven
- 70. Invited Article On Becoming: Why Disposition Distinguishes Information Systems Education from Training. A Commentary on Model Curricula Jeffry Babb, West Texas A&M University David Yates, Bentley University Leslie Waguespack, Bentley University

The **Information Systems Education Journal** (ISEDJ) is a double-blind peer-reviewed academic journal published by **ISCAP** (Information Systems and Computing Academic Professionals). Publishing frequency is five times per year. The first year of publication was 2003.

ISEDJ is published online (https://isedj.org). Our sister publication, the Proceedings of the ISCAP Conference (https://iscap.us/proceedings) features all papers, abstracts, panels, workshops, and presentations from the conference.

The journal acceptance review process involves a minimum of three double-blind peer reviews, where both the reviewer is not aware of the identities of the authors and the authors are not aware of the identities of the reviewers. The initial reviews happen before the ISCAP conference. All papers, whether award-winners or not, are invited to resubmit for journal consideration after applying feedback from the Conference presentation. Award winning papers are assured of a publication slot; however, all re-submitted papers including award winners are subjected to a second round of three blind peer reviews to improve quality and make final accept/reject decisions. Those papers that are deemed of sufficient quality are accepted for publication in the ISEDJ journal. Currently the target acceptance rate for the journal is under 35%.

Information Systems Education Journal is pleased to be listed in the Cabell's Directory of Publishing Opportunities in Educational Technology and Library Science, in both the electronic and printed editions. Questions should be addressed to the editor at editor@isedj.org or the publisher at publisher@isedj.org. Special thanks to volunteer members of ISCAP who perform the editorial and review processes for ISEDJ.

2024 ISCAP Board of Directors

Jeff Cummings Univ of NC Wilmington President

Jennifer Breese Penn State University Director

RJ Podeschi Millikin University Director/Treasurer

Tom Janicki Univ of NC Wilmington Director/Meeting Facilitator Amy Connolly James Madison University Vice President

David Gomillion Texas A&M University Director

> David Woods Miami University Director

Paul Witman California Lutheran University Director/2024 Conf Chair Eric Breimer Siena College Past President

Leigh Mutchler James Madison University Director/Secretary

Jeffry Babb West Texas A&M University Director/Curricular Items Chair

Xihui "Paul" Zhang University of North Alabama Director/JISE Editor

Copyright © 2024 by Information Systems and Computing Academic Professionals (ISCAP). Permission to make digital or hard copies of all or part of this journal for personal or classroom use is granted without fee provided that the copies are not made or distributed for profit or commercial use. All copies must bear this notice and full citation. Permission from the Editor is required to post to servers, redistribute to lists, or utilize in a for-profit or commercial use. Permission requests should be sent to Paul Witman, Editor, editor@isedj.org.

INFORMATION SYSTEMS EDUCATION JOURNAL

Editors

Paul Witman Editor California Lutheran University Thomas Janicki Publisher U of North Carolina Wilmington

Dana Schwieger Associate Editor Southeast Missouri State University Kevin Mentzer

Associate Editor Nichols College

Ira Goldstein Teaching Cases & Exercises Co-Editor Siena College

Donald Colton Emeritus Editor Brigham Young University Hawaii Michelle Louch Teaching Cases & Exercises Co-Editor Duquesne University

> Jeffry Babb Emeritus Editor West Texas A&M University

Invited Article

On Becoming: Why Disposition Distinguishes Information Systems Education from Training. A Commentary on Model Curricula

Jeffry Babb jbabb@wtamu.edu West Texas A&M University Canyon, TX 79016

> David Yates dyates@bentley.edu

Leslie Waguespack lwaguespack@bentley.edu

> Bentley University Waltham, MA 02452

Abstract

In 2020, the IEEE/ACM Computing Curricula 2020 report, the ACM/AIS/ISCAP Undergraduate Model Curriculum, and the AASCB Standards for Business Accreditation were all released. Each expands on its predecessor to add aspects of disposition to the knowledge, skills, and capabilities in its curriculum. This curriculum is then used to shape, hone, and prepare graduates. Both the CC2020 and IS2020 reports specifically recommend a competency-based curriculum in which dispositions are both a relatively new addition as well as an addition that may be fraught as the consideration and/or adoption process proceeds. The competency model challenges Information Systems curriculum design in two key aspects that are the subject of this paper. First, the "disposition" dimension poses key challenges in the Information Systems discipline and provides a new area of focus in the literature on Information Systems curriculum development. Second, the inclusion of dispositions in the CC2020/IS2020 competency model provides an opportunity to explore interconnections that can be more informative than course containers, course descriptions, and lists of topics. We promote the uptake of the CC2020/IS2020 competency model by focusing on and advocating for dispositions as a means of accounting for, and designing for, students' becoming as a complement to students' application of skills and knowledge in the task environment. The "disposition" component of the competency model promises extended expression, facility of comparison, and clarity in exchange to bring utility and understanding in the Information Systems curriculum development process.

Keywords: professionalism, competency, mindset, dispositions, accountability, computing education, curriculum design.

Recommended Citation: Babb, J., Yates, D.J., Waguespack, L., (2024). On Becoming: Why Disposition Distinguishes Education from Training. A Commentary on Model Curricula. *Information Systems Education Journal* v23(n1) pp 70-93. https://doi.org/10.62273/JRSO9158

On Becoming: Why Disposition Distinguishes Information Systems Education from Training. A Commentary on Model Curricula

Jeffry Babb, David Yates and Leslie Waguespack

1. INTRODUCTION

Recent computing curricula reports (CC2020), and specific disciplinary model curriculum reports (CC2020, IS2020, and the impending CS2023 and DS2023) have been authored using a competency approach to modeling computing curricula. A key component of the models in these reports is the inclusion of dispositions. The CC2020 report conceptualizes dispositions thusly (CC2020, p.134): Dispositions enfold intellectual, social, and moral predilections or tendencies that influence behaviors that do not lend themselves as easily to a categorical assessment. From our read of this statement and our experience, we find that dispositions relate to habitual behavioral tendencies that best facilitate the development of the skills and knowledge that support competencies. Thus, with the inclusion of dispositions, which are often considered subjective, some will find pathways for measurement and assessment to be less clear. This presented opportunities for friction and for growth. Others have conceptually drawn from dispositions in computing curriculum development and we review these next.

Knowledge Areas, Knowledge Units, and Learning Outcomes (KA, KU, LO) were common ontological organizations in model curricula development 20 years ago. While they are still useful to articulate the knowledge elements and skills levels inherent in the CC2020 competency model, these elements (KA, KU, LO) can usually be directly observed: a developed algorithm, a security policy, a normalized schema, or UX design. However, the potentially fraught and beneficial aspect of the CC2020 and IS2020 competency the inclusion of dispositions. model is Dispositions, which at first seem immediately familiar, quickly become inscrutable as they must be explicated, articulated, and reconciled as mediators and moderators of the full competency expression; more so when a competency expression attempts to match a given task environment.

Dispositions are arguably a matter of the affective cognitive realm (Ben-Ze'ev, 1997) and arguably

occupy a similar space as that of Covey's (2020) seven habits. Like Covey's habits, dispositions may be understood as conditions, or habits of mind, which assist in problem framing and solution design. When we enter the behavioral and affective realm of dispositions in the competency model, they may strike some as being apart from the more concrete elements of computing knowledge.

Computing accreditors, such as ABET, do not shy away from specifying attention to sociologic and behavioral psychologic realms in their criteria for computing programs. However, the authoring and pedagogical implementation of dispositions remains relatively new ground in model curricula for Information Systems. That is, we are used to students' demonstration of computing knowledge and ability, via observable artifacts, and less so from the enabling habits and attitudes that facilitate those competencies.

In this paper we will explore the essential nature of the "disposition" component of the competency model and suggest that the investments in these dimensions of competencies can be meaningful and long-lasting as students progress in their careers. In this sense, we advocate that dispositions serve as a "glue" used to adhere the vital component of a competency's contextual application in a task environment to the foundational knowledge needed to facilitate computing solutions. We use this forum not as a traditional research paper, but as an outlet for our thinking about the role of disposition in computing education, based on the foundational elements of literature review and meta-analysis.

Dispositions may not be a common element in many skills-oriented technical courses and curricula. Also, other related disciplines (e.g., psychology) may be assumed to be addressing the basic principles of habit and behavior. Thus, it is likely that dispositions and their importance can be missed in the development of competencies. Whereas recent guidance from model curricula (IS2020) or accrediting bodies (the ABET CAC Criteria) place a firm emphasis on the indelible and concrete technical knowledge and skills, the benefit of examining the seemingly esoteric role of dispositions is the appeal made in this paper. Dispositions are vital as they reflect the knowing-in-action (Schön, 1995) that can be best shaped by discovering both explicit and implicit purposes and placement of disposition in competency expressions of curricula.

Lastly, this paper proposes that the lasting value of dispositions is their reflection of the evergreen habits of orientation, perspective, and framing that are the hallmarks of reflective practice of an IS professional (Brown, 1995; Rein and Schön, 1996). We hope that the reader will develop a greater appreciation for the potential, pitfalls, and nuances possible with care for the value that dispositions bring to the table in the CC2020/IS2020 competency model.

The paper proceeds as follows. First, we examine the purpose and placement of dispositions within the competency model. We next review the literature on dispositions regarding competencies in computing curriculum development. We next explore how the CC2020 competency model was manifested in the IS2020 model curriculum with some text analytic techniques. With that, we next postulate on what typical challenges would be encountered in specifying dispositions during competency development. We conclude with potential benefits and purposes of dispositions with regard to overarching goals for academic computing programs and the student outcomes they facilitate.

2. THE SIGNIFICANCE OF DISPOSITION IN COMPETENCY

CC2020 asserts that adopting its competency model enables educating, prescribing, and evaluating a practice of computing that delivers a broad range of practical benefits: to students, benefactors, faculty, administrators, employers, accreditors, lawmakers, and society.

"Describing computing competence in a practical context shifts the focus of curricula away from describing a body of knowledge in relation to a disciplinary area and channels it toward pragmatic [...] accomplishment and performance. It challenges [... developing ...] proficient computing professionals, and it allows society to recognize the purpose and benefits of [... computing ...] within a competency framework." (CC2020)

Indeed, at the CC2020 project's inception in early 2017 the capability and character of "proficient computing professionals" fused as the driving

the technical curriculum with a more comprehensive model, that of competent professional action and conduct (see Figure 1). CC2020's model of competency categorically represents professional action and conduct as "knowing what," "knowing how," and "knowing why."

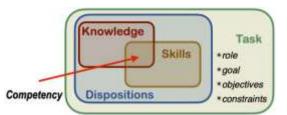


Figure 1: Competency = [Knowledge + Skills + Dispositions] in Task (Clear & Parrish et al., 2020).

The new, key element is **disposition** that explicitly fuses action and conduct to the effect of purposeful behavior.

disposition ... Natural tendency or bent of the mind, esp. in relation to moral or social qualities; mental constitution or temperament; turn of mind... (Oxford English Dictionary)

Disposition's role in competency (both formative and performative) requires delineating traits that characterize "professionalism." In concert these traits commonly interpret a "professional **mindset**." CC2020 elaborates their formative intention of disposition in competency as follows:

The meta-language of competency, "knowing what," "knowing how," and "knowing why," crisscrosses domains of scientific fact, practiced behavior. and cultural norms. Scientific (technically rational) fact and practiced behavior lend themselves to a categorical assessment: true or false, present or absent, consistent or inconsistent, it works, or it doesn't. Dispositions enfold intellectual, social, and moral predilections or tendencies that influence behaviors that do not lend themselves as easily to a categorical assessment. These predilections reflect value judgements that are not amenable to scientific proof. Values may differ or be held differently among individuals or cultures. And value

judgements are also often mutable over time affected by the experience of practice!

Dispositional expectations enrich the description/assessment of competency and/or the related pedagogy. Ascribing a disposition to a competency indicates a clear commitment to selfreflection and a sober examination of mission, goals, and objectives to reach the clarity that enables its effective integration in curriculum design, the agency of pedagogy, and the character of professionalism.

Disposition is an area that clearly distinguishes competency from a learning outcome and is an essential characteristic of a well-structured competency. As such it represents [a richer description of learning goals], and adds language common to professional expectations. However, when used in free form, such terms may easily become vague or difficult to interpret. This is where the specification of a competency-that is the combination of the free-form text with its constituent K+S+D in [Task] framing—becomes more valuable. The competency statement is prose that succinctly conveys the essential intention of curricular details, while the structured enumeration of the K-S pairs and D elements conveys intention in action (CC2020 p. 134).

Discerning and incorporating disposition in a competency specification of computing actions and conduct described in practice, empowers agencies of licensure, managers, educators, and communities to formulate, recognize, and effectively assert a whole of values and commitments that they deem characteristic to the judgement and conduct of a practitioner who is worthy of trust and respect as a professional.

The CC2020 decision to enfold dispositions to stipulate the character of professional practice clearly articulates what distinguishes educating computing professionals from training computing practitioners.

train ... To subject to discipline and instruction for development of character, behavior, or skill... To give sustained instruction and practice to... (Oxford English Dictionary)

educate ... To teach (a child) a program of various academic and non-academic subjects, typically at a school; to provide with a formal education.

(Oxford English Dictionary)

3. DISPOSITIONS IN THE LITERATURE

Since 2017 (Clear, 2017; Sabin, et al., 2017), the benefits of recognizing dispositions and task context in competency statements for computing curricula have become more obvious (Frezza, Daniels, Pears et al., 2018; Takada, Cuadros-Vargas, Impagliazzo et al., 2020). Furthermore, developing and including dispositions in competency statements is critical to advancing the use of competencies for describing the goals of tertiary education. In part, dispositions serve as a lens through which student behavior can be observed (Frezza, Clear & Clear, 2020; Watson, Besmer, Banks et al., 2021). In a professional setting, dispositions are observed in relation to conceptual and procedural knowledge (Billing, 2007). This study intends to understand and advance the development and inclusion of dispositions in competency statements.

To understand to what extent and where the dispositions proposed in the CC 2020 report (Clear & Parrish et al., 2020) appear in the literature, we formulated queries in Google Scholar for four major publication outlets. The primary audience for these outlets is educators in three computing disciplines, i.e., computer science, electrical engineering, and information systems. Appendix B shows the number of publications for each disposition that appeared in the *ACM Transactions on Computing Education* (ToCE), *IEEE Frontiers in Education* (FIE), ISCAP *Information Systems Education Journal* (ISEDJ), and ISCAP *Journal of Information Systems* (JISE).

Appendix B also shows that all dispositions have been studied, albeit to different degrees. Being collaborative or professional has been studied most frequently in these outlets whereas being meticulous or passionate has been studied least frequently. The Google Scholar search queries for these dispositions are described in Figures 2 and 3. Most of these articles were published in the last ten years; for example (Cabo, 2021; Frezza & Adams, 2020; Groeneveld, Vennekens & Aerts, 2021; Jacob, Montoya, Nguyen & Warschauer, 2022; Knestis, Cheng, Fontaine & Feng, 2022; Podeschi & DeBo, 2022; Waguespack, Yates & Babb, 2022; Wijeratne, Dennehy, Quinlivan et al., 2022) have appeared since 2019. However, many relevant articles appeared before 2010, e.g. (Bryant, Campbell & Kerr, 2003; Graham & 2002; Guthrie & Navarrete, 2004; Caso, Richards, 2009; Saulnier, 2005; Sterling & Brinthaupt, 2003; Urquiza-Fuentes & Velázquez-Iturbide, 2009; Williams & Upchurch, 2001).

From the more than 2,000 articles counted in Appendix B, we wanted to discern the areas in which the authors had focused their research on dispositions. To do this we identified the six articles that Google Scholar considered most relevant for each of the dispositions and each of the publications in Appendix B. The result of this bibliometric analysis yielded 138 articles. Thirtyfour of these articles appeared in ACM ToCE, 41 in FIE, 33 in ISEDJ, and 30 in JISE. The 25 words that appeared most frequently in the titles of these articles appear in Table 1. Several of the words in Table 1 reflect the fact that the audience of our four publication outlets are educators, e.g., learning, education, students, teaching, course(s), curriculum, and knowledge. Most of the other words are commonplace when describing computing disciplines, e.g., computing, engineering, computer, information, systems, programming, science, technology, etc.

Words in Article Titles (see Appendix C)	Word Frequency
Learning	43
Education	25
Students	24
Computing	23
Engineering	20
Computer	18
Information	16
Systems, Teaching	15
Course, Programming, Skills	14
Curriculum, Development	13
Assessment, Courses, Student	12
Study	10
Online, Science, Technology	9
Knowledge, Professional, Project, Thinking	8

Table 1: Word frequency distribution fortitles resulting from bibliometric analysis.

We also wanted to visualize the 138 article titles in word clouds to understand what themes (not just words) appeared most frequently. The first diagram in Appendix D extends Table 1 from 25 words to 50 words. The words in yellow and orange in this figure add insights beyond those derived from the data in Table 1. For example, the word "design" reminds us that computing disciplines are disciplines of design (Brooks, 2010), including information systems (Babb, Waguespack & Abdullat, 2019). The word "attitudes" reminds us that most of the published computing education work in frames competencies in the language of knowledge + skills + attitudes (Volman, van Eck, Heemskerk & Kuiper, 2005) rather than knowledge + skills + dispositions (Clear & Parrish et al., 2020; Sabin,

et al., 2017). Also, that "professional" and "collaborative" are the only two dispositions that appear by name in The first diagram in Appendix D is consistent with the fact that these are the most studied dispositions listed in Table 2.

A word cloud analysis provided an additional perspective by considering both phrases and words. The most common word in our article titles - learning - isn't just about student learning. "Learning" also appears in article titles that refer to problem- or project-based learning [seven articles, e.g., (O'Grady, 2012; Woodward, Sendall & Ceccucci, 2010)], self-directed learning [two articles (Johnson, Ulseth, Smith & Fox, 2015; McCartney, Boustedt, Eckerd et al., 2016)], and learning enhanced by reflection (Barroso & Morgan, 2012) and technology (Motschnig-Pitrik, Kabicher, Figl & Santos, 2007). We saw in Table 1 that "information" (row seven) and "systems" (row eight) occur at about the same frequency. However, these words often appear as part of the phrase "information systems" (IS), referring to IS course(s), IS curriculum, and IS education, for example, as in (Saulnier, 2009; Nwokeji, Stachel, Holmes & Orji, 2019; Topi, 2019).

4. DISPOSITIONS IN IS2020

The IS 2020 report (Leidig & Salmela et al., 2020, p. 38) argues that dispositions are essential components of competency statements, because there "is often a character and quality of application inherent in the domain and context of application that suggests the qualifiers inherent to that domain." IS2020 goes on to refer to the computing-of-x and x-computing phenomena where most non-computing disciplines will recognize an indispensable need for a computing element within them – and suggests that demand for the contextualized use of knowledge-skill pairing in IS will continue to rise in the years ahead (p. 38). This will be necessary to support computing as it becomes ubiguitous across nearly all aspects of society, organizations, government, and business, in a process often referred to as digitalization. Dispositions are the adjectives that bring the socio-technical aspects of technology use to bear" (pp. 38-39). Leidig and Salmela et al. (2020) go on to enumerate 178 competencies in the report (pp. 95-182), including their knowledge-skill pairs and "key dispositions" (p. 97).

For each of the dispositions in Appendix B, we ran Google Scholar queries to count the papers in each of our four publication outlets. For each disposition, we included synonyms and adjacent concepts from Clear & Parrish et al. (2020) and Leidig & Salmela et al. (2020) in the queries. We also distinguished articles that included the term "attitudes" as an alternative to "dispositions." For example, Figure 2 shows the knowledge, skills, and dispositions (K-S-D) query for collaborative in IEEE Frontiers in Education. Similarly, Figure 3 shows the knowledge, skills, and attitudes (K-S-A) query for collaborative in the Information Systems Education Journal. Finally, Table 2 lists the dispositions, synonyms, and adjacent concepts used in these 88 queries.

Advan	ced search
Find articles	
with all of the words.	knowledge skilts dispositions
with the exact phrase	
with at least one of the words	collaborative "team player" "Influencing"
without the words	
where my words occur	· anywhere in the article
	in the title of the article
Return articles authored by	
	e.g., "PJ Hayes" or McCarthy
Return articles published in	IEEE "Frontiers in Education"
	a.g., J Biol Chem or Nature
Return articles dated between	
	e.g., 1995

knowledge skills dispositions collaborative OR "team player" OR influencing source: IEEE source: "Frontiers in Education"

Figure 2: Example user interface and Google Scholar syntax for K-S-D query for *collaborative*.

To help faculty, administrators, and professionals make sense of so many key dispositions, the IS 2020 report authors group them into the six competency realms shown in Figure 4. Since each competency names three key dispositions, Figure shows 534 in total (the numbers in 4 parentheses). For example, Systems Development specifies that a subset of the 11 dispositions in Table 2 are "key" for the 64 competencies within this competency realm. Hence, Systems Development explicitly requires 192 key dispositions, in aggregate, because each of these competencies includes three key dispositions. These dispositions, when tallied, appear in the proportions shown in Figure 4. A further elaboration in the Systems Development realm is shown in Figure 5.

×	Advan	ced search
	Find articles	
	with all of the words.	knowledge skills attitudes
	with the exact phrase	
	with at least one of the words	collaborative "learn player" "influencing"
	without the words	dispositions
	where my words occur	anywhere in the article
		in the title of the article
	Return articles authored by	
		e.g., "PJ Hayes" or McCarthy
	Return articles published in	"Information Systems Education Journal"
		e.g., J Biol Chem or Nature
	Return articles dated between	+
		eg_1996

knowledge skills attitudes collaborative OR "team player" OR influencing dispositions source: "Information Systems Education Journal"

Figure 3: Example user interface and Google Scholar syntax for K-S-A query for *collaborative*.

Disposition	Synonyms and Adjacent Concepts
Adaptable	flexible, agile
Collaborative	team player, influencing
Inventive	exploratory, curious
Meticulous	attentive to detail, attention to detail
Passionate	with passion, with conviction
Proactive	with initiative, self- starter
Professional	with professionalism, work ethic
Purpose-driven	purposeful, purposefully engaged
Responsible	with judgment, with discretion, rectitude
Responsive	respectful
Self-directed	self-motivated

Table 2: Dispositions, synonyms, andadjacent concepts used in queries toidentify relevant articles.

Note that Figure 6 shows that the report suggests that being purpose-driven, meticulous, inventive, and self-directed are most important when learning and practicing the competencies within Systems Development.

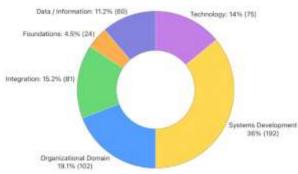


Figure 4: Distribution of key dispositions among six IS 2020 competency realms.

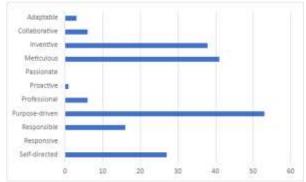


Figure 5: Distribution of key dispositions within the IS 2020 Systems Development competency realm.

Figure 6 shows the distribution of the 11 CC 2020 dispositions across all six competency realms in Figure 4. For IS as a whole, as envisioned by Leidig and Salmela et al. (2020), the most important key dispositions (in decreasing frequency of occurrence on pp. 95-182) are being purpose-driven, self-directed, meticulous, and inventive. The remaining seven dispositions occur between 51 times (professional) and one time (passionate).

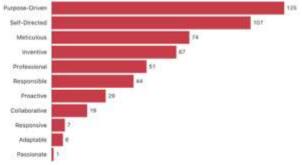


Figure 6: Aggregate distribution of key dispositions across all six IS 2020 competency realms.

5. THE CHALLENGE OF DISPOSITION IN COMPETENCY SPECIFICATION

[CC2020] offers a list of eleven prospective dispositions derived from the literature to round out the knowledge, skills, dispositions as components of competency. Disposition as an intrinsic component of competency represents the opportunity [for the competency author] to clearly express institutional and programmatic values expected in a graduate's work. Dispositional expectations enrich the description/assessment of competency and/or the related pedagogy. Ascribing a disposition to a competency indicates a clear commitment to selfreflection and a sober examination of mission, goals, and objectives to reach the clarity that enables its effective integration in curriculum design, the agency of pedagogy, and the character of professionalism. (CC2020 p. 134)

Indeed, the CC2020 competency model offers an enhanced and enlightened framework to detail technical expertise. It also expresses a purposeful intension of professionalism to serve society. The transliteration of the knowledge-centric aspects of past, traditional curricular descriptions is less fraught with challenge than the reflective process of discernment and specification of professional conduct and character in the medium of dispositions. It is the latter that we wish to explore in this paper.

Mindset Dimension – In cognitive psychology, a mindset represents the cognitive processes activated in response to a given task. (French & Chang, 2016) In decision theory and general systems theory, a mindset is a set of assumptions, methods, or notions held by one or more people or groups of people. (Cambridge English Dictionary)

In the adapted quotations that follow, the design theorist refers to *mindset* as "appreciative system" and *practitioner* as "stakeholder." (Waguespack, 2019, p. 27).

A [practitioner]'s [mindset] cues what facts to attend to in any particular experience while that same experience results in a learning effect that informs, reinforces and refines the [practitioner]'s apprehension of value and significance, thus altering that [mindset].

[A... mindset] is a complex and emergent agency of choice in [practitioner] behavior situated in a social context.

[Practitioners] possess [mindsets] individually as their experience and judgements are personal. In a community of [practitioners] there are recurrent threads of experience, shared knowledge, and commonly held norms that proceed from culture: social, professional, religious, or intellectual. A culture commonly promulgates a standard of appreciation that facilitates a shared cooperation and collaborative decision-making that reinforces community intentionally or unintentionally. Formal education, professional training, and certification, as well as religious communities, all purposefully foster aspects of shared culture to shape community identity, goals, and expectations of behavior. Shared culture is a basic defining aspect of any community - formal or informal. Any human conception of satisfaction is founded upon [a mindset] that is subject in part to the subjective interpretation of norms and aspirations individual and cultural metaphors.

Figures 7, 8, and 9 use mindmaps to extend the juxtaposition of the mindset dimension of the disposition with both the competency and the competency's task environment and context.

Figure 7: Mindset dimension of professionalism

Figure 8: Competency dimension

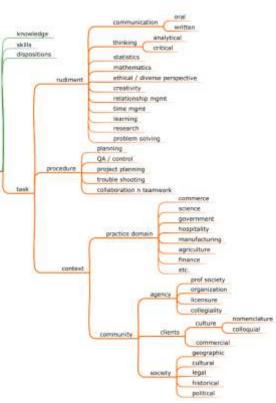


Figure 9: Competency: task aspect

6. THE REWARD OF DISPOSITION IN COMPETENCY SPECIFICATION

We argue that disposition specification provides a perspective of "meaning" that enables and activates the greatest promise of the consistency of a competency's availability and activation. As such, we claim that the greatest opportunity in the competency model is the degree to which dispositions, forged in practice, produce desirable behavior and outcomes. The connection between behavior and outcomes is framed by tasks and performance outcome expectations. The proof of a competency lies within the expected outcomes, artifacts, and action inherent in the competency. Time afforded to developing dispositions may well result in greater connection to the expected outcomes that the task environment desires.

To bolster this assertion, we take the position that Information Systems is inherently a design discipline where the appreciative system of the satisfaction of the "clients" requires an exquisite balance between feasibility and efficiency that demands dispositional maturity and acuity. As a designer, the IS professional, shaped by the performance expectations and responsibilities of competency, seeks a symmetric balance of quality and technical choice properties in a designed artifact. Dispositions, even the nascent list offered in the CC2020 report, provide the IS professional with an opportunity to balance motive and opportunity; to bridge the natural and artificial realms, and to explore and cultivate notions of satisfaction. This balance, perhaps the art of satisficing, becomes necessary when available models of satisfaction are emergent and incomplete, thus full client satisfaction is fleeting.

To satisfice is to recognize tradeoffs and engage in the design of generative metaphor. This reflects an ability to "critically think" and develop design actions in the face of uncertainty where clear paths to a satisfactory design outcome is not McGilcrist (2019) and Lakoff (1993) clear. suggest that to design amidst uncertainty is to engage in pattern recognition that is only possible via reference metaphors - to extrapolate from the to categorize the emergent. An known architecture or design concept will anchor the possible moves from one frame of reference for future possible design choices. Fred Brooks (1995) suggests that metaphor maps similar and dissimilar contexts and separates essence and accident. Extensions from metaphor is the process of situating emeraent constant phenomenon into categorical "buckets" of the known.

These are the skills that bring robustness (does it endure in its construction and withstand change?) and vitality (does it continue to thrive?) to the IS professional's designs and the necessary grounding for these competencies lies within dispositions.

To do so is to embrace, as a regular practice, the esoteric. The discipline and habit to do so is a dispositive (disposition-related) challenge for the design of a competency-based curriculum. Dispositions hold the key to long-term development and mastery, in praxis, of the metaphor, technical rationality, appreciative systems, and mastery medium of construction required for robustness and vitality as a professional.

7. DISPOSITIONS ARE VITAL FOR BECOMING

An important goal here is that the reader considers the inclusion of dispositions as an element of the competency model that is critical to effective competency authoring. The greatest potential for the inclusion and use of dispositions would be in their ability to sustain and carry the knowledge and skills dimension of the competency model forward. In this paper, we have examined this premise by extrapolating the work of Scanlon (2011) about *becoming* as it relates to *professionalizing*.

Conceptually, *professionalizing* is a process that is fueled from a synthesis of the components of a competency – knowledge, skills, and disposition – over time and through experience. As such, Scanlon's (2011) work on professionalizing may provide further insight as it provides an archetypal model of a professional as having a body of knowledge based on abstract concepts and theories. However, the application of these concepts and theories requires the exercise of considerable discretion, an occupationallycontrolled division of labor, credentialing procedures, training programs, and an ethic that encourages doing good rather than achieving economic gain.

Scanlon (2011) advocates that a professional's high social esteem is based on the provision of expert services from a position of power, trust, and discretion. Furthermore, it is proposed that professionals have fiduciary responsibilities to advance client well-being and to take responsibility for the governance and regulation of activities of their profession. Finally, Scanlon (2011) suggests that engagement in lifelong learning to better serve client needs is an essential aspect of maintaining fidelity and trust. While professionalism of this sort is not yet fully realized in computing disciplines, dispositions are fundamental to professionalizing. Thus, the maturity arc of "becoming" for computing must embrace the dispositive dimension that goes beyond technical rationality (Schön, 1983, 1987). The "becoming" that Scanlon (2011) describes appears to comport well with the possibilities and opportunities available when explicit focus is afforded to dispositions in a competency specification and а competency-based curriculum.

8. CONCLUDING REMARKS

This paper has attempted to clarify that the dispositive dimension is the matter most important to successful use of a competency based curricular approach in IS curriculum design. One argument for this being the case is that dispositions are the newest and most untested element of the competency model. As such, the means for designing curricula for this, as well as measurement approaches to monitor continuous improvement, may be less developed. Given the esoteric nature of the dispositive dimension, we have articulated our concern that the true promise of dispositions may be underaddressed in the development of competency-based computing curricula.

We have not taken a prescriptive approach here where best practices are articulated and tested strategies are sold. Rather, what we have attempted here is to advocate for extra care, further study, and cautious focus on the novelty of dispositions given the history of computing curricula reports and models. It is possible that embracing further study and comprehension of dispositions can lead to much-needed institutionalization of professionalism and development (Berger and Luckmann, 1967; Schutz, 1962) of the Information Systems discipline itself.

As such, we suggest that the ability to successfully develop a competency-based approach to Information Systems curricula depends more on dispositions (orientations, behaviors, and instincts in our students) than on technologies and tools that facilitate our designs and solutions. It is likely that the positive development of dispositions will outlast the ongoing changes in technologies. This is the promise we see in the assimilation of dispositions to nurture the "becoming" of our students.

9. REFERENCES

- Anderson, L. W., & Krathwohl D. R. (2001). *A* taxonomy for learning, teaching and assessing: A revision of Bloom's taxonomy of educational objectives. Pearson Longman.
- Babb, J. S., Waguespack, L. J., & Abdullat, A. (2019). Subsumption of information systems education towards a discipline of design. *Journal of Information Systems Education*, 30(4), 311-320.
- Baron, R. M., & Kenny, D. A. (1986). The moderator-mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations. *Journal of Personality and Social Psychology*, 51(6), 1173-1182, https://doi.org/10.1037/0022-3514.51.6.1173.
- Barroso, L. R., & Morgan, J. (2012). Utilizing reflection in projects for increased metacognition and enhanced learning. In *Proc. of the 42nd Frontiers in Education Conference* (FIE), https://doi.org/10.1109/FIE.2012.6462335.
- Ben-Ze'ev, A. (1997). The affective realm. *New Ideas in Psychology*, 15(3), 247-259, https://doi.org/10.1016/S0732-118X(97)10011-3.
- Berger & Luckmann. (1967). *The Social Construction of Reality*. New York: Doubleday.
- Billing, D. (2007). Teaching for transfer of core/key skills in higher education: Cognitive skills. *Higher Education*, 53(4), 483-516, https://www.jstor.org/stable/29735067.
- Brooks, F. P. (1995). *The mythical man-month: Essays on software engineering*. Addison-Wesley Professional.
- Brooks, F. P. (2010). *The design of design: Essays from a computer scientist*. Addison-Wesley Professional.
- Brown, P. (1995). Naming and framing: The social construction of diagnosis and illness. *Journal of Health and Social Behavior*, 34-52, https://www.jstor.org/stable/2626956.
- Bryant, K., Campbell, J., & Kerr, D. (2003). Impact of web based flexible learning on academic performance in information systems. *Journal of Information Systems Education*, 14(1), 41-50.
- Cabo, C. (2021). Use of machine learning to identify predictors of student performance in

writing viable computer programs with repetition loops and methods. In *Proc. of the 51st Frontiers in Education Conference,* https://doi.org/10.1109/FIE49875.2021.963 7302.

- Clear, A., Parrish, A., Ciancarini, P., Cuadros-Vargas, E., Frezza, S., Gal-Ezer, J., Impagliazzo, J., Pears, A., Takada, S., Topi, H., van der Veer, G., Vichare, A., Waguespack, L., Wang, P., Zhang, M. (2020). *Computing Curricula 2020 (CC2020), Paradigms for Future Computing Curricula*, ACM, IEEE, https://doi.org/10.1145/3467967.
- Clear, T. (2017). Meeting employers expectations of DevOps roles: Can dispositions be taught? *Inroads*, 8(2), 19–21, https://doi.org/10.1145/3078298.
- Covey, S. R. (2020). *The 7 habits of highly effective people*. Simon & Schuster.
- French, R. P., II, & Chang, H. (2016). Conceptual re-imagining of global 'mindset': Knowledge as prime in the development of global leaders. *Journal of International Organizations Studies*, 7(1), 49–62.
- Frezza, S., & Adams, S. (2020). Bridging professionalism: Dispositions as means for relating competency across disciplines. In *Proc. of the 50th Frontiers in Education Conference*, https://doi.org/10.1109/FIE44824.2020.927 4058.
- Frezza, S., Clear, T., & Clear, A. (2020). Unpacking dispositions in the CC2020 computing curriculum overview report. In *Proc. of the 50th Frontiers in Education Conference*, https://doi.org/10.1109/FIE44824.2020.927 3973.
- Frezza, S., Daniels, M., Pears, A., Cajander, Å., Kann, V., Kapoor, A., ... & Wallace, C. (2018).
 Modelling competencies for computing education beyond 2020: A research based approach to defining competencies in the computing disciplines. In *Proc. of Annual ACM Conference on Innovation and Technology in Computer Science Education*, https://doi.org/10.1145/3293881.3295782.
- Gotterbarn, D., & Miller, K. W. (2009). The public is the priority: Making decisions using the software engineering code of ethics. *IEEE Computer*, 42(6), 66-73, https://doi.org/10.1109/MC.2009.204.

- Graham, J. M., & Caso, R. (2002). Measuring engineering freshman attitudes and perceptions of their first-year academic experience: The continuing development of two assessment instruments. In *Proc. of the 32nd Frontiers in Education Conference*, https://doi.org/10.1109/FIE.2002.1158180.
- Groeneveld, W., Vennekens, J., & Aerts, K. (2021). Identifying non-technical skill gaps in software engineering education: What experts expect but students don't learn. ACM Transactions on Computing Education (ToCE), 22(1), 1-21, https://doi.org/10.1145/3464431.
- Guthrie, R. A., & Navarrete, C. J. (2004). Servicelearning impact on IS students in a web development course. *Information Systems Education Journal*, 2(12), 1-12.
- Jacob, S. R., Montoya, J., Nguyen, H., Richardson, D., & Warschauer, M. (2022). Examining the what, why, and how of multilingual student identity development in computer science. *ACM Transactions on Computing Education (ToCE)*, 22(3), 1-33, https://doi.org/10.1145/3500918.
- Johnson, B., Ulseth, R., Smith, C., & Fox, D. (2015). The impacts of project based learning on self-directed learning and professional skill attainment: A comparison of project based learning to traditional engineering education. In *Proc. of the 45th Frontiers in Education Conference* (FIE), https://doi.org/10.1109/FIE.2015.7344028.
- Knestis, K., Cheng, J., Fontaine, C. M., & Feng, R. (2022). Engaging government-industryuniversity partnerships to further gender equity in STEM workforce education through technology and information system learning tools. *Journal of Information Systems Education*, 33(1), 23-31.
- Lakoff, G. (1993). The contemporary theory of metaphor. In: Ortony A, ed. *Metaphor and Thought*. 2nd ed. Cambridge: Cambridge University Press, 202-251, https://doi.org/10.1017/CBO978113917386 5.013.
- Leidig, P., Salmela, H, & The Joint ACM/AIS IS2020 Task Force. (2020). *IS2020: A Competency Model for Undergraduate Programs in Information Systems*, ACM, AIS, https://doi.org/10.1145/3460863.
- McCartney, R., Boustedt, J., Eckerd, A., Sanders, K., Thomas, L., & Zander, C. (2016). Why computing students learn on their own:

Motivation for self-directed learning of computing. *ACM Transactions on Computing Education* (*ToCE*), 16(1), 1-18, https://doi.org/10.1145/2747008.

- McGilchrist, I. (2019). *The Master and His Emissary: The divided brain and the making of the Western World*. Yale University Press.
- Motschnig-Pitrik, R., Kabicher, S., Figl, K., & Santos, A. M. (2007). Person centered, technology enhanced learning in action: Action research in a course on organizational development. In *Proc. of the 37th Frontiers in Education Conference* (FIE), https://doi.org/10.1109/FIE.2007.4417890.
- Nwokeji, J. C., Stachel, R., Holmes, T., & Orji, R. O. (2019). Competencies required for developing computer and information systems curriculum. In *Proc. of the 49th Frontiers in Education Conference* (FIE), https://doi.org/10.1109/FIE43999.2019.902 8613.
- O'Grady, M. J. (2012). Practical problem-based learning in computing education. ACM Transactions on Computing Education (ToCE), 12(3), 1-16, https://doi.org/10.1145/2275597.2275599.
- Podeschi, R. J., & DeBo, J. (2022). Integrating AWS cloud practitioner certification into a systems administration course. *Information Systems Education Journal*, 20(5), 17-26.
- Rein, M., & Schön, D. (1996). Frame-critical policy analysis and frame-reflective policy practice. *Knowledge and Policy*, 9(1), 85-104, https://doi.org/10.1007/bf02832235.
- Richards, D. (2009). Designing project-based courses with a focus on group formation and assessment. *ACM Transactions on Computing Education (ToCE)*, 9(1), 1-40, https://doi.org/10.1145/1513593.1513595.
- Sabin, M., & The Joint ACM/IEEE-CS IS2017 Task Group. (2017). *IT2017: Curriculum Guidelines for Baccalaureate Degree Programs in Information Technology*, ACM, IEEE-CS, https://doi.org/10.1145/3173161.
- Saulnier, B. M. (2005). Service learning in computer information systems: "Significant" learning for tomorrow's computer professionals. *Information Systems Education Journal*, 3(10), 1-12.
- Saulnier, B. M. (2009). From "sage on the stage" to "guide on the side" revisited: (Un) covering the content in the learner-centered

information systems course. *Information Systems Education Journal*, 7(60), 1-10.

- Scanlon, L. (2011). 'Becoming' a professional (pp. 13-32). Springer (Lifelong Learning Book Series, 16), https://doi.org/10.1007/978-94-007-1378-9_1.
- Schön, D. A. (1983). *The reflective practitioner: How professionals think in action*. Basic books.
- Schön, D. A. (1987). *Educating the reflective practitioner: Toward a new design for teaching and learning in the professions*. Jossey-Bass.
- Schön, D. A. (1995). Knowing-in-action: The new scholarship requires a new epistemology. *Change: The Magazine of Higher Learning*, 27(6), 27-34, https://doi.org/10.1080/00091383.1995.10 544673.
- Schutz, A. (1962). Phenomenology and the social sciences. In *Collected papers I: The problem* of social reality (pp. 118-139). Springer (Phaenomenologica Book Series, 11), https://doi.org/10.1007/978-94-010-2851-6_5.
- Sterling, G. D., & Brinthaupt, T. M. (2003). Faculty and industry conceptions of successful computer programmers. *Journal of Information Systems Education*, 14(4), 417-424.
- Takada, S., Cuadros-Vargas, E., Impagliazzo, J. et al. (2020). Toward the visual understanding of computing curricula. *Education and Information Technologies*, (25), 4231–4270, https://doi.org/10.1007/s10639-020-10127-1.
- Topi, H. (2019). Reflections on the current state and future of information systems education. *Journal of Information Systems Education*, 30(1), 1-9.
- Urquiza-Fuentes, J., & Velázquez-Iturbide, J. Á. (2009). A survey of successful evaluations of program visualization and algorithm animation systems. *ACM Transactions on Computing Education (ToCE)*, 9(2), 1-21, https://doi.org/10.1145/1538234.1538236.
- Volman, M., van Eck, E., Heemskerk, I., & Kuiper, E. (2005). New technologies, new differences. Gender and ethnic differences in pupils' use of ICT in primary and secondary education. *Computers & Education*, 45(1), 35-55,

https://doi.org/10.1016/j.compedu.2004.03. 001.

- Waguespack, L. J. (2019). *Designing thriving systems: Marrying technical rationality and appreciative systems*. Springer-Nature.
- Waguespack, L., J., Yates, D. J., & Babb, J. S. (2022). Beyond competency: The imperative to foster professionalism in computing graduates. *Information Systems Education Journal*, 20(5), 67-81.
- Watson, J., Besmer, A., Banks, M. S., Ray, D., & Derksen, G. (2021). Investigating student behavior in an interdisciplinary computing capstone course. *Information Systems Education Journal*, 19(6), 45-54.
- Wijeratne, D., Dennehy, D., Quinlivan, S., Buckley, L. A., Keighron, C., & Flynn, S. (2022). Learning without limits: Identifying the barriers and enablers to equality, diversity, and inclusion in IS education. *Journal of Information Systems Education*, 33(1), 61-74.
- Williams, L., & Upchurch, R. (2001). Extreme programming for software engineering education? In *Proc. of the 31st Frontiers in Education* https://doi.org/10.1109/FIE.2001.963882.
- Woodward, B. S., Sendall, P., & Ceccucci, W. (2010). Integrating soft skill competencies through project-based learning across the information systems curriculum. *Information Systems Education Journal*, 8(8), 1-15.

Disposition	Elaboration
D-1 Proactive	With Initiative / Self-Starter Shows independence. Ability to assess and start activities independently without needing to be told what to do. Willing to take the lead, not waiting for others to start activities or wait for instructions.
D-2 Self-Directed	Self-motivated / Self-Directed Demonstrates determination to sustain efforts to continue tasks. Direction from others is not required to continue a task toward its desired ends.
D-3 Passionate	With Passion / Conviction Strongly committed to and enthusiastic about the realization of the task or goal. Makes the compelling case for the success and benefits of task, project, team or means of achieving goals.
D-4 Purpose-Driven	Purposefully engaged / Purposefulness Goal-directed, intentionally acting and committed to achieve organizational and project goals. Reflects an attitude towards the organizational goals served by decisions, work or work products. e.g., Business acumen.
D-5 Professional	With Professionalism / Work ethic. Reflecting qualities connected with trained and skilled people: Acting honestly, with integrity, commitment, determination and dedication to what is required to achieve a task.
D-6 Responsible	With Judgement / Discretion / Responsible / Rectitude Reflect on conditions and concerns, then acting according to what is appropriate to the situation. Making responsible assessments and taking actions using professional knowledge, experience, understanding and common sense. E.g., Responsibility, Professional astuteness.
D-7 Adaptable	Adaptable / Flexible / Agile Ability or willingness to adjust approach in response to changing conditions or needs.
D-8 Collaborative	Collaborative / Team Player / Influencing Willingness to work with others; engaging appropriate involvement of other persons and organizations helpful to the task. Striving to be respectful and productive in achieving a common goal.
D-9 Responsive	Responsive / Respectful Reacting quickly and positively. Respecting the timing needs for communication and actions needed to achieve the goals of the work.
D-10 Meticulous	Attentive to Detail Achieves thoroughness and accuracy when accomplishing a task through concern for relevant details.
D-11 Inventive	Exploratory / Inventive Looking beyond simple solutions; Examining alternative ideas and solutions; seeks, produces and integrates appropriate alternative

Appendix A – CC2020 Prospective Dispositions

		Publications			
Disposition	ToCE (ACM)	FIE (IEEE)	ISEDJ (ISCAP)	JISE (ISCAP)	Publication (Total)
Adaptable	52	243	34	56	385
Collaborative	155	867	91	149	1,282
Inventive	73	315	41	80	509
Meticulous	6	17	2	5	30
Passionate	8	34	2	1	45
Proactive	14	103	19	22	158
Professional	117	644	62	99	922
Purpose-driven	13	66	18	9	106
Responsible	40	301	27	52	420
Responsive	31	110	11	21	173
Self-directed	33	187	28	29	277

Appendix B. Publications that mention disposition (or attitude), knowledge, and skills in four outlets.

Table 3

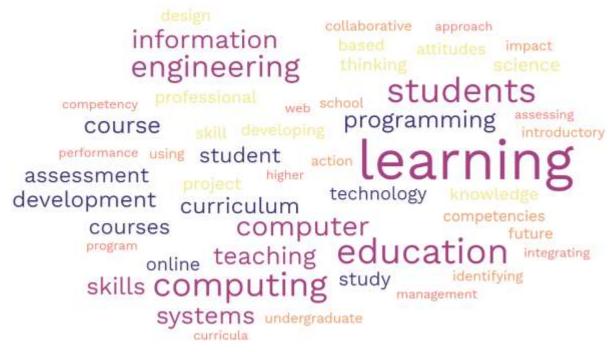
Appendix C. URLs for, and dispositions within, unique articles extracted from "Top 6" articles returned by Google Scholar for eleven dispositions in Appendix B.

	Dispositions from Unique	
Unique Article URL	Article	Title
http://jise.org/volume14/n1/JISEv1	Adaptable,	Impact of Web Based Flexible Learning on Academic Performance in Information
4n1p41.html	Responsive	Systems
http://jise.org/Volume14/n4/JISEv1	Meticulous	Faculty and Industry Conceptions of
4n4p417.html	.	Successful Computer Programmers
http://jise.org/volume15/n2/JISEv1	Inventive	Project Management Courses in IS
<u>5n2p181.html</u>		Graduate Programs: What is Being Taught?
http://jise.org/volume18/n3/JISEv1	Purpose-driven	Teaching Practices for Effective
<u>8n3p357.html</u>		Cooperative Learning in an Online Learning Environment (OLE)
http://jise.org/volume18/n4/JISEv1 8n4p469.html	Professional	Requisite Skills and Knowledge for Entry- level IT Auditors
http://jise.org/Volume19/n1/JISEv1	Inventive, Self-	Assessing Individual-level Factors
9n1p111.html	directed	Supporting Student Intrinsic Motivation in
<u>onipitinem</u>	uncettu	Online Discussions: A Qualitative Study
http://jise.org/volume20/n2/JISEv2	Responsive	Selecting a Virtual World Platform for
<u>0n2p199.html</u>		Learning
http://jise.org/volume20/n2/JISEv2	Purpose-driven	Action Learning with Second Life - A Pilot
<u>0n2p249.html</u>		Study
http://jise.org/volume20/n3/JISEv2 0n3p289.html	Inventive	An Exploratory Review of Design
<u>013p289.ntm</u>		Principles in Constructivist Gaming Learning Environments
http://jise.org/Volume20/n3/JISEv2	Adaptable,	Practicing Learner-Centered Teaching:
0n3p369.html	Responsible,	Pedagogical Design and Assessment of a
	Responsive	Second Life Project
http://jise.org/Volume21/n2/JISEv2	Collaborative	Are Men More Technology-Oriented Than
<u>1n2p203.html</u>		Women? The Role of Gender on the
		Development of General Computer Self-
http://jise.org/Volume21/n3/JISEv2	Collaborative,	Efficacy of College Students A Systematic Review of Developing Team
1n3p323.html	Responsible,	Competencies in Information Systems
	Self-directed	Education
http://jise.org/Volume22/n1/JISEv2	Adaptable,	Curriculum Mapping as a Tool for
<u>2n1p31.html</u>	Collaborative,	Continuous Improvement of IS
	Professional,	Curriculum
http://iico.org/volume24/s1/IICE-2	Responsible	The Need to Address Mabile Device
http://jise.org/volume24/n1/JISEv2 4n1p41.html	Responsive	The Need to Address Mobile Device Security in the Higher Education IT
		Curriculum
http://jise.org/Volume25/n2/JISEv2	Self-directed	A Case Study of Instructor Scaffolding
5n2p125.html		Using Web 2.0 Tools to Teach Social
		Informatics
http://jise.org/Volume30/n1/JISEv3	Professional,	Reflections on the Current State and
0n1p1.html	Responsible	Future of Information Systems Education
https://aisel.aisnet.org/jise/vol16/is s3/8/	Proactive, Responsive	A Competency Based MSIS Curriculum
https://aisel.aisnet.org/jise/vol19/is	Adaptable,	Integrating Soft Skills Assessment
<u>s2/11/</u>	Proactive,	through University, College, and
	Professional	Programmatic Efforts at an AACSB
		Accredited Institution

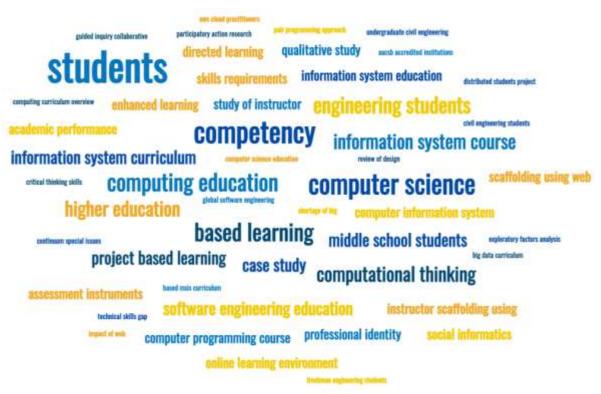
https://aisel.aisnet.org/jise/vol20/is Meticulous Designing IS Curricula for Practical Relevance: Applying Baseball's "Moneyball" Theory https://aisel.aisnet.org/jise/vol20/is Inventive Knowledge and Skill Requirements for Entry-Level Information Technology bttps://aisel.aisnet.org/jise/vol21/is Collaborative The Importance of Emphasizing Individual Learning in the "Collaborative Learning Fra" https://aisel.aisnet.org/jise/vol23/is Collaborative, Inventive, Professional, Responsible An Alumni Assessment of MIS Related Job Skill Importance and Skill Gaps https://aisel.aisnet.org/jise/vol25/is Collaborative, Inventive, Professional, Responsible Teaching Introductory Programming to IS Students: The Impact of Teaching Approaches on Learning Performance https://aisel.aisnet.org/jise/vol25/is Professional, Responsible A Case Study of Instructor Scaffolding Approaches on Learning Performance https://aisel.aisnet.org/jise/vol28/is Adaptable, Self- directed An Integrated Learning Approach to Teaching an Undergraduate Information Systems Course https://aisel.aisnet.org/jise/vol28/is Adaptable, Self- directed Teaching Chical Thinking, Problem Submis for the Future https://aisel.aisnet.org/jise/vol23/is Purpose-driven, Inventive, Proactive, Responsible Engaging Government-Industry- University Partnerships to Further Gender Equity in STEM Workforce Education Throusting and Design Thinking; Preparing Inventive, Proactiv			
https://aisel.aisnet.org/jise/vol20/is Inventive "Moneyball" Theory https://aisel.aisnet.org/jise/vol20/is Inventive Knowledge and Skill Requirements for Extry-Level Information Technology Workers: A Comparison of Industry and Academia https://aisel.aisnet.org/jise/vol23/is Collaborative The Importance of Emphasizing Sufficience of Emphasizing https://aisel.aisnet.org/jise/vol23/is Meticulous An Alumni Assessment of MIS Related Job Skill Importance and Skill Gaps https://aisel.aisnet.org/jise/vol23/is Collaborative, Inventive, Professional, Responsible Knowledge and Skill Requirements for Extry-Level IT Workers: A Longitudinal Study https://aisel.aisnet.org/jise/vol25/is Professional, Responsive, Self- directed Teaching Introductory Programming to IS Students: The Impact of Teaching Approaches on Learning Approaches Study of Instructor Scaffolding https://aisel.aisnet.org/jise/vol25/is Professional, Responsible A Case Study of Instructor Scaffolding https://aisel.aisnet.org/jise/vol28/is Passionate, Proactive Teaching Critical Thinking: Professional, Responsible https://aisel.aisnet.org/jise/vol29/is Adaptable, Collaborative, Inventive, Proactive, Responsible Do Pair Programming Approaches Transcend Coding? Measuring Agile Attitudes in Diverse Information Systems Courses https://aisel.aisnet.org/jise/vol33/is Purpose-driven Engaging Gove	https://aisel.aisnet.org/jise/vol20/is	Meticulous	Designing IS Curricula for Practical
https://aisel.aisnet.org/jise/vol20/is Inventive Knowledge and Skill Regurements for Entry-Level Information Technology Workers: A Comparison of Industry and Academia https://aisel.aisnet.org/jise/vol21/is Collaborative The Importance of Emphasizing Individual Learning in the "Collaborative Learning Era" https://aisel.aisnet.org/jise/vol23/is Meticulous An Alurmi Assessment of MIS Related Job Skill Importance and Skill Gaps https://aisel.aisnet.org/jise/vol23/is Collaborative, Inventive, Professional, 82/8/ Knowledge and Skill Requirements for Inventive, Professional, 82/14/ Knowledge and Skill Regurements for Inventive, Professional, 82/14/ https://aisel.aisnet.org/jise/vol25/is Self-directed Study szl./i/ Self-directed Treaching Introductory Programming to IS Study Neb 2.0 Tools to Teach Social Approaches on Learning Performance https://aisel.aisnet.org/jise/vol25/is Professional, Responsible A Case Study of Instructor Scaffolding Study of Instructor Scaffolding Study of Instructor Scaffolding Study of Instructor Scaffolding Studiestal.aisnet.org/jise/vol25/is https://aisel.aisnet.org/jise/vol25/is Adaptable, Self- directed A Case Study of Instructor Scaffolding Studiestal.aisnet.org/jise/vol23/is https://aisel.aisnet.org/jise/vol33/is Adaptable, Self- directed Eraching Critical Thinking: Proparhes Transcend Coding? Measuring Agile Attitiudes in Diverse Information System Learning Tools<	<u>s1/8/</u>		
s3/10/ Entry-Level Information Technology https://aisel.aisnet.org/ijse/vol21/is Collaborative The Importance of Emphasizing s2/5/ Individual Learning in the "Collaborative Learning Era" https://aisel.aisnet.org/ijse/vol23/is Meticulous An Alumni Assessment of MIS Related s1/8/ Job Skill Importance and Skill Gaps Study https://aisel.aisnet.org/ijse/vol23/is Collaborative, Inventive, Professional, Responsible Knowledge and Skill Requirements for Entry-Level IT Workers: A Longitudinal Study https://aisel.aisnet.org/ijse/vol24/is Self-directed Students: The Impact of Teaching Approaches on Learning Performance https://aisel.aisnet.org/ijse/vol25/is Professional, Responsive, Self-directed A Case Study of Instructor Scaffolding s1/5/ Proactive Praching an Undergraduate Information Systems Course https://aisel.aisnet.org/ijse/vol29/is Adaptable, Self-directed Transcend Coding? Measuring Approaches s1/5/ Collaborative, Inventive, Responsible Transcend Coding? Measuring Approaches s1/5/ Collaborative, Inventive, Responsible Transcend Coding? Measuring Approaches s1/5/ Collaborative, Inventive, Responsible Transcend Coding? Measuring Approaches <td></td> <td></td> <td></td>			
Workers: A Comparison of Industry and Academia https://aisel.aisnet.org/jise/vol21/is \$2/5/ Collaborative The Importance of Emphasizing Individual Learning in the "Collaborative Learning Era" https://aisel.aisnet.org/jise/vol23/is \$2/8/ Meticulous An Alurmi Assessment of MIS Related Job Skill Importance and Skill Gaps https://aisel.aisnet.org/jise/vol23/is \$2/6/ Collaborative, Inventive, Professional, Responsible Knowledge and Skill Requirements for Entry-Level IT Workers: A Longitudinal Study https://aisel.aisnet.org/jise/vol25/is \$2/26/ Self-directed Teaching Introductory Programming to IS Students: The Impact of Teaching Approaches on Learning Performance https://aisel.aisnet.org/jise/vol25/is \$2/2/ Professional, Responsive, Self- directed Teaching Introductory Programming to IS Students: The Impact of Teaching Approaches on Learning Performance https://aisel.aisnet.org/jise/vol29/is \$2/2/ Adaptable, Self- directed Do Pair Programming Approaches Transcend Coding? Measuring Agip Approaches https://aisel.aisnet.org/jise/vol29/is \$2/2/ Adaptable, Self- directed Do Pair Programming Approaches Transcend Coding? Measuring Agip Approaches https://aisel.aisnet.org/jise/vol33/is \$2/2/ Adaptable, Collaborative, Inventive, Proactive, Responsible Engaging Government-Industry- University Partnerships to Further Gender Equity in STEM Workforce Education Through Technology and Information \$ystem Learning Withou Limits: Identifying the Barriers and Ena	https://aisel.aisnet.org/jise/vol20/is	Inventive	Knowledge and Skill Requirements for
Workers: A Comparison of Industry and Academia https://aisel.aisnet.org/jise/vol21/is \$2/5/ Collaborative The Importance of Emphasizing Individual Learning in the "Collaborative Learning Era" https://aisel.aisnet.org/jise/vol23/is \$2/8/ Meticulous An Alurmi Assessment of MIS Related Job Skill Importance and Skill Gaps https://aisel.aisnet.org/jise/vol23/is \$2/6/ Collaborative, Inventive, Professional, Responsible Knowledge and Skill Requirements for Entry-Level IT Workers: A Longitudinal Study https://aisel.aisnet.org/jise/vol25/is \$2/26/ Self-directed Teaching Introductory Programming to IS Students: The Impact of Teaching Approaches on Learning Performance https://aisel.aisnet.org/jise/vol25/is \$2/2/ Professional, Responsive, Self- directed Teaching Introductory Programming to IS Students: The Impact of Teaching Approaches on Learning Performance https://aisel.aisnet.org/jise/vol29/is \$2/2/ Adaptable, Self- directed Do Pair Programming Approaches Transcend Coding? Measuring Agip Approaches https://aisel.aisnet.org/jise/vol29/is \$2/2/ Adaptable, Self- directed Do Pair Programming Approaches Transcend Coding? Measuring Agip Approaches https://aisel.aisnet.org/jise/vol33/is \$2/2/ Adaptable, Collaborative, Inventive, Proactive, Responsible Engaging Government-Industry- University Partnerships to Further Gender Equity in STEM Workforce Education Through Technology and Information \$ystem Learning Withou Limits: Identifying the Barriers and Ena	s3/10/		Entry-Level Information Technology
Academia Academia bttps://aisel.aisnet.org/jise/vol21/is Collaborative The Tmportance of Emphasizing s1/8/ An Alumni Assessment of MIS Related Job Skill Emportance and Skill Gaps https://aisel.aisnet.org/jise/vol23/is Collaborative, Inventive, Professional, Responsible Knowledge and Skill Requirements for Entry-Level IT Workers: A Longitudinal Study https://aisel.aisnet.org/jise/vol24/is Self-directed Students: The Impact of Teaching Approaches on Learning Performance s2/6/ Self-directed Academia Approaches on Learning Performance https://aisel.aisnet.org/jise/vol24/is Self-directed Acase Study of Instructor Scaffolding s2/6/ Professional, Responsive, Self-directed An Integrated Learning Approach to Teaching an Undergraduate Information Systems Course https://aisel.aisnet.org/jise/vol28/is Adaptable, Self-directed Do Pair Programming Approach to Teaching an Undergraduate Information Systems Course https://aisel.aisnet.org/jise/vol33/is Adaptable, Self-Girectid Thinking: Proparing Inventive, Inventive, Inventive, Proactive, Responsible Teaching Crical Thinking: Preparing Inventive, Inventine Andaptore Equipation Intetented Information Systems C			
https://aisel.aisnet.org/jise/vol21/is Collaborative The Importance of Emphasizing Individual Learning in the "Collaborative Learning Era" https://aisel.aisnet.org/jise/vol23/is Meticulous An Alumni Assessment of MIS Related Job Skill Importance and Skill Gaps https://aisel.aisnet.org/jise/vol23/is Collaborative, Inventive, Professional, Responsible Knowledge and Skill Requirements for Inventive, Professional, Responsible https://aisel.aisnet.org/jise/vol25/is Self-directed Teaching Introductory Programming to IS Students: The Impact of Teaching Approaches on Learning Performance https://aisel.aisnet.org/jise/vol25/is Professional, Responsive, Self- directed Teaching Introductory Programming to IS Students: The Impact of Teaching Approaches on Learning Performance https://aisel.aisnet.org/jise/vol25/is Professional, Responsive, Self- directed An Ergarted Learning Approach to Proactive https://aisel.aisnet.org/jise/vol25/is Adaptable, Self- directed Do Pair Programming Approaches Transcend Coding? Measuring Approaches Transcend Coding? Measuring Appie https://aisel.aisnet.org/jise/vol33/is Adaptable, Collaborative, Inventive, Proactive, Responsible Teaching Critical Thinking, Problem Solving, and Design Thinking: Preparing IS Students for the Future https://aisel.aisnet.org/jise/vol33/is Purpose-driven Engaging Government-Industry- University Partnerships to Further Gender Equity in STEM Workforce Education			
\$2/5/ Individual Learning in the "Collaborative Learning Era" https://aisel.aisnet.org/jise/vol23/is Meticulous An Alumni Assessment of MIS Related Job Skill Importance and Skill Requirements for Entry-Level IT Workers: A Longitudinal Study https://aisel.aisnet.org/jise/vol23/is Collaborative, Inventive, Professional, Responsible Teaching Introductory Programming to IS Study https://aisel.aisnet.org/jise/vol24/is Self-directed Teaching Introductory Programming to IS Study \$2/6/ Frofessional, Responsive, Self- directed Teaching Introductory Programming to IS Students: The Impact of Teaching Approaches on Learning Performance https://aisel.aisnet.org/jise/vol28/is Professional, Responsive, Self- directed Acase Study of Instructor Scaffolding Using Web 2.0 Tools to Teach Social Informatics https://aisel.aisnet.org/jise/vol29/is Adaptable, Self- directed Do Pair Programming Approaches Transcend Coding? Measuring Approaches Transcend Coding? Measuring Approaches Solving, and Design Thinking: Preparing IS Students for the Future https://aisel.aisnet.org/jise/vol33/is Purpose-driven Solving, and Design Thinking: Preparing IS Students for the Future Gender Equity in STEM Workforce Education Through Technology and Information System Learning Tools https://aisel.aisnet.org/jise/vol33/is Purpose-driven Enagging Government-Industry- University Partnerships to Further Gender Equity in STEM Workforce Education Through Technology and Information System L	https://aisel.aisnet.org/jise/vol21/is	Collaborative	
Learning Era" https://aisel.aisnet.org/jise/vol23/is Meticulous An Alumni Assessment of MIS Related Job Skill Importance and Skill Gaps https://aisel.aisnet.org/jise/vol23/is Collaborative, Professional, Responsible Knowledge and Skill Requirements for https://aisel.aisnet.org/jise/vol24/is Self-directed Teaching Introductory Programming to IS Students: The Impact of Teaching Approaches on Learning Performance https://aisel.aisnet.org/jise/vol28/is Self-directed Teaching Introductory Programming to IS Students: The Impact of Teaching Approaches on Learning Performance https://aisel.aisnet.org/jise/vol28/is Professional, Responsive, Self- directed A Case Study of Instructor Scaffolding Using Web 2.0 Tools to Teach Social Informatics https://aisel.aisnet.org/jise/vol28/is Passionate, Proactive An Integrated Learning Approach to Systems Course https://aisel.aisnet.org/jise/vol29/is Adaptable, Self- Olar Programming Approaches Transcend Coding? Measuring Agile Attitudes in Diverse Information Systems Courses https://aisel.aisnet.org/jise/vol33/is Purpose-driven Engaging Government-Industry- University Partnerships to Further Gender Equity in STEM Workforce Education Through Technology and Information System Learning Tools https://di.acm.org/doi/abs/10.1145 Purpose-driven Engaging Overnment-Industry- University Partnerships to Furuther Gender Equity in STEM Workforce Education Through Technol			
https://aisel.aisnet.org/jise/vol23/is Meticulous An Alumni Assessment of MIS Related Job Skill Importance and Skill Gaps https://aisel.aisnet.org/jise/vol23/is Collaborative, Inventive, Professional, Responsible Knowledge and Skill Requirements for Entry-Level IT Workers: A Longitudinal Study https://aisel.aisnet.org/jise/vol24/is Self-directed Teaching Introductory Programming to IS Study s2/6/ Self-directed Teaching Introductory Programming to IS Study https://aisel.aisnet.org/jise/vol25/is Professional, Responsive, Self- directed Teaching Introductory Programming to IS Study https://aisel.aisnet.org/jise/vol28/is Pasionate, Proactive An Integrated Learning Approaches Systems Course https://aisel.aisnet.org/jise/vol29/is Adaptable, Self- directed Do Pair Programming Approaches Systems Course https://aisel.aisnet.org/jise/vol30/is Adaptable, Collaborative, Inventive, Proactive, Responsible Teaching Critical Thinking: Preparing Inventive, Proactive, Responsible https://aisel.aisnet.org/jise/vol33/is Purpose-driven Sufdy and Design Thinking: Preparing Inventive, Intes://aisel.aisnet.org/jise/vol33/is Purpose-driven Sufdy and Information System Learning Tools https://aisel.aisnet.org/jise/vol33/is Purpose-driven Sufdy and Information System Learning Tools Engaging Government-Industry- University Partnerships to Further Gender Equity in ST			
s1/8/ Job Skill Importance and Skill Gaps https://aisel.aisnet.org/jise/vol23/is Collaborative, Inventive, Professional, Responsible Knowledge and Skill Requirements for Entry-Level IT Workers: A Longitudinal Study https://aisel.aisnet.org/jise/vol24/is Self-directed Teaching Introductory Programming to IS Students: The Impact of Teaching Approaches on Learning Performance https://aisel.aisnet.org/jise/vol25/is Professional, Responsive, Self- directed A Case Study of Instructor Scaffolding Using Web 2.0 Tools to Teach Social Informatics https://aisel.aisnet.org/jise/vol29/is Passionate, Proactive A Integrated Learning Approach to Traching an Undergraduate Information Systems Course https://aisel.aisnet.org/jise/vol29/is Adaptable, Self- directed De Pair Programming Approaches Transcend Coding? Measuring Agile Attitudes in Diverse Information Systems Courses https://aisel.aisnet.org/jise/vol30/is Adaptable, Collaborative, Responsible Teaching Critical Thinking, Problem Solving, and Design Thinking: Preparing IN Students for the Future https://aisel.aisnet.org/jise/vol33/is Purpose-driven Engaging Government-Industry- University Partnerships to Further Gender Equity in STEM Workforce Education Through Technology and Information System Learning Tools https://di.acm.org/doi/abs/10.1145 Purpose-driven Learning Without Limits: Identifying the Barriers and Enablers to Equality, Diversity, and Inclusion in IS Education </td <td>https://aisel.aispet.org/jise/vol23/is</td> <td>Meticulous</td> <td></td>	https://aisel.aispet.org/jise/vol23/is	Meticulous	
https://aisel.aisnet.org/jise/vol23/is Collaborative, Inventive, Professional, Responsible Knowledge and Skill Requirements for Entry-Level IT Workers: A Longitudinal Study https://aisel.aisnet.org/jise/vol24/is Self-directed Teaching Introductory Programming to IS Study of Instructor Scaffolding Approaches on Learning Performance https://aisel.aisnet.org/jise/vol25/is Professional, Responsive, Self- directed A Case Study of Instructor Scaffolding Using Web 2.0 Tools to Teach Social Informatics https://aisel.aisnet.org/jise/vol28/is Passionate, Proactive An Integrated Learning Approach to Teaching an Undergraduate Information Systems Course https://aisel.aisnet.org/jise/vol29/is s2/2/ Adaptable, Self- directed Do Pair Programming Approaches Transcend Coding? Measuring Agile Attitudes in Diverse Information Systems Courses https://aisel.aisnet.org/jise/vol30/is s4/5/ Adaptable, Collaborative, Inventive, Proactive, Responsible Engaging Government-Industry- University Partnerships to Further Gender Equity in STEM Workforce Education Through Technology and Information System Learning Without Limits; Juiversity, and Inclusion In 15 Education Through Technology and Information Systems Courses with a Focus on Group Formation and Assessment https://dl.acm.org/doi/abs/10.1145 Purpose-driven Learning Without Limits, and Expository Writing in the Middle School https://dl.acm.org/doi/abs/10.1145 Purpose-driven A Survey of Successful Evaluations of Program Visualization and Algorithm Ani		ricticulous	
\$2/8/ Inventive, Professional, Responsible Entry-Level IT Workers: A Longitudinal Study https://aisel.aisnet.org/jise/vol24/is \$2/6/ Self-directed Teaching Introductory Programming to IS Students: The Impact of Teaching Approaches on Learning Performance https://aisel.aisnet.org/jise/vol25/is \$2/2/ Professional, Responsive, Self- directed A Case Study of Instructor Scaffolding Using Web 2.0 Tools to Teach Social Informatics https://aisel.aisnet.org/jise/vol28/is \$2/2/ Passionate, Proactive A Integrated Learning Approaches Transcend Coding? Measuring Apgle Attitudes in Diverse Information Systems Courses https://aisel.aisnet.org/jise/vol29/is \$2/2/ Adaptable, Self- directed Do Pair Programming Approaches Transcend Coding? Measuring Agile Attitudes in Diverse Information Systems Courses https://aisel.aisnet.org/jise/vol30/is \$2/2/ Adaptable, Collaborative, Responsible Teaching and Design Thinking: Proplem Solving, and Design Thinking: Preparing IS Students for the Future https://aisel.aisnet.org/jise/vol33/is \$1/8/ Purpose-driven Engaging Government-Industry- University Partnerships to Further Gender Equity in STEM Workforce Education Through Technology and Information System Learning Without Limits: Identifying the Barriers and Enablers to Equality, no Diversity, and Inclusion and Assessment https://dl.acm.org/doi/abs/10.1145 Purpose-driven Designing Project-Based Courses with a Focus on Group Formation and Assessement https://dl.acm.org/do		Collaborativo	
Professional, ResponsibleStudyhttps://aisel.aisnet.org/iise/vol24/is \$2/6/Self-directedTeaching Introductory Programming to IS Students: The Impact of Teaching Approaches on Learning Performancehttps://aisel.aisnet.org/jise/vol25/is \$2/2/Professional, Responsive, Self- Using Web 2.0 Tools to Teach Social Informaticshttps://aisel.aisnet.org/jise/vol28/is \$2/2/Passionate, ProactiveA Case Study of Instructor Scaffolding Using Web 2.0 Tools to Teach Social Informaticshttps://aisel.aisnet.org/jise/vol28/is \$2/2/Passionate, ProactiveAn Integrated Learning Approaches Transcend Coding? Measuring Agile Attitudes in Diverse Information Systems Courseshttps://aisel.aisnet.org/jise/vol30/is \$4/5/Adaptable, Collaborative, ResponsibleDo Pair Programming Agile Attitudes in Diverse Information Systems Courseshttps://aisel.aisnet.org/jise/vol30/is \$1/4/Adaptable, Collaborative, ResponsibleTeaching Government-Industry- University Partnerships to Further Gender Equity in STEM Workforce Education Diversity, and Inclusion in IS Education Diversity, and Inclusion in IS Education Diversity, and Inclusion in IS Education Diversity, and Inclusion and Agorithm Animation Systemshttps://dl.acm.org/doi/abs/10.1145 (J13593.1513595Purpose-drivenEngaging Toncessful Evaluations of Program Visualization and Agorithm Animation Systemshttps://dl.acm.org/doi/abs/10.1145 (J13593.1513595Purpose-drivenDesigning Project-Based Courses with a Focus on Group Formation and Agorithm Animation Systemshttps://dl.acm.org/doi/abs/10.1145 (J1993063.1513595Purpose-drivenCompu			
Responsible https://aisel.aisnet.org/ijse/vol24/is Self-directed Teaching Introductory Programming to IS s2/6/ A Case Study of Instructor Scaffolding Approaches on Learning Performance https://aisel.aisnet.org/ijse/vol25/is Professional, A Case Study of Instructor Scaffolding s2/4/ directed Informatics A Case Study of Instructor Scaffolding https://aisel.aisnet.org/ijse/vol28/is Passionate, Proactive An Integrated Learning Approach to s1/5/ Posionate, Do Pair Programming Approaches Transcend Coding? Measuring Agile https://aisel.aisnet.org/ijse/vol29/is Adaptable, Self- Do Pair Programming Approaches s1/5/ Adaptable, Collaborative, Teaching Critical Thinking, Problem s4/5/ Adaptable, Teaching Government-Industry- University Partnerships to Further Gender s1/4/ Purpose-driven Engaging Government-Industry- University Partnerships to Further Gender s1/4/ Purpose-driven Learning Without Limits: Identifying the Sate Program Visualization and Agorithm https://di.acm.org/doi/abs/10.1145 Inventive Program Visualization and Agorithm	52/0/		
https://aisel.aisnet.org/jise/vol24/is Self-directed Teaching Introductory Programming to IS S2/6/ Approaches on Learning Performance https://aisel.aisnet.org/jise/vol25/is Professional, directed A Case Study of Instructor Scaffolding Using Web 2.0 Tools to Teach Social Informatics https://aisel.aisnet.org/jise/vol28/is Passionate, proactive An Integrated Learning Approach to Teaching an Undergraduate Information Systems Course https://aisel.aisnet.org/jise/vol29/is Adaptable, Self- directed Do Pair Programming Approaches Transcend Coding? Measuring Agile Attitudes in Diverse Information Systems Courses https://aisel.aisnet.org/jise/vol30/is s4/5/ Adaptable, Collaborative, Responsible Teaching Gritical Thinking, Problem Solving, and Design Thinking: Preparing IS Students for the Future https://aisel.aisnet.org/jise/vol33/is s1/4/ Purpose-driven Engaging Government-Industry- University Partnerships to Further Gender Equity in STEM Workforce Education Through Technology and Information System Learning Tools https://di.acm.org/doi/abs/10.1145 Purpose-driven Learning Without Limits: Identifying the Barriers and Enablers to Equality, Diversity, and Inclusion in IS Education https://dl.acm.org/doi/abs/10.1145 Inventive A Survey of Successful Evaluations of Program Visualization and Agorithm Animation Systems https://dl.acm.org/doi/abs/10.1145 Purpose-driven Proactive			Study
sz/6/ Students: The Impact of Teaching Approaches on Learning Performance https://aisel.aisnet.org/jise/vol25/is s2/2/ Professional, Responsive, Self- directed A Case Study of Instructor Scaffolding Using Web 2.0 Tools to Teach Social Informatics https://aisel.aisnet.org/jise/vol28/is s2/2/ Passionate, Proactive An Integrated Learning Approach to Teaching an Undergraduate Information Systems Course https://aisel.aisnet.org/jise/vol29/is s2/2/ Adaptable, Collaborative, Inventive, Proactive Do Pair Programming Approaches Transcend Coding? Measuring Agile Attitudes in Diverse Information Systems Courses https://aisel.aisnet.org/jise/vol30/is s4/5/ Adaptable, Collaborative, Inventive, Proactive, Responsible Teaching Critical Thinking, Problem Solving, and Design Thinking: Preparing IS Students for the Future https://aisel.aisnet.org/jise/vol33/is s1/4/ Purpose-driven Engaging Government-Industry- University Partnerships to Further Gender Equity in STEM Workforce Education Through Technology and Information System Learning Tools https://aisel.aisnet.org/jise/vol33/is s1/53595 Purpose-driven Learning Without Limits: Identifying the Barriers and Enablers to Equality, Diversity, and Inclusion in IS Education Through Technology and Algorithm Animation Systems https://dl.acm.org/doi/abs/10.1145 Inventive A Survey of Successful Evaluations of Program Visualization and Algorithm Animation Systems https://dl.acm.org/doi/abs/10.1145 Purpose-driven, Resp			Tarakina Interductore Decementaria to IC
Approaches on Learning Performancehttps://aisel.aisnet.org/jise/vol25/isProfessional, Responsive, Self- directedA Case Study of Instructor Scaffolding Using Web 2.0 Tools to Teach Social Informaticshttps://aisel.aisnet.org/jise/vol28/isPassionate, ProactiveAn Integrated Learning Approach to Teaching an Undergraduate Information Systems Coursehttps://aisel.aisnet.org/jise/vol29/isAdaptable, Self- directedDo Pair Programming Approaches Transcend Coding? Measuring Agile Attitudes in Diverse Information Systems Courseshttps://aisel.aisnet.org/jise/vol30/isAdaptable, Collaborative, Inventive, Proactive, ResponsibleTeaching Critical Thinking, Problem Solving, and Design Thinking: Preparing IS Students for the Futurehttps://aisel.aisnet.org/jise/vol33/isPurpose-drivenEngaging Government-Industry- University Partnerships to Further Gender Equity in STEM Workforce Education Through Technology and Information System Learning Without Limits: Identifying the Barriers and Enablers to Equality, Diversity, and Inclusion in IS Education Through Technology and Information System Learning Without Limits: Identifying the Barriers and Enablers to Equality, Diversity, and Inclusion in IS Education Through Technology and Information System Scourse with a Focus on Group Formation and Assessmenthttps://dl.acm.org/doi/abs/10.1145Purpose-drivenDesigning Project-Based Courses with a Focus on Group Formation and Assessmenthttps://dl.acm.org/doi/abs/10.1145Proactive ProactiveComputational Thinking and Expository Writing in the Middle Schoolhttps://dl.acm.org/doi/abs/10.1145Proactive ProactiveComputationa		Self-alrected	
https://aisel.aisnet.org/jise/vol25/is \$2/4/Professional, Responsive, Self- directedA Case Study of Instructor Scaffolding Using Web 2.0 Tools to Teach Social Informaticshttps://aisel.aisnet.org/jise/vol28/is \$1/5/Passionate, ProactiveAn Integrated Learning Approach to Teaching an Undergraduate Information Systems Coursehttps://aisel.aisnet.org/jise/vol29/is \$2/2/Adaptable, Self- directedDo Pair Programming Approaches Transcend Coding? Measuring Agile Attitudes in Diverse Information Systems Courseshttps://aisel.aisnet.org/jise/vol30/is \$4/5/Adaptable, Collaorative, Inventive, Proactive, ResponsibleTeaching Critical Thinking, Problem Solving, and Design Thinking: Preparing IS Students for the Futurehttps://aisel.aisnet.org/jise/vol33/is \$1/4/Purpose-drivenEngaging Government-Industry- University Partnerships to Further Gender Equity in STEM Workforce Education Through Technology and Information System Learning Without Limits: Identifying the Barriers and Enablers to Equality, Diversity, and Inclusion in IS Education Program Visualization and Algorithm Animation Systemshttps://dl.acm.org/doi/abs/10.1145 /1538234.1538236Purpose-drivenDesign in Project-Based Courses with a Fourset verset and analysis A Survey of Successful Evaluations of Program Visualization and Algorithm Animation Systemshttps://dl.acm.org/doi/abs/10.1145 /203726.2037283Purpose-drivenComputational Thinking and Expository Computational Thinking and Expository Computations for Compare Sustemshttps://dl.acm.org/doi/abs/10.1145 /203726.2037283Purpose-drivenComputational Thinking and Expository Computational	<u>52/0/</u>		
s2/4/ Responsive, Self- directed Using Web 2.0 Tools to Teach Social Informatics https://aisel.aisnet.org/jise/vol28/is s1/5/ Passionate, Proactive An Integrated Learning Approach to Teaching an Undergraduate Information Systems Course https://aisel.aisnet.org/jise/vol29/is s2/2/ Adaptable, Self- directed Do Pair Programming Approaches Transcend Coding? Measuring Agile Attitudes in Diverse Information Systems Courses https://aisel.aisnet.org/jise/vol30/is s4/5/ Adaptable, Collaborative, Inventive, Proactive, Responsible Teaching Critical Thinking: Preparing IS Students of the Future https://aisel.aisnet.org/jise/vol33/is s1/4/ Purpose-driven Engaging Government-Industry- University Partnerships to Further Gender Equity in STEM Workforce Education Through Technology and Information System Learning Tools https://aisel.aisnet.org/jise/vol33/is s1/8/ Purpose-driven Learning Without Limits: Identifying the Barriers and Enablers to Equality, Diversity, and Inclusion in IS Education Through Technology and Information System Learning Tools https://di.acm.org/doi/abs/10.1145 Purpose-driven Designing Project-Based Courses with a Focus on Group Formation and Assessment https://dl.acm.org/doi/abs/10.1145 Inventive A Survey of Successful Evaluations of Program Visualization and Algorithm Animation Systems https://dl.acm.org/doi/abs/10.1145 Proactive Universal Design: Implications for Computational Thinking and Exposito			
directedInformaticshttps://aisel.aisnet.org/jise/vol28/isPassionate, ProactiveAn Integrated Learning Approach to Systems Coursehttps://aisel.aisnet.org/jise/vol29/isAdaptable, Self- directedDo Pair Programming Approaches Transcend Coding? Measuring Agile Attitudes in Diverse Information Systems Courseshttps://aisel.aisnet.org/jise/vol30/isAdaptable, Collaborative, Inventive, ResponsibleTeaching Critical Thinking, Problem Solving, and Design Thinking: Preparing IS Students for the Future Proactive, Responsiblehttps://aisel.aisnet.org/jise/vol33/isPurpose-drivenEngaging Government-Industry- University Partnerships to Further Gender Equity in STEM Workforce Education Through Technology and Information System Learning Without Limits: Identifying the Barriers and Enablers to Equality, Diversity, and Inclusion in IS Education frasesemthttps://di.acm.org/doi/abs/10.1145Inventive Purpose-drivenDesigning Project-Based Courses with a Focus on Group Formation and Assessmenthttps://di.acm.org/doi/abs/10.1145Purpose-driven Purpose-drivenDesigning Project-Based Courses with a Focus on Group Formation and Assessmenthttps://di.acm.org/doi/abs/10.1145Purpose-driven Purpose-drivenDesigning Project-Based Courses with a Focus on Group Formation and Assessmenthttps://di.acm.org/doi/abs/10.1145Purpose-driven Purpose-drivenComputational Algorithm Animation Systemshttps://di.acm.org/doi/abs/10.1145Purpose-driven Purpose-drivenComputational Algorithm Animation Systemshttps://di.acm.org/doi/abs/10.1145Purpose-driven Proactive			
https://aisel.aisnet.org/jise/vol28/is Passionate, Proactive An Integrated Learning Approach to Teaching an Undergraduate Information Systems Course https://aisel.aisnet.org/jise/vol29/is Adaptable, Self- directed Do Pair Programming Approaches Transcend Coding? Measuring Agile Attitudes in Diverse Information Systems Courses https://aisel.aisnet.org/jise/vol30/is s4/5/ Adaptable, Collaborative, Responsible Teaching an Undergraduate Information Systems Courses https://aisel.aisnet.org/jise/vol33/is s1/4/ Adaptable, Collaborative, Responsible Teaching Critical Thinking, Problem Solving, and Design Thinking: Preparing IS Students for the Future https://aisel.aisnet.org/jise/vol33/is s1/4/ Purpose-driven Engaging Government-Industry- University Partnerships to Further Gender Equity in STEM Workforce Education Through Technology and Information System Learning Tools https://di.acm.org/doi/abs/10.1145 Purpose-driven Learning Without Limits: Identifying the Barriers and Enablers to Equality, Diversity, and Inclusion in IS Education https://dl.acm.org/doi/abs/10.1145 Inventive A Survey of Successful Evaluations of Program Visualization and Agosithm Animation Systems https://dl.acm.org/doi/abs/10.1145 Purpose-driven, Responsive Computational Thinking and Expository Writing in the Middle School https://dl.acm.org/doi/abs/10.1145 Purpose-driven, Responsive Computational Thinking and Expository Writing in the Middle	<u>s2/4/</u>		
s1/5/ProactiveTeaching an Undergraduate Information Systems Coursehttps://aisel.aisnet.org/jise/vol29/is s2/2/Adaptable, Self- directedOP Pir Programming Approaches Transcend Coding? Measuring Agile Attitudes in Diverse Information Systems Courseshttps://aisel.aisnet.org/jise/vol30/is s4/5/Adaptable, Collaborative, Inventive, Proactive, ResponsibleTeaching Critical Thinking, Problem Solving, and Design Thinking: Preparing IS Students for the Futurehttps://aisel.aisnet.org/jise/vol33/is s1/4/Purpose-drivenEngaging Government-Industry- University Partnerships to Further Gender Equity in STEM Workforce Education Through Technology and Information System Learning Toolshttps://aisel.aisnet.org/jise/vol33/is s1/8/Purpose-drivenLearning Without Limits: Identifying the Barriers and Enablers to Equality, Diversity, and Inclusion in IS Education Assessmenthttps://dl.acm.org/doi/abs/10.1145InventiveA Survey of Successful Evaluations of Program Visualization and Algorithm Animation Systemshttps://dl.acm.org/doi/abs/10.1145Purpose-driven, (Computational Thinking and Expository Writing in the Middle Schoolhttps://dl.acm.org/doi/abs/10.1145Proactive, ResponsiveComputational Thinking and Expository Writing in the Middle Schoolhttps://dl.acm.org/doi/abs/10.1145Purpose-driven, (Computational Thinking and Expository Writing in the Middle Schoolhttps://dl.acm.org/doi/abs/10.1145Purpose-driven, ResponsiveComputing Education Program Visualization and Algorithm Animation Systemshttps://dl.acm.org/doi/abs/10.1145Purpose-driven, Responsive <td></td> <td></td> <td></td>			
https://aisel.aisnet.org/jise/vol29/is s2/2/Adaptable, Self- directedDo Pair Programming Approaches Transcend Coding? Measuring Agile Attitudes in Diverse Information Systems Courseshttps://aisel.aisnet.org/jise/vol30/is s4/5/Adaptable, Collaborative, Inventive, Proactive, ResponsibleTeaching Critical Thinking: Preparing IS Students for the Futurehttps://aisel.aisnet.org/jise/vol33/is s1/4/Adaptable, Collaborative, ResponsibleTeaching Cortical Thinking: Preparing IS Students for the Futurehttps://aisel.aisnet.org/jise/vol33/is s1/4/Purpose-drivenEngaging Government-Industry- University Partnerships to Further Gender Equity in STEM Workforce Education Through Technology and Information System Learning Without Limits: Identifying the Barriers and Enablers to Equality, Diversity, and Inclusion in IS Educationhttps://dl.acm.org/doi/abs/10.1145Purpose-drivenDesigning Project-Based Courses with a Focus on Group Formation and Assessmenthttps://dl.acm.org/doi/abs/10.1145Purpose-driven, Program Visualization and Algorithm Animation SystemsComputational Thinking and Expository Writing in the Middle Schoolhttps://dl.acm.org/doi/abs/10.1145Purpose-driven, ProactiveComputational Thinking and Expository Writing in the Middle Schoolhttps://dl.acm.org/doi/abs/10.1145Purpose-driven, ProactiveComputational Thinking and Expository Writing in the Middle Schoolhttps://dl.acm.org/doi/abs/10.1145Purpose-driven, ResponsiveComputational Thinking and Expository Writing in the Middle Schoolhttps://dl.acm.org/doi/abs/10.1145Purpose-driven, ResponsiveComp		Passionate,	An Integrated Learning Approach to
https://aisel.aisnet.org/jise/vol29/is \$2/2/Adaptable, Self- directedDo Pair Programming Approaches Transcend Coding? Measuring Agile Attitudes in Diverse Information Systems Courseshttps://aisel.aisnet.org/jise/vol30/is \$4/5/Adaptable, Collaborative, Inventive, Proactive, ResponsibleTeaching Critical Thinking, Problem Solving, and Design Thinking: Preparing IS Students for the Futurehttps://aisel.aisnet.org/jise/vol33/is \$1/4/Purpose-drivenEngaging Government-Industry- University Partnerships to Further Gender Equity in STEM Workforce Education Through Technology and Information System Learning Without Limits: Identifying the Barriers and Enablers to Equality, Diversity, and Inclusion in IS Education https://dl.acm.org/doi/abs/10.1145Purpose-drivenLearning Without Limits: Identifying the Barriers and Enablers to Equality, Diversity, and Inclusion in IS Education Assessmenthttps://dl.acm.org/doi/abs/10.1145InventiveA Survey of Successful Evaluations of Program Visualization and Algorithm Animation Systemshttps://dl.acm.org/doi/abs/10.1145Purpose-driven, ResponsiveComputational Thinking and Expository Writing in the Middle Schoolhttps://dl.acm.org/doi/abs/10.1145Purpose-driven, ResponsiveComputational Thinking and Expository Writing in the Middle Schoolhttps://dl.acm.org/doi/abs/10.1145Purpose-driven, ResponsiveComputational Thinking and Expository Writing in the Middle Schoolhttps://dl.acm.org/doi/abs/10.1145Purpose-driven, ResponsiveComputational Thinking and Expository Writing in the Middle Schoolhttps://dl.acm.org/doi/abs/10.1145Purpose-driven, Respo	<u>s1/5/</u>	Proactive	Teaching an Undergraduate Information
s2/2/directedTranscend Coding? Measuring Agile Attitudes in Diverse Information Systems Courseshttps://aisel.aisnet.org/jise/vol30/is s4/5/Adaptable, Collaborative, Inventive, Proactive, ResponsibleTeaching Critical Thinking, Problem Solving, and Design Thinking: Preparing IS Students for the Futurehttps://aisel.aisnet.org/jise/vol33/is s1/4/Purpose-drivenEngaging Government-Industry- University Partnerships to Further Gender Equity in STEM Workforce Education Through Technology and Information System Learning Toolshttps://aisel.aisnet.org/jise/vol33/is s1/8/Purpose-drivenLearning Without Limits: Identifying the Barriers and Enablers to Equality, Diversity, and Inclusion in IS Education https://dl.acm.org/doi/abs/10.1145https://dl.acm.org/doi/abs/10.1145Purpose-drivenDesigning Project-Based Courses with a Focus on Group Formation and Assessmenthttps://dl.acm.org/doi/abs/10.1145InventiveA Survey of Successful Evaluations of Program Visualization and Algorithm Animation Systemshttps://dl.acm.org/doi/abs/10.1145Purpose-driven, ResponsiveComputational Thinking and Expository Writing in the Middle Schoolhttps://dl.acm.org/doi/abs/10.1145Propse-drivenComputational Thinking and Expository Writing in the Middle Schoolhttps://dl.acm.org/doi/abs/10.1145Purpose-drivenComputational Thinking and Expository Writing in the Middle Schoolhttps://dl.acm.org/doi/abs/10.1145Purpose-drivenComputational Thinking and Expository Writing in the Middle Schoolhttps://dl.acm.org/doi/abs/10.1145Purpose-drivenComputational Thinking and Expository <b< td=""><td></td><td></td><td></td></b<>			
s2/2/directedTranscend Coding? Measuring Agile Attitudes in Diverse Information Systems Courseshttps://aisel.aisnet.org/jise/vol30/is s4/5/Adaptable, Collaborative, Inventive, Proactive, ResponsibleTeaching Critical Thinking, Problem Solving, and Design Thinking: Preparing IS Students for the Futurehttps://aisel.aisnet.org/jise/vol33/is s1/4/Purpose-drivenEngaging Government-Industry- University Partnerships to Further Gender Equity in STEM Workforce Education Through Technology and Information System Learning Toolshttps://aisel.aisnet.org/jise/vol33/is s1/8/Purpose-drivenLearning Without Limits: Identifying the Barriers and Enablers to Equality, Diversity, and Inclusion in IS Education https://dl.acm.org/doi/abs/10.1145https://dl.acm.org/doi/abs/10.1145Purpose-drivenDesigning Project-Based Courses with a Focus on Group Formation and Assessmenthttps://dl.acm.org/doi/abs/10.1145InventiveA Survey of Successful Evaluations of Program Visualization and Algorithm Animation Systemshttps://dl.acm.org/doi/abs/10.1145Purpose-driven, ResponsiveComputational Thinking and Expository Writing in the Middle Schoolhttps://dl.acm.org/doi/abs/10.1145Propse-drivenComputational Thinking and Expository Writing in the Middle Schoolhttps://dl.acm.org/doi/abs/10.1145Purpose-drivenComputational Thinking and Expository Writing in the Middle Schoolhttps://dl.acm.org/doi/abs/10.1145Purpose-drivenComputational Thinking and Expository Writing in the Middle Schoolhttps://dl.acm.org/doi/abs/10.1145Purpose-drivenComputational Thinking and Expository <b< td=""><td>https://aisel.aisnet.org/jise/vol29/is</td><td>Adaptable, Self-</td><td>Do Pair Programming Approaches</td></b<>	https://aisel.aisnet.org/jise/vol29/is	Adaptable, Self-	Do Pair Programming Approaches
https://aisel.aisnet.org/jise/vol30/is s4/5/Adaptable, Collaborative, Inventive, Proactive, ResponsibleTeaching Critical Thinking, Problem Solving, and Design Thinking: Preparing IS Students for the Futurehttps://aisel.aisnet.org/jise/vol33/is s1/4/Purpose-drivenEngaging Government-Industry- University Partnerships to Further Gender Equity in STEM Workforce Education Through Technology and Information System Learning Toolshttps://aisel.aisnet.org/jise/vol33/is s1/8/Purpose-drivenLearning Without Limits: Identifying the Barriers and Enablers to Equality, Diversity, and Inclusion in IS Educationhttps://dl.acm.org/doi/abs/10.1145 /1538234.1538236Purpose-drivenDesigning Project-Based Courses with a Focus on Group Formation and Assessmenthttps://dl.acm.org/doi/abs/10.1145 /1538234.1538236InventiveA Survey of Successful Evaluations of Program Visualization and Algorithm Animation Systemshttps://dl.acm.org/doi/abs/10.1145 /1538234.1538236Purpose-driven, ProactiveComputational Thinking and Expository Writing in the Middle Schoolhttps://dl.acm.org/doi/abs/10.1145 /2037276.2037283Purpose-driven, ProactiveComputational Thinking and Expository Writing in the Middle Schoolhttps://dl.acm.org/doi/abs/10.1145 /2037276.2037283Purpose-drivenComputational Disking and Expository Writing in the Middle Schoolhttps://dl.acm.org/doi/abs/10.1145 /2037276.2037283Purpose-drivenThe Curriculum Planning Process for Undegraduate Game Degree Programs in the United Kingdom and United Stateshttps://dl.acm.org/doi/abs/10.1145InventivePractical Problem-Based Learning in	<u>s2/2/</u>	directed	
https://aisel.aisnet.org/jise/vol30/is s4/5/Adaptable, Collaborative, Inventive, Proactive, ResponsibleTeaching Critical Thinking, Problem Solving, and Design Thinking: Preparing IS Students for the Futurehttps://aisel.aisnet.org/jise/vol33/is s1/4/Purpose-drivenEngaging Government-Industry- University Partnerships to Further Gender Equity in STEM Workforce Education Through Technology and Information System Learning Toolshttps://aisel.aisnet.org/jise/vol33/is s1/8/Purpose-drivenLearning Without Limits: Identifying the Barriers and Enablers to Equality, Diversity, and Inclusion in IS Educationhttps://dl.acm.org/doi/abs/10.1145 /1538234.1538236Purpose-drivenDesigning Project-Based Courses with a Focus on Group Formation and Assessmenthttps://dl.acm.org/doi/abs/10.1145 /1538234.1538236InventiveA Survey of Successful Evaluations of Program Visualization and Algorithm Animation Systemshttps://dl.acm.org/doi/abs/10.1145 /1538234.1538236Purpose-driven, ProactiveComputational Thinking and Expository Writing in the Middle Schoolhttps://dl.acm.org/doi/abs/10.1145 /2037276.2037283Purpose-driven, ProactiveComputational Thinking and Expository Writing in the Middle Schoolhttps://dl.acm.org/doi/abs/10.1145 /2037276.2037283Purpose-drivenComputational Disking and Expository Writing in the Middle Schoolhttps://dl.acm.org/doi/abs/10.1145 /2037276.2037283Purpose-drivenThe Curriculum Planning Process for Undegraduate Game Degree Programs in the United Kingdom and United Stateshttps://dl.acm.org/doi/abs/10.1145InventivePractical Problem-Based Learning in			Attitudes in Diverse Information Systems
s4/5/Collaborative, Inventive, Proactive, ResponsibleSolving, and Design Thinking: Preparing IS Students for the Futurehttps://aisel.aisnet.org/jise/vol33/is s1/4/Purpose-drivenEngaging Government-Industry- University Partnerships to Further Gender Equity in STEM Workforce Education Through Technology and Information System Learning Toolshttps://aisel.aisnet.org/jise/vol33/is s1/8/Purpose-drivenEngaging Government-Industry- University Partnerships to Further Gender Equity in STEM Workforce Education Through Technology and Information System Learning Toolshttps://dl.acm.org/doi/abs/10.1145 /1538234.1538236Purpose-drivenLearning Without Limits: Identifying the Barriers and Enablers to Equality, Diversity, and Inclusion in IS Educationhttps://dl.acm.org/doi/abs/10.1145 /1538234.1538236Purpose-drivenDesigning Project-Based Courses with a Focus on Group Formation and Assessmenthttps://dl.acm.org/doi/abs/10.1145 /1538234.1538236Purpose-drivenComputational Thinking and Expository Writing in the Middle Schoolhttps://dl.acm.org/doi/abs/10.1145 /193069.1993073Purpose-driven, ResponsiveComputational Thinking and Expository Writing in the Middle Schoolhttps://dl.acm.org/doi/abs/10.1145 /2037276.2037283Purpose-drivenThe Curriculum Planning Process for Undergraduate Game Degree Programs in the United Kingdom and United Stateshttps://dl.acm.org/doi/abs/10.1145InventivePractical Problem-Based Learning in			
s4/5/Collaborative, Inventive, Proactive, ResponsibleSolving, and Design Thinking: Preparing IS Students for the Futurehttps://aisel.aisnet.org/jise/vol33/is s1/4/Purpose-drivenEngaging Government-Industry- University Partnerships to Further Gender Equity in STEM Workforce Education Through Technology and Information System Learning Toolshttps://aisel.aisnet.org/jise/vol33/is s1/8/Purpose-drivenEngaging Government-Industry- University Partnerships to Further Gender Equity in STEM Workforce Education Through Technology and Information System Learning Toolshttps://dl.acm.org/doi/abs/10.1145 /1538234.1538236Purpose-drivenLearning Without Limits: Identifying the Barriers and Enablers to Equality, Diversity, and Inclusion in IS Educationhttps://dl.acm.org/doi/abs/10.1145 /1538234.1538236Purpose-drivenDesigning Project-Based Courses with a Focus on Group Formation and Assessmenthttps://dl.acm.org/doi/abs/10.1145 /1538234.1538236Purpose-drivenComputational Thinking and Expository Writing in the Middle Schoolhttps://dl.acm.org/doi/abs/10.1145 /193069.1993073Purpose-driven, ResponsiveComputational Thinking and Expository Writing in the Middle Schoolhttps://dl.acm.org/doi/abs/10.1145 /2037276.2037283Purpose-drivenThe Curriculum Planning Process for Undergraduate Game Degree Programs in the United Kingdom and United Stateshttps://dl.acm.org/doi/abs/10.1145InventivePractical Problem-Based Learning in	https://aisel.aisnet.org/jise/vol30/is	Adaptable,	Teaching Critical Thinking, Problem
Inventive, Proactive, ResponsibleIS Students for the Futurehttps://aisel.aisnet.org/jise/vol33/is s1/4/Purpose-drivenEngaging Government-Industry- University Partnerships to Further Gender Equity in STEM Workforce Education Through Technology and Information System Learning Toolshttps://aisel.aisnet.org/jise/vol33/is s1/8/Purpose-drivenLearning Without Limits: Identifying the Barriers and Enablers to Equality, Diversity, and Inclusion in IS Educationhttps://dl.acm.org/doi/abs/10.1145 /1538234.1538236Purpose-drivenDesigning Project-Based Courses with a Focus on Group Formation and Assessmenthttps://dl.acm.org/doi/abs/10.1145 /1538234.1538236InventiveA Survey of Successful Evaluations of Program Visualization and Algorithm Animation Systemshttps://dl.acm.org/doi/abs/10.1145 /1993069.1993073Purpose-driven, ResponsiveComputational Thinking and Expository Writing in the Middle Schoolhttps://dl.acm.org/doi/abs/10.1145 /2037276.2037283Purpose-driven, ProactiveComputing Education The Curriculum Planning Process for Undergraduate Game Degree Programs in the United Kingdom and United Stateshttps://dl.acm.org/doi/abs/10.1145InventiveThe Curriculum Planning Process for Undergraduate Game Degree Programs in the United Kingdom and United States			
Proactive, ResponsibleProactive, Responsiblehttps://aisel.aisnet.org/jise/vol33/is \$1/4/Purpose-drivenEngaging Government-Industry- University Partnerships to Further Gender Equity in STEM Workforce Education Through Technology and Information System Learning Toolshttps://aisel.aisnet.org/jise/vol33/is \$1/8/Purpose-drivenLearning Without Limits: Identifying the Barriers and Enablers to Equality, Diversity, and Inclusion in IS Education Through Technology and Information System Learning Toolshttps://dl.acm.org/doi/abs/10.1145 /1538234.1538236Purpose-drivenLearning Without Limits: Identifying the Barriers and Enablers to Equality, Diversity, and Inclusion in IS Education Assessmenthttps://dl.acm.org/doi/abs/10.1145 /1538234.1538236Purpose-drivenDesigning Project-Based Courses with a Focus on Group Formation and Assessmenthttps://dl.acm.org/doi/abs/10.1145 /193069.1993073InventiveA Survey of Successful Evaluations of Program Visualization and Algorithm Animation Systemshttps://dl.acm.org/doi/abs/10.1145 /193069.1993073Purpose-driven, ResponsiveComputational Thinking and Expository Writing in the Middle Schoolhttps://dl.acm.org/doi/abs/10.1145 /2037276.2037283Purpose-driven ProactiveThe Curriculum Planning Process for Undergraduate Game Degree Programs in the United Kingdom and United Stateshttps://dl.acm.org/doi/abs/10.1145InventivePractical Problem-Based Learning in			
Responsiblehttps://aisel.aisnet.org/jise/vol33/is \$1/4/Purpose-drivenEngaging Government-Industry- University Partnerships to Further Gender Equity in STEM Workforce Education Through Technology and Information System Learning Toolshttps://aisel.aisnet.org/jise/vol33/is \$1/8/Purpose-drivenLearning Without Limits: Identifying the Barriers and Enablers to Equality, Diversity, and Inclusion in IS Educationhttps://dl.acm.org/doi/abs/10.1145 /1513593.1513595Purpose-drivenDesigning Project-Based Courses with a Focus on Group Formation and Assessmenthttps://dl.acm.org/doi/abs/10.1145 /1538234.1538236InventiveA Survey of Successful Evaluations of Program Visualization and Algorithm Animation Systemshttps://dl.acm.org/doi/abs/10.1145 /193069.1993073Purpose-driven, ResponsiveComputational Thinking and Expository Writing in the Middle Schoolhttps://dl.acm.org/doi/abs/10.1145 /192069.1993073Purpose-driven, ResponsiveComputational Thinking and Expository Writing in the Middle Schoolhttps://dl.acm.org/doi/abs/10.1145 /193069.1993073Purpose-driven, ResponsiveComputational Thinking and Expository Writing in the Middle Schoolhttps://dl.acm.org/doi/abs/10.1145 /2037276.2037283Purpose-drivenThe Curriculum Planning Process for Undergraduate Game Degree Programs in the United Kingdom and United Stateshttps://dl.acm.org/doi/abs/10.1145InventivePractical Problem-Based Learning in			
https://aisel.aisnet.org/jise/vol33/is \$1/4/Purpose-drivenEngaging Government-Industry- University Partnerships to Further Gender Equity in STEM Workforce Education Through Technology and Information System Learning Toolshttps://aisel.aisnet.org/jise/vol33/is \$1/8/Purpose-drivenLearning Without Limits: Identifying the Barriers and Enablers to Equality, Diversity, and Inclusion in IS Educationhttps://dl.acm.org/doi/abs/10.1145 /1513593.1513595Purpose-drivenDesigning Project-Based Courses with a Focus on Group Formation and Assessmenthttps://dl.acm.org/doi/abs/10.1145 /1538234.1538236InventiveA Survey of Successful Evaluations of Program Visualization and Algorithm Animation Systemshttps://dl.acm.org/doi/abs/10.1145 /193069.1993073Purpose-driven, ResponsiveComputational Thinking and Expository Writing in the Middle Schoolhttps://dl.acm.org/doi/abs/10.1145 /193069.1993073Purpose-driven, ResponsiveComputational Thinking and Expository Universal Design: Implications for Computing Educationhttps://dl.acm.org/doi/abs/10.1145 /2037276.2037283Purpose-driven, ResponsiveComputing Educationhttps://dl.acm.org/doi/abs/10.1145 /2160547.2160550Purpose-driven ResponsiveThe Curriculum Planning Process for Undergraduate Game Degree Programs in the United Kingdom and United Stateshttps://dl.acm.org/doi/abs/10.1145InventivePractical Problem-Based Learning in			
\$1/4/University Partnerships to Further Gender Equity in STEM Workforce Education Through Technology and Information System Learning Toolshttps://aisel.aisnet.org/jise/vol33/is \$1/8/Purpose-drivenLearning Without Limits: Identifying the Barriers and Enablers to Equality, Diversity, and Inclusion in IS Educationhttps://dl.acm.org/doi/abs/10.1145 /1513593.1513595Purpose-drivenDesigning Project-Based Courses with a Focus on Group Formation and Assessmenthttps://dl.acm.org/doi/abs/10.1145 /1538234.1538236InventiveA Survey of Successful Evaluations of Program Visualization and Algorithm Animation Systemshttps://dl.acm.org/doi/abs/10.1145 /193069.1993073Purpose-driven, ResponsiveComputational Thinking and Expository Writing in the Middle Schoolhttps://dl.acm.org/doi/abs/10.1145 /2037276.2037283Purpose-driven, Purpose-driven, ResponsiveComputational Thinking and Expository Universal Design: Implications for Computing Educationhttps://dl.acm.org/doi/abs/10.1145 /2037276.2037283Purpose-driven, InventiveThe Curriculum Planning Process for Undergraduate Game Degree Programs in the United Kingdom and United Stateshttps://dl.acm.org/doi/abs/10.1145InventivePractical Problem-Based Learning in	https://aisel.aisnet.org/jise/vol33/js		Engaging Government-Industry-
Equity in STEM Workforce Education Through Technology and Information System Learning Toolshttps://aisel.aisnet.org/jise/vol33/is s1/8/Purpose-drivenLearning Without Limits: Identifying the Barriers and Enablers to Equality, Diversity, and Inclusion in IS Educationhttps://dl.acm.org/doi/abs/10.1145 /1513593.1513595Purpose-drivenDesigning Project-Based Courses with a Focus on Group Formation and Assessmenthttps://dl.acm.org/doi/abs/10.1145 /1538234.1538236InventiveA Survey of Successful Evaluations of Program Visualization and Algorithm Animation Systemshttps://dl.acm.org/doi/abs/10.1145 /193069.1993073Purpose-driven, ResponsiveComputational Thinking and Expository Writing in the Middle Schoolhttps://dl.acm.org/doi/abs/10.1145 /2037276.2037283Purpose-driven, Purpose-driven, ResponsiveComputational Thinking and Expository Universal Design: Implications for Computing Educationhttps://dl.acm.org/doi/abs/10.1145 /2160547.2160550Purpose-driven InventiveThe Curriculum Planning Process for Undergraduate Game Degree Programs in the United Kingdom and United Stateshttps://dl.acm.org/doi/abs/10.1145InventivePractical Problem-Based Learning in			
https://aisel.aisnet.org/jise/vol33/is s1/8/Purpose-drivenLearning Without Limits: Identifying the Barriers and Enablers to Equality, Diversity, and Inclusion in IS Educationhttps://dl.acm.org/doi/abs/10.1145 /1513593.1513595Purpose-drivenDesigning Project-Based Courses with a Focus on Group Formation and Assessmenthttps://dl.acm.org/doi/abs/10.1145 /1538234.1538236InventiveA Survey of Successful Evaluations of Program Visualization and Algorithm Animation Systemshttps://dl.acm.org/doi/abs/10.1145 /1538234.1538236Purpose-driven, ResponsiveComputational Thinking and Expository Writing in the Middle Schoolhttps://dl.acm.org/doi/abs/10.1145 /193069.1993073Purpose-driven, ResponsiveComputational Thinking and Expository Universal Design: Implications for Computing Educationhttps://dl.acm.org/doi/abs/10.1145 /2160547.2160550Purpose-drivenThe Curriculum Planning Process for Undergraduate Game Degree Programs in the United Kingdom and United Stateshttps://dl.acm.org/doi/abs/10.1145InventivePractical Problem-Based Learning in	<u></u>		
https://aisel.aisnet.org/jise/vol33/is s1/8/Purpose-drivenLearning Without Limits: Identifying the Barriers and Enablers to Equality, Diversity, and Inclusion in IS Educationhttps://dl.acm.org/doi/abs/10.1145 /1513593.1513595Purpose-drivenDesigning Project-Based Courses with a Focus on Group Formation and Assessmenthttps://dl.acm.org/doi/abs/10.1145 /1538234.1538236InventiveA Survey of Successful Evaluations of Program Visualization and Algorithm Animation Systemshttps://dl.acm.org/doi/abs/10.1145 /1538234.1538236Purpose-driven, Purpose-driven, Computational Thinking and Expository Writing in the Middle Schoolhttps://dl.acm.org/doi/abs/10.1145 /1993069.1993073Purpose-driven, ResponsiveComputational Thinking and Expository Writing in the Middle Schoolhttps://dl.acm.org/doi/abs/10.1145 /2037276.2037283Purpose-driven, Purpose-driven, Universal Design: Implications for Computing Educationhttps://dl.acm.org/doi/abs/10.1145 /2160547.2160550Purpose-driven, Universal Design: Implications for Undergraduate Game Degree Programs in the United Kingdom and United Stateshttps://dl.acm.org/doi/abs/10.1145InventivePractical Problem-Based Learning in			
https://aisel.aisnet.org/jise/vol33/is s1/8/Purpose-drivenLearning Without Limits: Identifying the Barriers and Enablers to Equality, Diversity, and Inclusion in IS Educationhttps://dl.acm.org/doi/abs/10.1145 /1513593.1513595Purpose-drivenDesigning Project-Based Courses with a Focus on Group Formation and Assessmenthttps://dl.acm.org/doi/abs/10.1145 /1538234.1538236InventiveA Survey of Successful Evaluations of Program Visualization and Algorithm Animation Systemshttps://dl.acm.org/doi/abs/10.1145 /193069.1993073Purpose-driven, ResponsiveComputational Thinking and Expository Writing in the Middle Schoolhttps://dl.acm.org/doi/abs/10.1145 /2037276.2037283ProactiveUniversal Design: Implications for Computing Educationhttps://dl.acm.org/doi/abs/10.1145 /2160547.2160550Purpose-driven, ResponsiveThe Curriculum Planning Process for Undergraduate Game Degree Programs in the United Kingdom and United Stateshttps://dl.acm.org/doi/abs/10.1145InventivePractical Problem-Based Learning in			
s1/8/Barriers and Enablers to Equality, Diversity, and Inclusion in IS Educationhttps://dl.acm.org/doi/abs/10.1145Purpose-drivenDesigning Project-Based Courses with a Focus on Group Formation and Assessmenthttps://dl.acm.org/doi/abs/10.1145InventiveA Survey of Successful Evaluations of Program Visualization and Algorithm Animation Systemshttps://dl.acm.org/doi/abs/10.1145Purpose-driven, ResponsiveComputational Thinking and Expository Writing in the Middle Schoolhttps://dl.acm.org/doi/abs/10.1145ProactiveUniversal Design: Implications for Computing Educationhttps://dl.acm.org/doi/abs/10.1145Purpose-driven, ResponsiveComputing Educationhttps://dl.acm.org/doi/abs/10.1145Purpose-driven The Curriculum Planning Process for Undergraduate Game Degree Programs in the United Kingdom and United Stateshttps://dl.acm.org/doi/abs/10.1145InventivePractical Problem-Based Learning in	https://aisel.aispet.org/iise/vol33/is	Purpose-driven	
https://dl.acm.org/doi/abs/10.1145 /1513593.1513595Purpose-drivenDesigning Project-Based Courses with a Focus on Group Formation and Assessmenthttps://dl.acm.org/doi/abs/10.1145 /1538234.1538236InventiveA Survey of Successful Evaluations of Program Visualization and Algorithm Animation Systemshttps://dl.acm.org/doi/abs/10.1145 /1993069.1993073Purpose-driven, ResponsiveComputational Thinking and Expository Writing in the Middle Schoolhttps://dl.acm.org/doi/abs/10.1145 /2037276.2037283Purpose-driven, ProactiveComputational Thinking and Expository Universal Design: Implications for Computing Educationhttps://dl.acm.org/doi/abs/10.1145 /2160547.2160550Purpose-driven Purpose-drivenThe Curriculum Planning Process for Undergraduate Game Degree Programs in the United Kingdom and United Stateshttps://dl.acm.org/doi/abs/10.1145InventivePractical Problem-Based Learning in	s1/8/		
https://dl.acm.org/doi/abs/10.1145 /1513593.1513595Purpose-drivenDesigning Project-Based Courses with a Focus on Group Formation and Assessmenthttps://dl.acm.org/doi/abs/10.1145 /1538234.1538236InventiveA Survey of Successful Evaluations of Program Visualization and Algorithm Animation Systemshttps://dl.acm.org/doi/abs/10.1145 /193069.1993073Purpose-driven, ResponsiveComputational Thinking and Expository Writing in the Middle Schoolhttps://dl.acm.org/doi/abs/10.1145 /2037276.2037283Purpose-driven, ProactiveComputational Thinking and Expository Universal Design: Implications for Computing Educationhttps://dl.acm.org/doi/abs/10.1145 /2160547.2160550Purpose-driven, Purpose-drivenThe Curriculum Planning Process for Undergraduate Game Degree Programs in the United Kingdom and United Stateshttps://dl.acm.org/doi/abs/10.1145InventivePractical Problem-Based Learning in	<u>, -, -</u>		
/1513593.1513595Focus on Group Formation and Assessmenthttps://dl.acm.org/doi/abs/10.1145InventiveA Survey of Successful Evaluations of Program Visualization and Algorithm Animation Systemshttps://dl.acm.org/doi/abs/10.1145Purpose-driven, ResponsiveComputational Thinking and Expository Writing in the Middle Schoolhttps://dl.acm.org/doi/abs/10.1145ProactiveUniversal Design: Implications for Computing Educationhttps://dl.acm.org/doi/abs/10.1145Purpose-driven, ResponsiveThe Curriculum Planning Process for Undergraduate Game Degree Programs in the United Kingdom and United Stateshttps://dl.acm.org/doi/abs/10.1145InventivePractical Problem-Based Learning in	https://dl.acm.org/doi/abs/10_1145	Purpose-driven	
https://dl.acm.org/doi/abs/10.1145 /1538234.1538236InventiveA Survey of Successful Evaluations of Program Visualization and Algorithm Animation Systemshttps://dl.acm.org/doi/abs/10.1145 /1993069.1993073Purpose-driven, ResponsiveComputational Thinking and Expository Writing in the Middle Schoolhttps://dl.acm.org/doi/abs/10.1145 /2037276.2037283Purpose-driven, ProactiveComputational Thinking and Expository Writing in the Middle Schoolhttps://dl.acm.org/doi/abs/10.1145 /2037276.2037283ProactiveUniversal Design: Implications for Computing Educationhttps://dl.acm.org/doi/abs/10.1145 /2160547.2160550Purpose-driven Universal Design: Implications for Undergraduate Game Degree Programs in the United Kingdom and United Stateshttps://dl.acm.org/doi/abs/10.1145InventivePractical Problem-Based Learning in			
https://dl.acm.org/doi/abs/10.1145 /1538234.1538236InventiveA Survey of Successful Evaluations of Program Visualization and Algorithm Animation Systemshttps://dl.acm.org/doi/abs/10.1145 /1993069.1993073Purpose-driven, ResponsiveComputational Thinking and Expository Writing in the Middle Schoolhttps://dl.acm.org/doi/abs/10.1145 /2037276.2037283Purpose-driven, ProactiveComputational Thinking and Expository Writing in the Middle Schoolhttps://dl.acm.org/doi/abs/10.1145 /2160547.2160550ProactiveUniversal Design: Implications for Computing Educationhttps://dl.acm.org/doi/abs/10.1145 /2160547.2160550Purpose-drivenThe Curriculum Planning Process for Undergraduate Game Degree Programs in the United Kingdom and United Stateshttps://dl.acm.org/doi/abs/10.1145InventivePractical Problem-Based Learning in	/ 1010000.1010000		
/1538234.1538236Program Visualization and Algorithm Animation Systemshttps://dl.acm.org/doi/abs/10.1145Purpose-driven, ResponsiveComputational Thinking and Expository Writing in the Middle Schoolhttps://dl.acm.org/doi/abs/10.1145ProactiveUniversal Design: Implications for Computing Educationhttps://dl.acm.org/doi/abs/10.1145Purpose-drivenThe Curriculum Planning Process for Undergraduate Game Degree Programs in the United Kingdom and United Stateshttps://dl.acm.org/doi/abs/10.1145InventivePractical Problem-Based Learning in	https://dl.acm.org/doi/abs/10.1145	Inventive	
https://dl.acm.org/doi/abs/10.1145 /1993069.1993073Purpose-driven, ResponsiveComputational Thinking and Expository Writing in the Middle Schoolhttps://dl.acm.org/doi/abs/10.1145 /2037276.2037283ProactiveUniversal Design: Implications for Computing Educationhttps://dl.acm.org/doi/abs/10.1145 /2160547.2160550Purpose-driven Purpose-drivenThe Curriculum Planning Process for Undergraduate Game Degree Programs in the United Kingdom and United Stateshttps://dl.acm.org/doi/abs/10.1145InventivePractical Problem-Based Learning in		TINCHUNE	,
https://dl.acm.org/doi/abs/10.1145 /1993069.1993073Purpose-driven, ResponsiveComputational Thinking and Expository Writing in the Middle Schoolhttps://dl.acm.org/doi/abs/10.1145 /2037276.2037283ProactiveUniversal Design: Implications for Computing Educationhttps://dl.acm.org/doi/abs/10.1145 /2160547.2160550Purpose-drivenThe Curriculum Planning Process for Undergraduate Game Degree Programs in the United Kingdom and United Stateshttps://dl.acm.org/doi/abs/10.1145InventivePractical Problem-Based Learning in	11205241220520		
/1993069.1993073ResponsiveWriting in the Middle Schoolhttps://dl.acm.org/doi/abs/10.1145ProactiveUniversal Design: Implications for Computing Educationhttps://dl.acm.org/doi/abs/10.1145Purpose-drivenThe Curriculum Planning Process for Undergraduate Game Degree Programs in the United Kingdom and United Stateshttps://dl.acm.org/doi/abs/10.1145InventivePractical Problem-Based Learning in	https://dl.acm.org/doi/abs/10_1145	Purpoco-drivon	
https://dl.acm.org/doi/abs/10.1145 /2037276.2037283ProactiveUniversal Design: Implications for Computing Educationhttps://dl.acm.org/doi/abs/10.1145 /2160547.2160550Purpose-drivenThe Curriculum Planning Process for Undergraduate Game Degree Programs in the United Kingdom and United Stateshttps://dl.acm.org/doi/abs/10.1145InventivePractical Problem-Based Learning in			
/2037276.2037283Computing Educationhttps://dl.acm.org/doi/abs/10.1145Purpose-drivenThe Curriculum Planning Process for Undergraduate Game Degree Programs in the United Kingdom and United Stateshttps://dl.acm.org/doi/abs/10.1145InventivePractical Problem-Based Learning in			
https://dl.acm.org/doi/abs/10.1145 /2160547.2160550Purpose-drivenThe Curriculum Planning Process for Undergraduate Game Degree Programs in the United Kingdom and United Stateshttps://dl.acm.org/doi/abs/10.1145InventivePractical Problem-Based Learning in		Proactive	
/2160547.2160550 Undergraduate Game Degree Programs in the United Kingdom and United States https://dl.acm.org/doi/abs/10.1145 Inventive Practical Problem-Based Learning in		Duran Li	
https://dl.acm.org/doi/abs/10.1145 Inventive the United Kingdom and United States		Purpose-driven	
https://dl.acm.org/doi/abs/10.1145 Inventive Practical Problem-Based Learning in	/216054/.2160550		
<u>/2275597.2275599</u> Computing Education		Inventive	
		1	Computing Education

	1	
https://dl.acm.org/doi/abs/10.1145	Responsive	When Life and Learning Do Not Fit:
<u>/2382564.2382567</u>		Challenges of Workload and
		Communication in Introductory Computer
		Science Online
https://dl.acm.org/doi/abs/10.1145	Collaborative	Talking about code: Integrating
<u>/2499947.2499951</u>		pedagogical code reviews into early
		computing courses
https://dl.acm.org/doi/abs/10.1145	Collaborative,	Introducing Discipline-Based Computing
/2534971	Inventive,	in Undergraduate Engineering Education
	Responsible	
https://dl.acm.org/doi/abs/10.1145	Professional	Computational Thinking in Elementary
/2576872		and Secondary Teacher Education
https://dl.acm.org/doi/abs/10.1145	Proactive	Teaching Introductory Programming: A
/2662412		Quantitative Evaluation of Different
		Approaches
https://dl.acm.org/doi/abs/10.1145	Proactive	Translating Principles of Effective
/2737596	1 I Odecive	Feedback for Students into the CS1
12131390		Context
https://dl.acm.org/doi/abs/10.1145	Self-directed	Why Computing Students Learn on Their
/2747008		Own: Motivation for Self-Directed
12111000		Learning of Computing
https://dl.acm.org/doi/abs/10.1145	Collaborative,	A Method to Analyze Computer Science
/2793507	Proactive	Students' Teamwork in Online
<u>12793307</u>	FIDACLIVE	Collaborative Learning Environments
https://dl.acm.org/doi/abs/10.1145	Adaptable,	A Meta-Analysis of Pair-Programming in
/2996201	Collaborative,	Computer Programming Courses:
72330201	Meticulous,	Implications for Educational Practice
	Professional	Implications for Educational Fractice
https://dl.acm.org/doi/abs/10.1145	Professional	Early Lessons from Evaluation of
/3077617	Professional	Computer Science Teacher Professional
75077017		Development in Google's CS4HS Program
https://dl.acm.org/doi/abs/10.1145	Collaborative,	Assessing Students' IT Professional
/3231710	Inventive,	Values in a Global Project Setting
75251710	Professional,	values in a Global Project Setting
	Responsible	
https://dl.acm.org/doi/abs/10.1145	Self-directed	Searching for Global Employability: Can
/3277568	Sell-ullecteu	Students Capitalize on Enabling Learning
75277508		Environments?
https://dl.acm.org/doi/abs/10_1145	Moticulous	
https://dl.acm.org/doi/abs/10.1145 /3283070	Meticulous,	Identifying Pathways to Computer Science: The Long-Term Impact of Short-
/3203070	Passionate	Term Game Programming Outreach
		Interventions
https://dl.acm.arg/doi/abs/10.114E	Moticulous	Transformative and Traublessma?
https://dl.acm.org/doi/abs/10.1145	Meticulous	Transformative and Troublesome?
https://dl.acm.org/doi/abs/10.1145 /3283071	Meticulous	Students' and Professional Programmers'
	Meticulous	Students' and Professional Programmers' Perspectives on Difficult Concepts in
/3283071		Students' and Professional Programmers' Perspectives on Difficult Concepts in Programming
/3283071 https://dl.acm.org/doi/abs/10.1145	Adaptable,	Students' and Professional Programmers' Perspectives on Difficult Concepts in Programming Global Software Engineering Education
/3283071	Adaptable, Collaborative,	Students' and Professional Programmers' Perspectives on Difficult Concepts in Programming Global Software Engineering Education Practice Continuum Special Issue of the
/3283071 https://dl.acm.org/doi/abs/10.1145	Adaptable, Collaborative, Inventive,	Students' and Professional Programmers' Perspectives on Difficult Concepts in Programming Global Software Engineering Education Practice Continuum Special Issue of the ACM Transactions on Computing
/3283071 https://dl.acm.org/doi/abs/10.1145	Adaptable, Collaborative, Inventive, Professional,	Students' and Professional Programmers' Perspectives on Difficult Concepts in Programming Global Software Engineering Education Practice Continuum Special Issue of the
/3283071 https://dl.acm.org/doi/abs/10.1145	Adaptable, Collaborative, Inventive, Professional, Responsible,	Students' and Professional Programmers' Perspectives on Difficult Concepts in Programming Global Software Engineering Education Practice Continuum Special Issue of the ACM Transactions on Computing
/3283071 https://dl.acm.org/doi/abs/10.1145 /3294011	Adaptable, Collaborative, Inventive, Professional, Responsible, Responsive	Students' and Professional Programmers' Perspectives on Difficult Concepts in Programming Global Software Engineering Education Practice Continuum Special Issue of the ACM Transactions on Computing Education
/3283071 https://dl.acm.org/doi/abs/10.1145 /3294011 https://dl.acm.org/doi/abs/10.1145	Adaptable, Collaborative, Inventive, Professional, Responsible,	Students' and Professional Programmers' Perspectives on Difficult Concepts in Programming Global Software Engineering Education Practice Continuum Special Issue of the ACM Transactions on Computing Education Pedagogy that Supports Computer
/3283071 https://dl.acm.org/doi/abs/10.1145 /3294011 https://dl.acm.org/doi/abs/10.1145 /3322210	Adaptable, Collaborative, Inventive, Professional, Responsible, Responsive Responsive	Students' and Professional Programmers' Perspectives on Difficult Concepts in Programming Global Software Engineering Education Practice Continuum Special Issue of the ACM Transactions on Computing Education Pedagogy that Supports Computer Science for <i>All</i>
/3283071 https://dl.acm.org/doi/abs/10.1145 /3294011 https://dl.acm.org/doi/abs/10.1145 /3322210 https://dl.acm.org/doi/abs/10.1145	Adaptable, Collaborative, Inventive, Professional, Responsible, Responsive Responsive Passionate, Self-	Students' and Professional Programmers' Perspectives on Difficult Concepts in Programming Global Software Engineering Education Practice Continuum Special Issue of the ACM Transactions on Computing Education Pedagogy that Supports Computer Science for <i>All</i> Understanding the Motivations of Final-
/3283071 https://dl.acm.org/doi/abs/10.1145 /3294011 https://dl.acm.org/doi/abs/10.1145 /3322210	Adaptable, Collaborative, Inventive, Professional, Responsible, Responsive Responsive	Students' and Professional Programmers' Perspectives on Difficult Concepts in Programming Global Software Engineering Education Practice Continuum Special Issue of the ACM Transactions on Computing Education Pedagogy that Supports Computer Science for <i>All</i>

https://dl.acm.org/doi/abs/10.1145	Adaptable,	Knowledge, Skills, and Abilities for
<u>/3421254</u>	Inventive,	Specialized Curricula in Cyber Defense:
	Professional	Results from Interviews with Cyber
		Professionals
https://dl.acm.org/doi/abs/10.1145	Passionate,	A Sociocultural Perspective on Computer
<u>/3487052</u>	Proactive	Science Capital and its Pedagogical
		Implications in Computer Science
		Education
https://dl.acm.org/doi/abs/10.1145	Adaptable,	Interest Development Theory in
<u>/3487054</u>	Passionate,	Computing Education: A Framework and
	Responsive, Self-	Toolkit for Researchers and Designers
	directed	
https://dl.acm.org/doi/abs/10.1145	Responsive	Examining the What, Why, and How of
/3500918		Multilingual Student Identity
		Development in Computer Science
https://dl.acm.org/doi/abs/10.1145	Responsible	A Qualitative Study of Experienced
/3517134		Course Coordinators' Perspectives on
		Assessment in Introductory Programming
		Courses for Non-CS Majors
https://dl.acm.org/doi/full/10.1145	Passionate,	"What Happens to the Raspado man in a
/3453653	Responsible	Cash-free Society?": Teaching and
		Learning Socially Responsible Computing
https://dl.acm.org/doi/full/10.1145	Passionate	Intercultural Computing Education:
/3458037		Toward Justice Across Difference
https://dl.acm.org/doi/full/10.1145	Adaptable,	Identifying Non-Technical Skill Gaps in
/3464431	Meticulous,	Software Engineering Education: What
<u>/5+6++51</u>	Responsible,	Experts Expect But Students Don't Learn
	Self-directed	Experts Expect but Students Don't Learn
https://dl.acm.org/doi/full/10.1145	Purpose-driven	Coding with Minecraft: The Development
/3471573	r dipose diven	of Middle School Students' Computational
<u>/51/15/5</u>		Thinking
https://dl.acm.org/doi/full/10.1145	Self-directed	Toward a Framework for Teaching
/3485062	Sen directed	Artificial Intelligence to a Higher
<u>/3+03002</u>		Education Audience
https://dl.acm.org/doi/full/10.1145	Adaptable	Adaptive Assessment and Content
/3511886	ларталс	Recommendation in Online Programming
/5511000		Courses: On the Use of Elo-rating
https://ieeexplore.ieee.org/abstract	Meticulous	Fostering and managing curriculum
/document/1158168	neticulous	change and innovation
https://ieeexplore.ieee.org/abstract	Inventive	Measuring engineering freshman
/document/1158180	TIVEILIVE	attitudes and perceptions of their first
/document/1130100		year academic experience: the continuing
		development of two assessment
		instruments
https://ieeexplore.ieee.org/abstract	Posponsivo	Participatory Action Research in a
/document/4117031	Responsive	
/uocument/411/031		Blended Learning Course on Project
https://ioppyplang.iopg.ang/shatus.st	Docnorsius	Management Soft Skills
https://ieeexplore.ieee.org/abstract	Responsive	Person centered, technology enhanced
/document/4417890		learning in action: Action research in a
https://iconvertexcites.com/shat.com	Invention	course on organizational development
https://ieeexplore.ieee.org/abstract	Inventive	An exploratory factor analysis of the
/document/4720400		Pittsburgh Freshman Engineering
	Ducation	Attitudes Survey
https://ieeexplore.ieee.org/abstract	Proactive	Development of an assessment
<u>/document/5673411</u>		instrument to examine outcomes of
		entrepreneurship education on
		engineering students


https://ieeexplore.ieee.org/abstract Purpose-driven Utilizing reflection in projects for increased metacognition and enhanced learning https://ieeexplore.ieee.org/abstract Collaborative Student reflections on Collaborative Technology in a globally distributed student project https://ieeexplore.ieee.org/abstract Passionate Identifying the impact of the SPIRIT program in student knowledge, attitudes, and perceptions toward computing careers https://ieeexplore.ieee.org/abstract Self-directed PBL in teaching computing: An overview of the last 15 years https://ieeexplore.ieee.org/abstract Adaptable Pere assessment in experiential learning Assessing tacit and explicit skills in agile software engineering capstone projects https://ieeexplore.ieee.org/abstract Adaptable Professional, Self-directed Transversal competencies of electrical and computing engineering capstone projects https://ieeexplore.ieee.org/abstract Professional, Self-directed learning and professional skill attainment: A comparison of project based learning to traditional engineerin gabierering students' professional skill attainment freshmen engineering students' professional skill attainment of freshmen engineering students' professional identifies https://ieeexplore.ieee.org/abstract Professional The implications for teaching teamwork attitude, interest, and self- directed learning and professional identifies https://ieeexplore.ieee.org/abstract Professional <th></th> <th></th> <th></th>			
Intest://eeexplore.ieee.org/abstract Collaborative Extudent reflections on Collaborative Intest://eeexplore.ieee.org/abstract Collaborative Student reflections on Collaborative Intest://eeexplore.ieee.org/abstract Passionate Identifying the impact of the SPIRIT program in student knowledge, attitudes, and perceptions toward computing careers Identifying the impact of the SPIRIT https://ieeexplore.ieee.org/abstract Self-directed PBL in teaching computing: An overview of the last 15 years https://ieeexplore.ieee.org/abstract Adaptable Peer assessment in experiential learning markets be the engineers of the future? https://ieeexplore.ieee.org/abstract Adaptable, Proactive Transversal competencies of electrical and computing engineers of orbiget demand idocument/7044169 Purpose-driven Might young markers be the engineers of the future? https://ieeexplore.ieee.org/abstract Professional, Self-directed Self-directed learning and professional self-directed learning on project based learning on project based learning on project based learning on prostion of biom's knowledge, skills, and affective-based goals in promoting development of frashmen engineering students' professional identities https://ieeexplore.ieee.org/abstract Professional Teamwork attitude, interest, and self-directing students' professional identities		Purpose-driven	
https://leeexplore.ieee.org/abstract Collaborative Student reflections on Collaborative Technology in a globally distributed student project https://leeexplore.ieee.org/abstract Passionate Identifying the impact of the SPIRIT program in student knowledge, attitudes, and perceptions toward computing careers https://leeexplore.ieee.org/abstract Self-directed PBL in teaching computing: An overview of the last 15 years https://leeexplore.ieee.org/abstract Adaptable Peer assessment in experiential learning Assessing tacit and explicit skills in aglie software engineering capatone projects https://leeexplore.ieee.org/abstract Adaptable, Proactive Transversal computing capatone projects https://leeexplore.ieee.org/abstract Adaptable, Proactive Transversal computing engineers considering market demand https://leeexplore.ieee.org/abstract Adaptable, Professional Transversal computing engineers of the future? https://leeexplore.ieee.org/abstract Professional The impacts of project based learning on self-directed learning and professional self-directed learning and professional identifies https://leeexplore.ieee.org/abstract Professional An exploration of Bloom's knowledge, skills, and affective-based goals in promoting development of freshmen engineering education https://leeexplore.ieee.org/abstract Roating development of freshmen engineering leadership capabilit	/document/6462335		-
Idocument/6452410 Technology in a globally distributed student project https://ieeexplore.ieee.org/abstract /document/6452502 Passionate Identifying the impact of the SPIRIT program in student knowledge, attitudes, and perceptions toward computing careers https://ieeexplore.ieee.org/abstract /document/6684330 Self-directed PBL in teaching computing: An overview of the last 15 years https://ieeexplore.ieee.org/abstract /document/6684330 Purpose-driven future? Should Makers be the engineers of the future? https://ieeexplore.ieee.org/abstract /document/7044169 Adaptable Proactive Peer assessment in experiential learning market demand https://ieeexplore.ieee.org/abstract /document/7044169 Purpose-driven Might young makers be the engineers of the future? https://ieeexplore.ieee.org/abstract /document/7344028 Professional, Self-directed The impacts of project based learning on self-directed learning and professional skil attainment: A comparison of project based learning to traditional engineering education https://ieeexplore.ieee.org/abstract /document/7344028 Professional An exploration of Bloom's knowledge, skills to engineering students' professional identities https://ieeexplore.ieee.org/abstract /document/734401 Professional An exploration of Bloom's knowledge, skills based on an agile-process approach Project based paring on the attitudes which have a bearing on the attitudes which fresta e abering on the attitudes which frest a basing an		A H L H	
ttps://ieeexplore.ieee.org/abstractPassionatestudent project//document/6462502PassionateIdentifying the impact of the SPIRIT program in student knowledge, attitudes, and perceptions toward computing careershttps://ieeexplore.ieee.org/abstractSelf-directedPBL in teaching computing: An overview of the last 15 yearshttps://ieeexplore.ieee.org/abstractAdaptable, ProactivePer assessment in experiential learning document/668433//document/6685132Adaptable, ProactivePer assessment in experiential learning and explicit skills in agile software engineering capstone projectshttps://ieeexplore.ieee.org/abstractAdaptable, ProactiveTransversal comptencies of electrical and computing engineers considering market demandhttps://ieeexplore.ieee.org/abstractPurpose-drivenMight young makers be the engineers of the future?https://ieeexplore.ieee.org/abstractProfessional, Self-directedThe impacts of project based learning on self-directed learning on groject based learning on self-directed learning on forlect based learning to traditional engineering educationhttps://ieeexplore.ieee.org/abstractProfessional ProfessionalAn exploration of Bloom's knowledge, skills, and affective-based goals in promoting development of freshmen engineering students' professional identitieshttps://ieeexplore.ieee.org/abstractProfessionalTeamwork skills to engineering students' soft- document/7344057https://ieeexplore.ieee.org/abstractProfessional engineering leadcets'ip capabilitieshttps://ieeexplore.ieee.org/abstractProfessional engineering stude		Collaborative	
https://ieeexplore.ieee.org/abstract Passionate Identifying the impact of the SPIRIT /document/6462502 Professionate Identifying the impact of the SPIRIT https://ieeexplore.ieee.org/abstract Self-directed PBL in teaching computing: An overview /document/6684300 Phtos://ieeexplore.ieee.org/abstract Purpose-driven Should Makers be the engineers of the future? https://ieeexplore.ieee.org/abstract Adaptable Pere assessment in experiential learning Assessing tacit and explicit skills in agile software engineering capstene projects assessing tacit and explicit skills in agile software engineering capstene projects and computing engineers considering market demand https://ieeexplore.ieee.org/abstract Adaptable Transversal competencies of electrical and computing and professional skill attainment: A comparison of project based learning on self-directed learning and professional skill attainment: A comparison of project based learning on promoting development of freshmen engineering students' professional identities https://ieeexplore.ieee.org/abstract Professional An exploration of Bloom's knowledge, skills and affective-based goals in promoting development of freshmen engineering students' professional identities https://ieeexplore.ieee.org/abstract Professional Transwork attitudes interest, and self-efficacutions for teaching teamwork skills to engineering students' off-skills based on an agile-process approach project based in promoting idevelopment of freshmen e	<u>/document/6462410</u>		
Idocument/6462502 program in student knowledge, attitudes, and perceptions toward computing careers https://ieeexplore.ieee.org/abstract /document/6684830 Self-directed PBL in teaching computing: An overview of the last 15 years https://ieeexplore.ieee.org/abstract /document/6684931 Purpose-driven Should Makers be the engineers of the future? https://ieeexplore.ieee.org/abstract /document/6684933 Adaptable Peer assessment in experiential learning Assessing tacit and explicit skills in agile software engineering capstone projects https://ieeexplore.ieee.org/abstract /document/7044169 Adaptable, Proactive Transversal competencies of electrical market demand https://ieeexplore.ieee.org/abstract /document/7044218 Purpose-driven Might young makers be the engineers of the future? https://ieeexplore.ieee.org/abstract /document/7344028 Professional, Self-directed learning on traditional engineering education https://ieeexplore.ieee.org/abstract /document/7344057 Professional An exploration of Bloom's knowledge, skills, and affective-based goals in promoting development of freshmen engineering students' professional identities https://ieeexplore.ieee.org/abstract /document/734401 Professional Teamwork attitude, interest, and self- efficacy: Their implications for teaching teamwork skills to engineering corees approach thtps://ieeexplore.ieee.org/abstract https://ieeexplore.ieee.org/abstract /document/734408			
and perceptions toward computing careers https://ieeexplore.ieee.org/abstract /document/6684300 Self-directed PBL in teaching computing: An overview of the last 15 years https://ieeexplore.ieee.org/abstract /document/6685132 Purpose-driven future? Should Makers be the engineers of the future? https://ieeexplore.ieee.org/abstract /document/26685132 Adaptable Pere assessment in experiential learning Assessing tacit and explicit skills in agile software engineering capstone projects https://ieeexplore.ieee.org/abstract /document/7044218 Adaptable, Proactive Transversal competencies of electrical and computing engineers considering market demand https://ieeexplore.ieee.org/abstract /document/7344028 Purpose-driven Might young makers be the engineers of the future? https://ieeexplore.ieee.org/abstract /document/7344057 Professional, Self-directed learning and professional skill attainment: A comparison of project based learning to traditional engineering education https://ieeexplore.ieee.org/abstract /document/7344057 Professional An exploration of Bloom's knowledge, efficience learning and professional identities https://ieeexplore.ieee.org/abstract /document/734401 Professional Teamwork skills to engineering students' promoting development of freshmen engineering leadership capabilities https://ieeexplore.ieee.org/abstract /document/7344118 Professional Maptable	https://ieeexplore.ieee.org/abstract	Passionate	Identifying the impact of the SPIRIT
Lttps://ieeexplore.ieee.org/abstract /document/6684830Self-directed of the last 15 yearshttps://ieeexplore.ieee.org/abstract /document/6684939Purpose-driven future?Should Makers be the engineers of the future?https://ieeexplore.ieee.org/abstract /document/2044169Adaptable ProactivePeer assessment in experiential learning Assessing tacit and explicit skills in aglie software engineering capstone projectshttps://ieeexplore.ieee.org/abstract /document/2044169Adaptable, ProactiveTransversal competencies of electrical and computing engineers considering market demandhttps://ieeexplore.ieee.org/abstract /document/7044218Purpose-drivenMight young makers be the engineers of the future?https://ieeexplore.ieee.org/abstract /document/7344028Professional, Self-directed learning and professional skill attainment: A comparison of project based learning to traditional engineering educationhttps://ieeexplore.ieee.org/abstract /document/7344028Professional Self-directed learning and professional skill attainment: A comparison of project based learning to traditional engineering educationhttps://ieeexplore.ieee.org/abstract /document/7344403Professional Teamwork skills to engineering students' professional identitieshttps://ieeexplore.ieee.org/abstract /document/7344401ProactiveMapping career success competencies to engineering leadership capabilitieshttps://ieeexplore.ieee.org/abstract /document/73551CollaborativeMapping career success competencies to engineering leadership capabilitieshttps://ieeexplore.ieee.org/abstract /document/735440Responsible <t< td=""><td><u>/document/6462502</u></td><td></td><td>program in student knowledge, attitudes,</td></t<>	<u>/document/6462502</u>		program in student knowledge, attitudes,
https://ieeexplore.ieee.org/abstract Self-directed PBL in teaching computing: An overview of the last 15 years /document/6684330 https://ieeexplore.ieee.org/abstract Purpose-driven Should Makers be the engineers of the future? /document/6684330 Adaptable Peer assessment in experiential learning Assessing tacit and explicit skills in agile software engineering capstone projects https://ieeexplore.ieee.org/abstract Adaptable Transversal competencies of electrical and computing engineers considering market demand /document/7044218 Purpose-driven Might young makers be the engineers of the future? /document/7344028 Professional, Self-directed The impacts of project based learning on self-directed learning and professional skills attainment: A comparison of project based learning to traditional engineering education https://ieeexplore.ieee.org/abstract Professional An exploration of Bloom's knowledge, skills, and affective-based goals in promoting development of freshmen engineering students' professional identities https://ieeexplore.ieee.org/abstract Professional Teamwork attitude, interest, and self-efficacy: Their implications for teaching teamwork skills to engineering students' professional identities https://ieeexplore.ieee.org/abstract Adaptable Rapid improvement of freshmen engineering cadership capabilities https://ieeexplore.ieee.org/abstract			and perceptions toward computing
/document/6584830 of the last 15 years https://ieeexplore.ieee.org/abstract Purpose-driven Should Makers be the engineers of the future? https://ieeexplore.ieee.org/abstract Adaptable Peer assessment in experiential learning Assessing tacit and explicit skills in agile software engineering capstone projects https://ieeexplore.ieee.org/abstract Adaptable, Proactive and computing engineers considering market demand https://ieeexplore.ieee.org/abstract Purpose-driven Might young makers be the engineers of the future? https://ieeexplore.ieee.org/abstract Professional, Self-directed learning and professional skill attainment: A comparison of project based learning and professional skills, and affective-based goals in promoting development of freshmen engineering students' professional identities https://ieeexplore.ieee.org/abstract Professional Teamwork attitude, interest, and self-directed based learning and professional identities https://ieeexplore.ieee.org/abstract Professional Teamwork attitude, interest, and self-directed based learning and professional identities https://ieeexplore.ieee.org/abstract Professional Teamwork attitude, interest, and self-directed based learning and professional identities https://ieeexplore.ieee.org/abstract Professional Teamwork attitude, interest, and self-directed based learning and professional identities https://ieee			careers
/document/6584830 of the last 15 years https://ieeexplore.ieee.org/abstract Purpose-driven Should Makers be the engineers of the future? https://ieeexplore.ieee.org/abstract Adaptable Peer assessment in experiential learning Assessing tacit and explicit skills in agile software engineering capstone projects https://ieeexplore.ieee.org/abstract Adaptable, Proactive and computing engineers considering market demand https://ieeexplore.ieee.org/abstract Purpose-driven Might young makers be the engineers of the future? https://ieeexplore.ieee.org/abstract Professional, Self-directed learning and professional skill attainment: A comparison of project based learning and professional skills, and affective-based goals in promoting development of freshmen engineering students' professional identities https://ieeexplore.ieee.org/abstract Professional Teamwork attitude, interest, and self-directed based learning and professional identities https://ieeexplore.ieee.org/abstract Professional Teamwork attitude, interest, and self-directed based learning and professional identities https://ieeexplore.ieee.org/abstract Professional Teamwork attitude, interest, and self-directed based learning and professional identities https://ieeexplore.ieee.org/abstract Professional Teamwork attitude, interest, and self-directed based learning and professional identities https://ieee	https://ieeexplore.ieee.org/abstract	Self-directed	PBL in teaching computing: An overview
https://ieeexplore.ieee.org/abstract /document/6685132 Purpose-driven future? Should Makers be the engineers of the future? Adaptable Peer assessment in experiential learning Assessing tacit and explicit skills in agile software engineering capstone projects https://ieeexplore.ieee.org/abstract /document/7044169 Adaptable, Proactive Transversal competencies of electrical and computing engineers considering market demand https://ieeexplore.ieee.org/abstract /document/7244218 Purpose-driven the future? Might young makers be the engineers of the future? https://ieeexplore.ieee.org/abstract /document/7344028 Professional, Self-directed The impacts of project based learning on self-directed learning and professional skill attainment: A comparison of project based learning to traditional engineering education https://ieeexplore.ieee.org/abstract /document/7344057 Professional An exploration of Bloom's knowledge, skills, and affective-based goals in promoting development of freshmen engineering students' professional identities https://ieeexplore.ieee.org/abstract /document/7344401 Proactive Mapping career success competencies to engineering leadership capabilities https://ieeexplore.ieee.org/abstract /document/7344401 Collaborative Pupils' attitudes to technology: a review of studies which have a bearing on the attitudes which fresh abearing on the attitudes which fresh abearing on the attitudes which freshmen bring with them to engineering adereship capabilities <t< td=""><td></td><td></td><td></td></t<>			
Intermet/6684939 Inter? https://leeexplore.ieee.org/abstract Adaptable Peer assessment in experiential learning Assessing tacit and explicit skills in agile software engineering capstone projects https://leeexplore.ieee.org/abstract Adaptable, Proactive Transversal competencies of electrical and computing engineers considering market demand https://leeexplore.ieee.org/abstract Purpose-driven Might young makers be the engineers of the future? https://leeexplore.ieee.org/abstract Purpose-driven The impacts of project based learning on self-directed learning and professional skill attainment: A comparison of project based learning to traditional engineering education https://leeexplore.ieee.org/abstract Professional Self-directed /document/7344028 Professional An exploration of Bloom's knowledge, skills, and affective-based goals in promoting development of freshmen engineering students' professional identities https://leeexplore.ieee.org/abstract Professional Teamwork attitude, interest, and self-efficacy: Their implications for teaching teamwork skills based learning to students' professional identities https://leeexplore.ieee.org/abstract Adaptable Rapid improvement of students' professional identities https://leeexplore.ieee.org/abstract Adaptable Rapid improvement of students' soft-skills base of an an agile-process approach	https://jeeexplore.jeee.org/abstract	Purpose-driven	
https://ieeexplore.ieee.org/abstract /document/6685132 Adaptable Peer assessment in experiential learning Assessing tact and explicit skills in agile software engineering capstone projects https://ieeexplore.ieee.org/abstract /document/7044169 Adaptable, Proactive Transversal competencies of electrical and computing engineers considering market demand https://ieeexplore.ieee.org/abstract /document/7044218 Purpose-driven Might young makers be the engineers of the future? https://ieeexplore.ieee.org/abstract /document/7344028 Professional, Self-directed The impacts of project based learning on self-directed learning and professional self-directed learning on project based learning to traditional engineering education https://ieeexplore.ieee.org/abstract /document/7344057 Professional An exploration of Bloom's knowledge, skills, and affective-based goals in promoting development of freshmen engineering students' professional identities https://ieeexplore.ieee.org/abstract /document/7344118 Professional Teamwork attitude, interest, and self- efficacy: Their implications for teaching teamwork skills to engineering students' soft- skills based on an agile-process approach https://ieeexplore.ieee.org/abstract /document/734846 https://ieeexplore.ieee.org/abstract /document/735551 Collaborative Pupils' attitudes to technology: a review of studies which freshmen bring with them to engineering https://ieeexplore.ieee.org/abstract /document/73589080 Nextive Development of an assessment			-
/document/6685132 Assessing tacit and explicit skills in agile software engineering capstone projects https://ieeexplore.ieee.org/abstract /document/7044169 Adaptable, Proactive Transversal competencies of electrical and computing engineers considering market demand https://ieeexplore.ieee.org/abstract /document/7344028 Purpose-driven Might young makers be the engineers of the future? https://ieeexplore.ieee.org/abstract /document/7344028 Professional, Self-directed The impacts of project based learning on self-directed learning and professional skill attainment: A comparison of project based learning to traditional engineering education https://ieeexplore.ieee.org/abstract /document/7344057 Professional An exploration of Bloom's knowledge, skills, and affective-based goals in promoting development of freshmen engineering students' professional identities https://ieeexplore.ieee.org/abstract /document/7344401 Professional Teamwork skills to engineering students' transverses approach https://ieeexplore.ieee.org/abstract /document/7344403 Proactive Mapping career success competencies to engineering leadership capabilities https://ieeexplore.ieee.org/abstract /document/734551 Adaptable Rapid improvement of students' soft- skills based on an agile-process approach https://ieeexplore.ieee.org/abstract /document/735551 Responsible Stimulating creativity: teaching engineering student affinities <td< td=""><td></td><td>Adaptable</td><td></td></td<>		Adaptable	
software engineering capstone projects https://ieeexplore.ieee.org/abstract Adaptable, Proactive Transversal competencies of electrical and computing engineers considering market demand https://ieeexplore.ieee.org/abstract Purpose-driven Might young makers be the engineers of the future? https://ieeexplore.ieee.org/abstract Professional, Self-directed learning on project based learning on self-directed learning on project based learning on self-directed learning to traditional engineering education https://ieeexplore.ieee.org/abstract Professional An exploration of Bloom's knowledge, skills, and affective-based goals in promoting development of freshmen engineering students' professional identities https://ieeexplore.ieee.org/abstract Professional Teamwork attitude, interest, and self- efficacy: Their implications for teaching teamwork skills to engineering students' protective skills to engineering students https://ieeexplore.ieee.org/abstract /document/7344401 Proactive Mapping career success competencies to engineering leadership capabilities https://ieeexplore.ieee.org/abstract /document/7344403 Collaborative Pupils' attitudes to technology: a review of studies which have a bearing on the attitudes work for defining and the attitudes chool student https://ieeexplore.ieee.org/abstract /document/738551 Inventive Development of an assessment for measuring middle school student https://ieeexplore.ieee.org/abstract /docum		riduptuble	
https://ieeexplore.ieee.org/abstract Adaptable, Proactive Transversal competencies of electrical and computing engineers considering market demand https://ieeexplore.ieee.org/abstract Purpose-driven Might young makers be the engineers of the future? https://ieeexplore.ieee.org/abstract Professional, Self-directed The impacts of project based learning on self-directed learning and professional skill attainment: A comparison of project based learning to traditional engineering education https://ieeexplore.ieee.org/abstract Professional An exploration of Bloom's knowledge, skills, and affective-based goals in promoting development of freshmen engineering students' professional identities https://ieeexplore.ieee.org/abstract Professional Teamwork attitude, interest, and self- efficacy: Their implications for teaching teamwork skills to engineering students https://ieeexplore.ieee.org/abstract Proactive Mapping career success competencies to engineering leadership capabilities https://ieeexplore.ieee.org/abstract Adaptable Skill shaded on an agile-process approach https://ieeexplore.ieee.org/abstract Collaborative Pupils' attitudes to technology: a review of studies which have a bearing on the attitudes explore.ieee.org/abstract /document/734551 Inventive Development of an assessment for measuring middle school student attitude school student https://ieeexplore.ieee.org/abstr	<u>/ document/ 0005152</u>		
/document/7044169Proactiveand computing engineers considering market demandhttps://ieeexplore.ieee.org/abstract /document/7344028Purpose-drivenMight young makers be the engineers of the future?https://ieeexplore.ieee.org/abstract /document/7344028Professional, Self-directedThe impacts of project based learning on self-directed learning and professional skill attainment: A comparison of project based learning to traditional engineering educationhttps://ieeexplore.ieee.org/abstract /document/7344057ProfessionalAn exploration of Bloom's knowledge, skills, and affective-based goals in promoting development of freshmen engineering students' professional identitieshttps://ieeexplore.ieee.org/abstract /document/734401ProfessionalTeamwork attitude, interest, and self- efficacy: Their implications for teaching teamwork skills to engineering leadership capabilitieshttps://ieeexplore.ieee.org/abstract /document/7344401ProactiveMapping career success competencies to engineering leadership capabilitieshttps://ieeexplore.ieee.org/abstract /document/736846CollaborativeOllaborativehttps://ieeexplore.ieee.org/abstract /document/736551InventiveDevelopment of an assessment for measuring middle school student attitudes chool student engineering and computational finitieshttps://ieeexplore.ieee.org/abstract /document/7757714Proactive, Self- decument/7757714https://ieeexplore.ieee.org/abstract /document/7757720Proactive, Self- dening and computational Thinking taltitudes chool students: A framework for defining and recognizing student affinitieshttps://ieeexpl	https://jeeexplore_jeee_org/abstract	Adaptable	
market demandhttps://ieeexplore.ieee.org/abstractPurpose-drivenMight young makers be the engineers of the future?https://ieeexplore.ieee.org/abstractProfessional, Self-directedThe impacts of project based learning on skill attainment: A comparison of project based learning to traditional engineering educationhttps://ieeexplore.ieee.org/abstractProfessionalAn exploration of Bloom's knowledge, skills, and affective-based goals in promoting development of freshmen engineering students' professional identitieshttps://ieeexplore.ieee.org/abstractProfessionalTeamwork attitude, interest, and self- efficacy: Their implications for teaching teamwork skills to engineering students' professional identitieshttps://ieeexplore.ieee.org/abstractProactiveMapping career success competencies to engineering leadership capabilitieshttps://ieeexplore.ieee.org/abstractCollaborativePupils' attitudes to technology: a review of studies which freshmen bring with them to engineeringhttps://ieeexplore.ieee.org/abstractCollaborativeStimulating creativity: teaching engineers to be innovatorshttps://ieeexplore.ieee.org/abstractResponsibleStimulating creativity: teaching engineers to engineeringhttps://ieeexplore.ieee.org/abstractPassionatePassionate attitudes to technology: a review of studies which freshmen bring with them to engineeringhttps://ieeexplore.ieee.org/abstractResponsibleStimulating creativity: teaching engineers to be innovatorshttps://ieeexplore.ieee.org/abstractPassionateActualizing students' prior knowledge in engineering and Computat			
https://ieeexplore.ieee.org/abstract /document/7344028Purpose-drivenMight young makers be the engineers of the future?https://ieeexplore.ieee.org/abstract /document/7344028Professional, Self-directedThe impacts of project based learning on self-directed learning and professional skills, and affective-based goals in promoting development of Bloom's knowledge, skills, and affective-based goals in promoting development of Freshmen engineering students' professional identitieshttps://ieeexplore.ieee.org/abstract /document/7344057ProfessionalAn exploration of Bloom's knowledge, skills, and affective-based goals in promoting development of freshmen engineering students' professional identitieshttps://ieeexplore.ieee.org/abstract /document/734401ProfessionalTeamwork attitude, interest, and self- efficacy: Their implications for teaching teamwork skills to engineering studentshttps://ieeexplore.ieee.org/abstract /document/7344408ProactiveMapping career success competencies to engineering teadership capabilitieshttps://ieeexplore.ieee.org/abstract /document/7345846CollaborativePupils' attitudes to technology: a review of studets' soft- skills based on an agile-process approachhttps://ieeexplore.ieee.org/abstract /document/738551ResponsibleStimulating creativity: teaching engineering attitudes to bechol student' attitudes to a assessment for measuring middle school student's attitudes to achool student's attitudes to achool student's attitudes to achool student's attitudes to achool student's froe knowledge in engineering educationhttps://ieeexplore.ieee.org/abstract /document/7737714PassionateActualizi	<u>/uocument//044109</u>	FIUALLIVE	
/document/7044218thé future?https://ieeexplore.ieee.org/abstract /document/7344028Professional, Self-directedThe impacts of project based learning on self-directed learning and professional skill attainment: A comparison of project based learning to traditional engineering educationhttps://ieeexplore.ieee.org/abstract /document/7344057Professional ProfessionalAn exploration of Bloom's knowledge, skills, and affective-based goals in promoting development of freshmen engineering students' professional identitieshttps://ieeexplore.ieee.org/abstract /document/7344118ProfessionalTeamwork attitude, interest, and self- efficacy: Their implications for teaching teamwork skills to engineering studentshttps://ieeexplore.ieee.org/abstract /document/7344401ProactiveMapping career success competencies to engineering leadership capabilitieshttps://ieeexplore.ieee.org/abstract /document/7344403CollaborativePupii's attitudes to technology: a review of studies which have a bearing on the attitudes to technology: a review of studies which freshmen bring with them to engineeringhttps://ieeexplore.ieee.org/abstract /document/736846CollaborativeDevelopment of an assessment for measuring middle school student attitudes towards robotics activitieshttps://ieeexplore.ieee.org/abstract /document/725724PasionateActualizing students' prior knowledge in engineering and Computational Thinking talent in middle school students: A framework for defining and recognizing student attribute of lifelong learning tractive dynamics: effects of student- attribute diffical	https://joooxplare.jooo.org/abstract	Purpoco, drivon	
https://leeexplore.ieee.org/abstract /document/7344028Professional, Self-directedThe impacts of project based learning on self-directed learning and professional skill attainment: A comparison of project based learning to traditional engineering educationhttps://leeexplore.ieee.org/abstract /document/7344057ProfessionalAn exploration of Bloom's knowledge, skills, and affective-based goals in promoting development of freshmen engineering students' professional identitieshttps://leeexplore.ieee.org/abstract /document/7344118ProfessionalTeamwork attitude, interest, and self- efficacy: Their implications for teaching teamwork skills to engineering studentshttps://leeexplore.ieee.org/abstract /document/7344408ProactiveMapping career success competencies to engineering leadership capabilitieshttps://leeexplore.ieee.org/abstract /document/7344408CollaborativePupils' attitudes to technology: a review of studies which have a bearing on the attitudes to technology: a review of studies which freshmen bring with them to engineering studies which freshmen bring with them to engineering middle school student attitudes towards robotics activitieshttps://leeexplore.ieee.org/abstract /document/738551PasionateActualizing students' prior knowledge in engineering add conputational thinking tattitudes towards robotics activitieshttps://leeexplore.ieee.org/abstract /document/7757724PasionateActualizing students' prior knowledge in engineering add conputational Thinking tattitudes towards robotics activitieshttps://leeexplore.ieee.org/abstract /document/753980Proactive, Self- directedhttps://leeexplore.ieee.org/abstrac		Fulpose-uriven	
/document/7344028Self-directedself-directed learning and professional skill attainment: A comparison of project based learning to traditional engineering educationhttps://ieeexplore.ieee.org/abstract /document/7344118ProfessionalAn exploration of Bloom's knowledge, skills, and affective-based goals in promoting development of freshmen engineering students' professional identitieshttps://ieeexplore.ieee.org/abstract /document/7344118ProfessionalTeamwork attitude, interest, and self- efficacy: Their implications for teaching teamwork stills to engineering studentshttps://ieeexplore.ieee.org/abstract /document/7344401ProactiveMapping career success competencies to engineering leadership capabilitieshttps://ieeexplore.ieee.org/abstract /document/734408CollaborativePupils' attitudes to technology: a review of studies which have a bearing on the attitudes which freshmen bring with them to engineeringhttps://ieeexplore.ieee.org/abstract /document/736846ResponsibleStimulating creativity: teaching engineers to be innovatorshttps://ieeexplore.ieee.org/abstract /document/735677InventiveDevelopment of an assessment for measuring middle school student attitudes to identicationhttps://ieeexplore.ieee.org/abstract /document/7757714PassionateActualizing students' pror knowledge in engineering educationhttps://ieeexplore.ieee.org/abstract /document/7257720Proactive, Self- directedDevelopment of an assessment for measuring middle school student: attitudes to reconsult attitudes in engineering educationhttps://ieeexplore.ieee.org/abstract /document/7757724Prascional <td< td=""><td></td><td>Duefe estrat</td><td></td></td<>		Duefe estrat	
skill attainment: A comparison of project based learning to traditional engineering educationhttps://ieeexplore.ieee.org/abstract /document/7344057ProfessionalAn exploration of Bloom's knowledge, 			
https://ieeexplore.ieee.org/abstract /document/7344057ProfessionalAn exploration of Bloom's knowledge, skills, and affective-based goals in promoting development of freshmen engineering students' professional identitieshttps://ieeexplore.ieee.org/abstract /document/7344118ProfessionalTeamwork attitude, interest, and self- efficacy: Their implications for teaching teamwork skills to engineering leadership capabilitieshttps://ieeexplore.ieee.org/abstract /document/7344408ProactiveMapping career success competencies to engineering leadership capabilitieshttps://ieeexplore.ieee.org/abstract /document/7344408CollaborativePupils' attitudes to technology: a review of studies which have a bearing on the attitudes which have a bearing on the attitudes which have a bearing on the attitudes to be innovatorshttps://ieeexplore.ieee.org/abstract /document/736846ResponsibleStimulating creativity: teaching engineering to be innovatorshttps://ieeexplore.ieee.org/abstract /document/73551InventiveDevelopment of an assessment for measuring middle school student attitudes towards robotics activitieshttps://ieeexplore.ieee.org/abstract /document/775774PassionateActualizing students' prior knowledge in engineering and Computational Thinking talent in middle school students: A framework for defining and recognizing student affinitieshttps://ieeexplore.ieee.org/abstract /document/775772Proactive, Self- directedDevelopment of infolong eurong eurong attudents' prior knowledge in engineering and Computational Thinking talent in middle school students: A framework for defining and recognizing student affinitiesh	/document//344028	Self-directed	
https://ieeexplore.ieee.org/abstract /document/7344057ProfessionalAn exploration of Bloom's knowledge, skills, and affective-based goals in promoting development of freshmen engineering students' professional identitieshttps://ieeexplore.ieee.org/abstract /document/7344118ProfessionalTeamwork attitude, interest, and self- efficacy: Their implications for teaching teamwork skills to engineering studentshttps://ieeexplore.ieee.org/abstract /document/7344401ProactiveMapping career success competencies to engineering leadership capabilitieshttps://ieeexplore.ieee.org/abstract /document/7344408AdaptableRapid improvement of students' soft- skills based on an agile-process approachhttps://ieeexplore.ieee.org/abstract /document/736846CollaborativePupils' attitudes which have a bearing on the attitudes which freshmen bring with them to engineering middle school studenthttps://ieeexplore.ieee.org/abstract /document/736846InventiveDevelopment of an assessment for measuring middle school student attitudes towards robotics activitieshttps://ieeexplore.ieee.org/abstract /document/736846PassionateActualizing students' prior knowledge in engineering middle school student attitudes towards robotics activitieshttps://ieeexplore.ieee.org/abstract /document/757714MeticulousEngineering and Computational Thinking talent in middle school students: A framework for defining and recognizing student affinitieshttps://ieeexplore.ieee.org/abstract /document/753720Proactive, Self- directedDeveloping the attribute of lifelong learninghttps://ieeexplore.ieee.org/abstract /document/739800 <td< td=""><td></td><td></td><td></td></td<>			
https://ieeexplore.ieee.org/abstract /document/7344057ProfessionalAn exploration of Bloom's knowledge, skills, and affective-based goals in promoting development of freshmen engineering students' professional identitieshttps://ieeexplore.ieee.org/abstract /document/7344118ProfessionalTeamwork attitude, interest, and self- efficacy: Their implications for teaching teamwork skills to engineering studentshttps://ieeexplore.ieee.org/abstract /document/7344401ProactiveMapping career success competencies to engineering leadership capabilitieshttps://ieeexplore.ieee.org/abstract /document/7344408AdaptableRapid improvement of students' soft- skills based on an agile-process approachhttps://ieeexplore.ieee.org/abstract /document/736846CollaborativePupils' attitudes to technology: a review of studies which have a bearing on the attitudes which freshmen bring with them to engineeringhttps://ieeexplore.ieee.org/abstract /document/73551InventiveDevelopment of an assessment for measuring middle school students attitudes towards robotics activitieshttps://ieeexplore.ieee.org/abstract /document/775777PassionateActualizing students' prior knowledge in engineering and Computational Thinking talent in middle school students: A framework for defining and recognizing students' prior knowledge in engineering and computational Thinking talent in middle school students: A framework for defining and recognizing student iffanceshttps://ieeexplore.ieee.org/abstract /document/775774Proactive, Self- Development of an indiferencehttps://ieeexplore.ieee.org/abstract /document/7537080Proactive, Self- dorue <tr< td=""><td></td><td></td><td></td></tr<>			
/document/7344057skills, and affective-based goals in promoting development of freshmen engineering students' professional identitieshttps://ieeexplore.ieee.org/abstract /document/7344118ProfessionalTeamwork attitude, interest, and self- efficacy: Their implications for teaching teamwork skills to engineering studentshttps://ieeexplore.ieee.org/abstract /document/7344401ProactiveMapping career success competencies to engineering leadership capabilitieshttps://ieeexplore.ieee.org/abstract /document/7344401ProactiveRapid improvement of students' soft- skills based on an agile-process approachhttps://ieeexplore.ieee.org/abstract /document/7344408CollaborativePupils' attitudes to technology: a review of studies which have a bearing on the attitudes which freshmen bring with them to engineeringhttps://ieeexplore.ieee.org/abstract /document/738551ResponsibleStimulating creativity: teaching engineers to be innovatorshttps://ieeexplore.ieee.org/abstract /document/7757677InventiveDevelopment of an assessment for measuring middle school student attitudes towards robotics activitieshttps://ieeexplore.ieee.org/abstract /document/7757714PassionateActualizing students' prior knowledge in engineering educationhttps://ieeexplore.ieee.org/abstract /document/7257720Proactive, Self- directed learningDeveloping the attribute of lifelong learninghttps://ieeexplore.ieee.org/abstract /document/73900Proactive, Self- dorected learningCollaborative			
promoting development of freshmen engineering students' professional identitieshttps://ieeexplore.ieee.org/abstract /document/7344118Professionalhttps://ieeexplore.ieee.org/abstract /document/7344401Proactivehttps://ieeexplore.ieee.org/abstract /document/7344402ProactiveMapping career success competencies to engineering leadership capabilitieshttps://ieeexplore.ieee.org/abstract /document/7344408AdaptableRapid improvement of students' soft- skills based on an agile-process approachhttps://ieeexplore.ieee.org/abstract /document/734846CollaborativePupils' attitudes to technology: a review of studies which have a bearing on the attitudes which freshmen bring with them to engineeringhttps://ieeexplore.ieee.org/abstract /document/738551Responsiblehttps://ieeexplore.ieee.org/abstract /document/775777Responsiblehttps://ieeexplore.ieee.org/abstract /document/775777Passionatehttps://ieeexplore.ieee.org/abstract /document/775774Passionatehttps://ieeexplore.ieee.org/abstract /document/775774Passionatehttps://ieeexplore.ieee.org/abstract /document/775774Meticuloushttps://ieeexplore.ieee.org/abstract /document/775774Proactive, Self- Development of an assessment for measuring middle school student attitudes towards robotics activitieshttps://ieeexplore.ieee.org/abstract /document/775774Pascionate Passionatehttps://ieeexplore.ieee.org/abstract /document/739800Proactive, Self- Developing the attribute of lifelong learninghttps://ieeexplore.ieee.org/abstract /d		Professional	
engineering students' professional identitieshttps://ieeexplore.ieee.org/abstract /document/7344118ProfessionalTeamwork attitude, interest, and self- efficacy: Their implications for teaching teamwork skills to engineering studentshttps://ieeexplore.ieee.org/abstract /document/7344401ProactiveMapping career success competencies to engineering leadership capabilitieshttps://ieeexplore.ieee.org/abstract /document/7344408AdaptableRapid improvement of students' soft- skills based on an agile-process approachhttps://ieeexplore.ieee.org/abstract /document/736846Collaborativehttps://ieeexplore.ieee.org/abstract /document/738551Collaborativehttps://ieeexplore.ieee.org/abstract /document/773677Responsiblehttps://ieeexplore.ieee.org/abstract /document/7757714InventiveDevelopment of an assessment for measuring middle school student attitudes towards robotics activitieshttps://ieeexplore.ieee.org/abstract /document/7757714PassionateActualizing students' prior knowledge in engineering and Computational Thinking talent in middle school students: A framework for defining and recognizing student affinitieshttps://ieeexplore.ieee.org/abstract /document/7757720Proactive, Self- directedhttps://ieeexplore.ieee.org/abstract /document/739080Proactive, Self- directedhttps://ieeexplore.ieee.org/abstract /document/839080CollaborativeInteractive dynamics: effects of student- student affinities	<u>/document/7344057</u>		
https://ieeexplore.ieee.org/abstract /document/7344118ProfessionalTeamwork attitude, interest, and self- efficacy: Their implications for teaching teamwork skills to engineering studentshttps://ieeexplore.ieee.org/abstract /document/7344401ProactiveMapping career success competencies to engineering leadership capabilitieshttps://ieeexplore.ieee.org/abstract /document/7344408AdaptableRapid improvement of students' soft- skills based on an agile-process approachhttps://ieeexplore.ieee.org/abstract /document/736846CollaborativePupils' attitudes to technology: a review of studies which have a bearing on the attitudes which freshmen bring with them to engineeringhttps://ieeexplore.ieee.org/abstract /document/738551ResponsibleStimulating creativity: teaching engineers to be innovatorshttps://ieeexplore.ieee.org/abstract /document/7757677InventiveDevelopment of an assessment for measuring middle school student attitudes towards robotics activitieshttps://ieeexplore.ieee.org/abstract /document/7757714PassionateActualizing students' prior knowledge in engineering and Computational Thinking talent in middle school students: A framework for defining and recognizing student affinitieshttps://ieeexplore.ieee.org/abstract /document/7757720Proactive, Self- Developing the attribute of lifelong learninghttps://ieeexplore.ieee.org/abstract /document/7757720Proactive, Self- Developing the attribute of lifelong learninghttps://ieeexplore.ieee.org/abstract /document/7839080Proactive, Self- directedDeveloping the attribute of lifelong learning			
https://ieeexplore.ieee.org/abstract /document/7344118ProfessionalTeamwork attitude, interest, and self- efficacy: Their implications for teaching teamwork skills to engineering studentshttps://ieeexplore.ieee.org/abstract /document/7344401ProactiveMapping career success competencies to engineering leadership capabilitieshttps://ieeexplore.ieee.org/abstract /document/7344408AdaptableRapid improvement of students' soft- skills based on an agile-process approachhttps://ieeexplore.ieee.org/abstract /document/736846CollaborativePupils' attitudes to technology: a review of studies which have a bearing on the attitudes which freshmen bring with them to engineeringhttps://ieeexplore.ieee.org/abstract /document/738551ResponsibleStimulating creativity: teaching engineers to be innovatorshttps://ieeexplore.ieee.org/abstract /document/775777InventiveDevelopment of an assessment for measuring middle school student attitudes towards robotics activitieshttps://ieeexplore.ieee.org/abstract /document/7757714PassionateActualizing students' prior knowledge in engineering educationhttps://ieeexplore.ieee.org/abstract /document/7757720Proactive, Self- directedDeveloping the attribute of lifelong learninghttps://ieeexplore.ieee.org/abstract /document/7357720CollaborativeInventivehttps://ieeexplore.ieee.org/abstract /document/7557720CollaborativeEngineering educationhttps://ieeexplore.ieee.org/abstract /document/7557720CollaborativeEngineering and Computational Thinking student affinitieshttps://ieeexplore.ieee.org/abstract /d			engineering students' professional
/document/7344118efficacy: Their implications for teaching teamwork skills to engineering studentshttps://ieeexplore.ieee.org/abstract /document/7344401ProactiveMapping career success competencies to engineering leadership capabilitieshttps://ieeexplore.ieee.org/abstract /document/7344408AdaptableRapid improvement of students' soft- skills based on an agile-process approachhttps://ieeexplore.ieee.org/abstract /document/736846CollaborativePupils' attitudes to technology: a review of studies which have a bearing on the attitudes which freshmen bring with them to engineeringhttps://ieeexplore.ieee.org/abstract /document/738551ResponsibleStimulating creativity: teaching engineers to be innovatorshttps://ieeexplore.ieee.org/abstract /document/7757677InventiveDevelopment of an assessment for measuring middle school student attitudes towards robotics activitieshttps://ieeexplore.ieee.org/abstract /document/7757714PassionateActualizing students' prior knowledge in engineering and Computational Thinking talent in middle school students: A framework for defining and recognizing student affinitieshttps://ieeexplore.ieee.org/abstract /document/7757720Proactive, Self- directedDeveloping the attribute of lifelong learninghttps://ieeexplore.ieee.org/abstract /document/7357720CollaborativeInteractive dynamics: effects of student-			
https://ieeexplore.ieee.org/abstract /document/7344401ProactiveMapping career success competencies to engineering leadership capabilitieshttps://ieeexplore.ieee.org/abstract /document/7344408AdaptableRapid improvement of students' soft- skills based on an agile-process approachhttps://ieeexplore.ieee.org/abstract /document/736846CollaborativePupils' attitudes to technology: a review of studies which have a bearing on the attitudes which freshmen bring with them to engineeringhttps://ieeexplore.ieee.org/abstract /document/736846ResponsibleStimulating creativity: teaching engineers to be innovatorshttps://ieeexplore.ieee.org/abstract /document/773677InventiveDevelopment of an assessment for measuring middle school student attitudes towards robotics activitieshttps://ieeexplore.ieee.org/abstract /document/7757677PassionateActualizing students' prior knowledge in engineering educationhttps://ieeexplore.ieee.org/abstract /document/7757714MeticulousEngineering and Computational Thinking talent in middle school students: A framework for defining and recognizing student affinitieshttps://ieeexplore.ieee.org/abstract /document/7757720Proactive, Self- directedDeveloping the attribute of lifelong learninghttps://ieeexplore.ieee.org/abstract /document/839080CollaborativeInteractive dynamics: effects of student-		Professional	
https://ieeexplore.ieee.org/abstract /document/7344401ProactiveMapping career success competencies to engineering leadership capabilitieshttps://ieeexplore.ieee.org/abstract /document/7344408AdaptableRapid improvement of students' soft- skills based on an agile-process approachhttps://ieeexplore.ieee.org/abstract /document/736846CollaborativePupils' attitudes to technology: a review of studies which have a bearing on the attitudes which have a bearing on the attitudes which freshmen bring with them to engineeringhttps://ieeexplore.ieee.org/abstract /document/736551ResponsibleStimulating creativity: teaching engineers to be innovatorshttps://ieeexplore.ieee.org/abstract /document/757677InventiveDevelopment of an assessment for measuring middle school student attitudes towards robotics activitieshttps://ieeexplore.ieee.org/abstract /document/775774PassionateActualizing students' prior knowledge in engineering educationhttps://ieeexplore.ieee.org/abstract /document/7757720MeticulousEngineering and Computational Thinking student affinitieshttps://ieeexplore.ieee.org/abstract /document/7757720Proactive, Self- directedDeveloping the attribute of lifelong learninghttps://ieeexplore.ieee.org/abstract /document/73980CollaborativeInteractive dynamics: effects of student-	<u>/document/7344118</u>		efficacy: Their implications for teaching
/document/7344401engineering leadership capabilitieshttps://ieeexplore.ieee.org/abstract /document/736846AdaptableRapid improvement of students' soft- skills based on an agile-process approachhttps://ieeexplore.ieee.org/abstract /document/736846CollaborativePupils' attitudes to technology: a review of studies which have a bearing on the attitudes which freshmen bring with them to engineeringhttps://ieeexplore.ieee.org/abstract /document/738551ResponsibleStimulating creativity: teaching engineers to be innovatorshttps://ieeexplore.ieee.org/abstract /document/7757677InventiveDevelopment of an assessment for measuring middle school student attitudes towards robotics activitieshttps://ieeexplore.ieee.org/abstract /document/7757714PassionateActualizing students' prior knowledge in engineering educationhttps://ieeexplore.ieee.org/abstract /document/7757720PassionateEngineering and Computational Thinking talent in middle school students: A framework for defining and recognizing student affinitieshttps://ieeexplore.ieee.org/abstract /document/7757720Proactive, Self- directedDeveloping the attribute of lifelong learninghttps://ieeexplore.ieee.org/abstract /document/839080CollaborativeInteractive dynamics: effects of student-			teamwork skills to engineering students
https://ieeexplore.ieee.org/abstract /document/7344408AdaptableRapid improvement of students' soft- skills based on an agile-process approachhttps://ieeexplore.ieee.org/abstract /document/736846CollaborativePupils' attitudes to technology: a review of studies which have a bearing on the attitudes which freshmen bring with them to engineeringhttps://ieeexplore.ieee.org/abstract /document/738551ResponsibleStimulating creativity: teaching engineers to be innovatorshttps://ieeexplore.ieee.org/abstract /document/7757677InventiveDevelopment of an assessment for measuring middle school student attitudes towards robotics activitieshttps://ieeexplore.ieee.org/abstract /document/7757714PassionateActualizing students' prior knowledge in engineering and Computational Thinking talent in middle school students: A framework for defining and recognizing student affinitieshttps://ieeexplore.ieee.org/abstract /document/7757720Proactive, Self- directedDeveloping the attribute of lifelong learninghttps://ieeexplore.ieee.org/abstract /document/7357714CollaborativeInteractive dynamics: effects of student-	https://ieeexplore.ieee.org/abstract	Proactive	Mapping career success competencies to
/document/7344408skills based on an agile-process approachhttps://ieeexplore.ieee.org/abstract /document/736846CollaborativePupils' attitudes to technology: a review of studies which have a bearing on the attitudes which freshmen bring with them to engineeringhttps://ieeexplore.ieee.org/abstract /document/738551ResponsibleStimulating creativity: teaching engineers to be innovatorshttps://ieeexplore.ieee.org/abstract /document/7757677InventiveDevelopment of an assessment for measuring middle school student attitudes towards robotics activitieshttps://ieeexplore.ieee.org/abstract /document/7757714PassionateActualizing students' prior knowledge in engineering educationhttps://ieeexplore.ieee.org/abstract /document/7757720MeticulousEngineering and Computational Thinking talent in middle school students: A framework for defining and recognizing student affinitieshttps://ieeexplore.ieee.org/abstract /document/7757720Proactive, Self- directedDeveloping the attribute of lifelong learninghttps://ieeexplore.ieee.org/abstract /document/7357720CollaborativeInteractive dynamics: effects of student-	/document/7344401		engineering leadership capabilities
/document/7344408skills based on an agile-process approachhttps://ieeexplore.ieee.org/abstract /document/736846CollaborativePupils' attitudes to technology: a review of studies which have a bearing on the attitudes which freshmen bring with them to engineeringhttps://ieeexplore.ieee.org/abstract /document/738551ResponsibleStimulating creativity: teaching engineers to be innovatorshttps://ieeexplore.ieee.org/abstract /document/7757677InventiveDevelopment of an assessment for measuring middle school student attitudes towards robotics activitieshttps://ieeexplore.ieee.org/abstract /document/7757714PassionateActualizing students' prior knowledge in engineering educationhttps://ieeexplore.ieee.org/abstract /document/7757720MeticulousEngineering and Computational Thinking talent in middle school students: A framework for defining and recognizing student affinitieshttps://ieeexplore.ieee.org/abstract /document/7757720Proactive, Self- directedDeveloping the attribute of lifelong learninghttps://ieeexplore.ieee.org/abstract /document/7357720CollaborativeInteractive dynamics: effects of student-	https://ieeexplore.ieee.org/abstract	Adaptable	
https://ieeexplore.ieee.org/abstract /document/736846CollaborativePupils' attitudes to technology: a review of studies which have a bearing on the attitudes which freshmen bring with them to engineeringhttps://ieeexplore.ieee.org/abstract /document/738551ResponsibleStimulating creativity: teaching engineers to be innovatorshttps://ieeexplore.ieee.org/abstract /document/7757677InventiveDevelopment of an assessment for measuring middle school student attitudes towards robotics activitieshttps://ieeexplore.ieee.org/abstract /document/7757714PassionateActualizing students' prior knowledge in engineering educationhttps://ieeexplore.ieee.org/abstract /document/7757720MeticulousEngineering and Computational Thinking talent in middle school students: A framework for defining and recognizing student affinitieshttps://ieeexplore.ieee.org/abstract /document/7757720Proactive, Self- directedDeveloping the attribute of lifelong learninghttps://ieeexplore.ieee.org/abstract /document/839080CollaborativeInteractive dynamics: effects of student-		·	
/document/736846of studies which have a bearing on the attitudes which freshmen bring with them to engineeringhttps://ieeexplore.ieee.org/abstract /document/73851ResponsibleStimulating creativity: teaching engineers to be innovatorshttps://ieeexplore.ieee.org/abstract /document/7757677InventiveDevelopment of an assessment for measuring middle school student attitudes towards robotics activitieshttps://ieeexplore.ieee.org/abstract /document/775774PassionateActualizing students' prior knowledge in engineering educationhttps://ieeexplore.ieee.org/abstract /document/7757720MeticulousEngineering and Computational Thinking talent in middle school students: A framework for defining and recognizing student affinitieshttps://ieeexplore.ieee.org/abstract /document/839080Proactive, Self- directedDeveloping the attribute of lifelong learninghttps://ieeexplore.ieee.org/abstractCollaborativeInteractive dynamics: effects of student-		Collaborative	Pupils' attitudes to technology: a review
https://ieeexplore.ieee.org/abstract /document/738551ResponsibleStimulating creativity: teaching engineers to be innovatorshttps://ieeexplore.ieee.org/abstract /document/7757677InventiveDevelopment of an assessment for measuring middle school student attitudes towards robotics activitieshttps://ieeexplore.ieee.org/abstract /document/7757714PassionateActualizing students' prior knowledge in engineering educationhttps://ieeexplore.ieee.org/abstract /document/7757714MeticulousEngineering and Computational Thinking talent in middle school students: A framework for defining and recognizing student affinitieshttps://ieeexplore.ieee.org/abstract /document/7757720Proactive, Self- directedDeveloping the attribute of lifelong learninghttps://ieeexplore.ieee.org/abstract /document/839080CollaborativeInteractive dynamics: effects of student-			
https://ieeexplore.ieee.org/abstract /document/738551ResponsibleStimulating creativity: teaching engineers to be innovatorshttps://ieeexplore.ieee.org/abstract /document/7757677InventiveDevelopment of an assessment for measuring middle school student attitudes towards robotics activitieshttps://ieeexplore.ieee.org/abstract /document/7757714PassionateActualizing students' prior knowledge in engineering educationhttps://ieeexplore.ieee.org/abstract /document/7757714MeticulousEngineering and Computational Thinking talent in middle school students: A framework for defining and recognizing student affinitieshttps://ieeexplore.ieee.org/abstract /document/839080Proactive, Self- directedDeveloping the attribute of lifelong learninghttps://ieeexplore.ieee.org/abstractCollaborativeInteractive dynamics: effects of student-			
https://ieeexplore.ieee.org/abstract /document/738551ResponsibleStimulating creativity: teaching engineers to be innovatorshttps://ieeexplore.ieee.org/abstract /document/7757677InventiveDevelopment of an assessment for measuring middle school student attitudes towards robotics activitieshttps://ieeexplore.ieee.org/abstract /document/7757714PassionateActualizing students' prior knowledge in engineering educationhttps://ieeexplore.ieee.org/abstract /document/7757720MeticulousEngineering and Computational Thinking talent in middle school students: A framework for defining and recognizing student affinitieshttps://ieeexplore.ieee.org/abstract /document/839080Proactive, Self- directedDeveloping the attribute of lifelong learninghttps://ieeexplore.ieee.org/abstractCollaborativeInteractive dynamics: effects of student-			
/document/738551to be innovatorshttps://ieeexplore.ieee.org/abstract /document/7757677InventiveDevelopment of an assessment for measuring middle school student attitudes towards robotics activitieshttps://ieeexplore.ieee.org/abstract /document/7757714PassionateActualizing students' prior knowledge in engineering educationhttps://ieeexplore.ieee.org/abstract /document/7757720PassionateEngineering and Computational Thinking talent in middle school students: A framework for defining and recognizing student affinitieshttps://ieeexplore.ieee.org/abstract /document/839080Proactive, Self- directedDeveloping the attribute of lifelong learninghttps://ieeexplore.ieee.org/abstractCollaborativeInteractive dynamics: effects of student-	https://ieeexplore.ieee.org/abstract	Responsible	
https://ieeexplore.ieee.org/abstract /document/7757677InventiveDevelopment of an assessment for measuring middle school student attitudes towards robotics activitieshttps://ieeexplore.ieee.org/abstract /document/7757714PassionateActualizing students' prior knowledge in engineering educationhttps://ieeexplore.ieee.org/abstract /document/7757720PassionateEngineering and Computational Thinking talent in middle school students: A framework for defining and recognizing student affinitieshttps://ieeexplore.ieee.org/abstract /document/839080Proactive, Self- directedDeveloping the attribute of lifelong learninghttps://ieeexplore.ieee.org/abstractCollaborativeInteractive dynamics: effects of student-			
/document/7757677measuring middle school student attitudes towards robotics activitieshttps://ieeexplore.ieee.org/abstract /document/7757714PassionateActualizing students' prior knowledge in engineering educationhttps://ieeexplore.ieee.org/abstract /document/7757720MeticulousEngineering and Computational Thinking talent in middle school students: A framework for defining and recognizing student affinitieshttps://ieeexplore.ieee.org/abstract /document/839080Proactive, Self- directedDeveloping the attribute of lifelong learninghttps://ieeexplore.ieee.org/abstractCollaborativeInteractive dynamics: effects of student-		Inventive	
https://ieeexplore.ieee.org/abstract /document/7757714PassionateActualizing students' prior knowledge in engineering educationhttps://ieeexplore.ieee.org/abstract /document/7757720MeticulousEngineering and Computational Thinking talent in middle school students: A framework for defining and recognizing student affinitieshttps://ieeexplore.ieee.org/abstract /document/839080Proactive, Self- directedDeveloping the attribute of lifelong learninghttps://ieeexplore.ieee.org/abstractCollaborativeInteractive dynamics: effects of student-			
https://ieeexplore.ieee.org/abstract /document/7757714PassionateActualizing students' prior knowledge in engineering educationhttps://ieeexplore.ieee.org/abstract /document/7757720MeticulousEngineering and Computational Thinking talent in middle school students: A framework for defining and recognizing student affinitieshttps://ieeexplore.ieee.org/abstract /document/839080Proactive, Self- directedDeveloping the attribute of lifelong learninghttps://ieeexplore.ieee.org/abstract /document/839080CollaborativeInteractive dynamics: effects of student-	<u>/ document////////////////////////////////////</u>		
/document/7757714engineering educationhttps://ieeexplore.ieee.org/abstract /document/7757720MeticulousEngineering and Computational Thinking talent in middle school students: A framework for defining and recognizing student affinitieshttps://ieeexplore.ieee.org/abstract /document/839080Proactive, Self- directedDeveloping the attribute of lifelong learninghttps://ieeexplore.ieee.org/abstractCollaborativeInteractive dynamics: effects of student-	https://joogyplang.joog.org/abstract	Paccionata	
https://ieeexplore.ieee.org/abstract /document/7757720MeticulousEngineering and Computational Thinking talent in middle school students: A framework for defining and recognizing student affinitieshttps://ieeexplore.ieee.org/abstract /document/839080Proactive, Self- directedDeveloping the attribute of lifelong learninghttps://ieeexplore.ieee.org/abstractCollaborativeInteractive dynamics: effects of student-		rassionate	
/document/7757720talent in middle school students: A framework for defining and recognizing student affinitieshttps://ieeexplore.ieee.org/abstract /document/839080Proactive, Self- directedDeveloping the attribute of lifelong learninghttps://ieeexplore.ieee.org/abstract https://ieeexplore.ieee.org/abstractCollaborativeInteractive dynamics: effects of student-		Matioulous	
https://ieeexplore.ieee.org/abstract /document/839080Proactive, Self- directedDeveloping the attribute of lifelong learninghttps://ieeexplore.ieee.org/abstractCollaborativeInteractive dynamics: effects of student-		meticulous	
https://ieeexplore.ieee.org/abstract /document/839080Proactive, Self- directedDeveloping the attribute of lifelong learninghttps://ieeexplore.ieee.org/abstractCollaborativeInteractive dynamics: effects of student-	/uocument///5//20		
https://ieeexplore.ieee.org/abstract /document/839080Proactive, Self- directedDeveloping the attribute of lifelong learninghttps://ieeexplore.ieee.org/abstractCollaborativeInteractive dynamics: effects of student-			
/document/839080directedlearninghttps://ieeexplore.ieee.org/abstractCollaborativeInteractive dynamics: effects of student-			
https://ieeexplore.ieee.org/abstract Collaborative Interactive dynamics: effects of student-		-	
/document/839085 centered activities on learning		Collaborative	
	<u>/document/839085</u>		centered activities on learning

	1	1
https://ieeexplore.ieee.org/abstract	Adaptable,	Engineering education curriculum:
<u>/document/840438</u>	Responsible	innovations to get a more flexible and
		dynamic course
https://ieeexplore.ieee.org/abstract	Responsible	A cooperative model for orienting
/document/841732		students to research groups
https://ieeexplore.ieee.org/abstract	Responsive	Authentic Knowledge, Learning
/document/8659152	Responsive	Outcomes, and Professional Identity: A
<u>/document/0039132</u>		Mixed-Methods Study of a Successful
		Engineering Course
https://ieeexplore.ieee.org/abstract	Inventive	Addressing the Shortage of Big Data
/document/9028350		Skills with Inter-Disciplinary Big Data
		Curriculum
https://ieeexplore.ieee.org/abstract	Purpose-driven	Developing and Assessing Engineering
/document/9028355	-	Competencies at Experiential Learning
·		Spaces
https://ieeexplore.ieee.org/abstract	Collaborative	Teaching Cybersecurity Using Guided
/document/9028408	Sonaboracive	Inquiry Collaborative Learning
https://ieeexplore.ieee.org/abstract	Collaborative,	Competencies Required for Developing
/document/9028613	Meticulous,	Computer and Information Systems
	Passionate	Curriculum
https://ieeexplore.ieee.org/abstract	Passionate	On the role of industry contact on the
/document/9028621		motivation and professional development
		of engineering students
https://ieeexplore.ieee.org/abstract	Adaptable,	Unpacking Dispositions in the CC2020
/document/9273973	Collaborative,	Computing Curriculum Overview Report
·	Inventive,	1 5
	Meticulous,	
	Passionate,	
	Proactive,	
	Professional,	
	Purpose-driven	
	Responsible,	
	Responsive, Self-	
	directed	
https://ieeexplore.ieee.org/abstract	Meticulous,	Bridging Professionalism: Dispositions as
<u>/document/9274058</u>	Professional,	Means for Relating Competency across
	Purpose-driven,	Disciplines
	Responsible,	•
	Self-directed	
https://ieeexplore.ieee.org/abstract	Responsive	Application of Adult Learning Theory to
/document/9274197		STEM Education in Online Learning
<u>/uocument/32/413/</u>		Environment
	1	
https://iooovplarg.iooo.org/abstract	Baccionata	
https://ieeexplore.ieee.org/abstract	Passionate	Undergraduate Civil Engineering
https://ieeexplore.ieee.org/abstract /document/9274269	Passionate	Undergraduate Civil Engineering Students' Perspectives on Skills for
/document/9274269		Undergraduate Civil Engineering Students' Perspectives on Skills for Future Success
/document/9274269 https://ieeexplore.ieee.org/abstract	Adaptable,	Undergraduate Civil Engineering Students' Perspectives on Skills for Future Success From Knowledge-based to Competency-
/document/9274269	Adaptable, Inventive,	Undergraduate Civil Engineering Students' Perspectives on Skills for Future Success From Knowledge-based to Competency- based Computing Education: Future
/document/9274269 https://ieeexplore.ieee.org/abstract	Adaptable, Inventive, Proactive,	Undergraduate Civil Engineering Students' Perspectives on Skills for Future Success From Knowledge-based to Competency-
/document/9274269 https://ieeexplore.ieee.org/abstract	Adaptable, Inventive,	Undergraduate Civil Engineering Students' Perspectives on Skills for Future Success From Knowledge-based to Competency- based Computing Education: Future
/document/9274269 https://ieeexplore.ieee.org/abstract	Adaptable, Inventive, Proactive, Professional,	Undergraduate Civil Engineering Students' Perspectives on Skills for Future Success From Knowledge-based to Competency- based Computing Education: Future
/document/9274269 https://ieeexplore.ieee.org/abstract	Adaptable, Inventive, Proactive, Professional, Responsible,	Undergraduate Civil Engineering Students' Perspectives on Skills for Future Success From Knowledge-based to Competency- based Computing Education: Future
/document/9274269 https://ieeexplore.ieee.org/abstract /document/9274288	Adaptable, Inventive, Proactive, Professional, Responsible, Self-directed	Undergraduate Civil Engineering Students' Perspectives on Skills for Future Success From Knowledge-based to Competency- based Computing Education: Future Directions
/document/9274269 https://ieeexplore.ieee.org/abstract /document/9274288 https://ieeexplore.ieee.org/abstract	Adaptable, Inventive, Proactive, Professional, Responsible,	Undergraduate Civil Engineering Students' Perspectives on Skills for Future Success From Knowledge-based to Competency- based Computing Education: Future Directions
/document/9274269 https://ieeexplore.ieee.org/abstract /document/9274288	Adaptable, Inventive, Proactive, Professional, Responsible, Self-directed	Undergraduate Civil Engineering Students' Perspectives on Skills for Future Success From Knowledge-based to Competency- based Computing Education: Future Directions Use of Machine Learning to Identify Predictors of Student Performance in
/document/9274269 https://ieeexplore.ieee.org/abstract /document/9274288 https://ieeexplore.ieee.org/abstract	Adaptable, Inventive, Proactive, Professional, Responsible, Self-directed	Undergraduate Civil Engineering Students' Perspectives on Skills for Future Success From Knowledge-based to Competency- based Computing Education: Future Directions Use of Machine Learning to Identify Predictors of Student Performance in Writing Viable Computer Programs with
/document/9274269 https://ieeexplore.ieee.org/abstract /document/9274288 https://ieeexplore.ieee.org/abstract /document/9637302	Adaptable, Inventive, Proactive, Professional, Responsible, Self-directed Meticulous	Undergraduate Civil Engineering Students' Perspectives on Skills for Future Success From Knowledge-based to Competency- based Computing Education: Future Directions Use of Machine Learning to Identify Predictors of Student Performance in Writing Viable Computer Programs with Repetition Loops and Methods
/document/9274269 https://ieeexplore.ieee.org/abstract /document/9274288 https://ieeexplore.ieee.org/abstract	Adaptable, Inventive, Proactive, Professional, Responsible, Self-directed	Undergraduate Civil Engineering Students' Perspectives on Skills for Future Success From Knowledge-based to Competency- based Computing Education: Future Directions Use of Machine Learning to Identify Predictors of Student Performance in Writing Viable Computer Programs with


https://eric.ed.gov/?id=EJ1137403	Purpose-driven	Where Do Student Outcomes Begin?
		Developing Professional and Personal
		Management Skills as a Strategy for
		Student Success in the First Computing
		Course and Beyond
https://eric.ed.gov/?id=EJ1146918	Self-directed	Critical Thinking Measurement in ICT
https://eric.ed.gov/?id=EJ1146931	Proactive	A Value Chain Approach for Attracting,
		Educating, and Transitioning Students to
		the IT Profession
https://eric.ed.gov/?id=EJ1146969	Collaborative,	Integrating Soft Skill Competencies
	Professional	through Project-Based Learning across
		the Information Systems Curriculum
https://eric.ed.gov/?id=EJ1147031	Inventive	Factors That Influence Transfer of
<u>nups://cnc.cu.gov/nu=LJ114/051</u>	Inventive	Learning from the Online Environment
https://eric.ed.gov/?id=EJ1258150	Proactive, Self-	Encouraging Lifelong Learning through
<u>https://enc.eu.gov/fiu=LJ1230130</u>	directed	Tech Explorations
https://avia.ad.com/2id_E112E0227		
https://eric.ed.gov/?id=EJ1258227	Professional,	eXtensible Computing Curriculum
	Purpose-driven,	Reporting Language (XCCRL)
	Responsible	
https://eric.ed.gov/?id=EJ1297703	Proactive	Effects of Teaching and Practice of Time
		Management Skills on Academic
		Performance in Computer Information
		Systems Courses
https://eric.ed.gov/?id=EJ1301236	Inventive	Cognitive Learning Strategies in an
		Introductory Computer Programming
		Course
https://eric.ed.gov/?id=EJ1329490	Responsive	Investigating Student Behavior in an
		Interdisciplinary Computing Capstone
		Course
https://isedj.org/2/12/ISEDJ.2(12).	Purpose-driven,	Service-Learning Impact on IS Students
Guthrie.pdf	Responsive	in a Web Development Course
Guunie.pui	ILESPUIISIVE	
	Inventive	
https://isedj.org/2012-		A Case Study: Applying Critical Thinking
		A Case Study: Applying Critical Thinking Skills to Computer Science and
https://isedj.org/2012- 10/N4/ISEDJv10n4p41.html	Inventive	A Case Study: Applying Critical Thinking Skills to Computer Science and Technology
https://isedj.org/2012- 10/N4/ISEDJv10n4p41.html https://isedj.org/2013-		A Case Study: Applying Critical Thinking Skills to Computer Science and Technology Collaborative learning in online courses:
https://isedj.org/2012- 10/N4/ISEDJv10n4p41.html https://isedj.org/2013- 11/N3/ISEDJv11n3p42.html	Inventive Collaborative	A Case Study: Applying Critical Thinking Skills to Computer Science and Technology Collaborative learning in online courses: Exploring students' perceptions
https://isedj.org/2012- 10/N4/ISEDJv10n4p41.html https://isedj.org/2013- 11/N3/ISEDJv11n3p42.html https://isedj.org/2013-	Inventive	A Case Study: Applying Critical Thinking Skills to Computer Science and Technology Collaborative learning in online courses: Exploring students' perceptions Reassessing the Skills Required of
https://isedj.org/2012- 10/N4/ISEDJv10n4p41.html https://isedj.org/2013- 11/N3/ISEDJv11n3p42.html	Inventive Collaborative	A Case Study: Applying Critical Thinking Skills to Computer Science and Technology Collaborative learning in online courses: Exploring students' perceptions Reassessing the Skills Required of Graduates of an Information Systems
https://isedj.org/2012- 10/N4/ISEDJv10n4p41.html https://isedj.org/2013- 11/N3/ISEDJv11n3p42.html https://isedj.org/2013- 11/N3/ISEDJv11n3p79.html	Inventive Collaborative Professional	A Case Study: Applying Critical Thinking Skills to Computer Science and Technology Collaborative learning in online courses: Exploring students' perceptions Reassessing the Skills Required of Graduates of an Information Systems Program: An Updated Analysis
https://isedj.org/2012- 10/N4/ISEDJv10n4p41.html https://isedj.org/2013- 11/N3/ISEDJv11n3p42.html https://isedj.org/2013- 11/N3/ISEDJv11n3p79.html https://isedj.org/2014-	Inventive Collaborative	A Case Study: Applying Critical Thinking Skills to Computer Science and Technology Collaborative learning in online courses: Exploring students' perceptions Reassessing the Skills Required of Graduates of an Information Systems Program: An Updated Analysis Confronting the Issues of Programming
https://isedj.org/2012- 10/N4/ISEDJv10n4p41.html https://isedj.org/2013- 11/N3/ISEDJv11n3p42.html https://isedj.org/2013- 11/N3/ISEDJv11n3p79.html	Inventive Collaborative Professional	A Case Study: Applying Critical Thinking Skills to Computer Science and Technology Collaborative learning in online courses: Exploring students' perceptions Reassessing the Skills Required of Graduates of an Information Systems Program: An Updated Analysis Confronting the Issues of Programming In Information Systems Curricula: The
https://isedj.org/2012- 10/N4/ISEDJv10n4p41.html https://isedj.org/2013- 11/N3/ISEDJv11n3p42.html https://isedj.org/2013- 11/N3/ISEDJv11n3p79.html https://isedj.org/2014- 12/n1/ISEDJv12n1p42.html	Inventive Collaborative Professional Responsible	A Case Study: Applying Critical Thinking Skills to Computer Science and Technology Collaborative learning in online courses: Exploring students' perceptions Reassessing the Skills Required of Graduates of an Information Systems Program: An Updated Analysis Confronting the Issues of Programming In Information Systems Curricula: The Goal is Success
https://isedj.org/2012- 10/N4/ISEDJv10n4p41.html https://isedj.org/2013- 11/N3/ISEDJv11n3p42.html https://isedj.org/2013- 11/N3/ISEDJv11n3p79.html https://isedj.org/2014- 12/n1/ISEDJv12n1p42.html https://isedj.org/2014-	Inventive Collaborative Professional	A Case Study: Applying Critical Thinking Skills to Computer Science and Technology Collaborative learning in online courses: Exploring students' perceptions Reassessing the Skills Required of Graduates of an Information Systems Program: An Updated Analysis Confronting the Issues of Programming In Information Systems Curricula: The Goal is Success Evaluating Effectiveness of Pair
https://isedj.org/2012- 10/N4/ISEDJv10n4p41.html https://isedj.org/2013- 11/N3/ISEDJv11n3p42.html https://isedj.org/2013- 11/N3/ISEDJv11n3p79.html https://isedj.org/2014- 12/n1/ISEDJv12n1p42.html	Inventive Collaborative Professional Responsible	A Case Study: Applying Critical Thinking Skills to Computer Science and Technology Collaborative learning in online courses: Exploring students' perceptions Reassessing the Skills Required of Graduates of an Information Systems Program: An Updated Analysis Confronting the Issues of Programming In Information Systems Curricula: The Goal is Success Evaluating Effectiveness of Pair Programming as a Teaching Tool in
https://isedj.org/2012- 10/N4/ISEDJv10n4p41.html https://isedj.org/2013- 11/N3/ISEDJv11n3p42.html https://isedj.org/2013- 11/N3/ISEDJv11n3p79.html https://isedj.org/2014- 12/n1/ISEDJv12n1p42.html https://isedj.org/2014- 12/n6/ISEDJv12n6p36.html	Inventive Collaborative Professional Responsible Collaborative	A Case Study: Applying Critical Thinking Skills to Computer Science and Technology Collaborative learning in online courses: Exploring students' perceptions Reassessing the Skills Required of Graduates of an Information Systems Program: An Updated Analysis Confronting the Issues of Programming In Information Systems Curricula: The Goal is Success Evaluating Effectiveness of Pair Programming as a Teaching Tool in Programming Courses
https://isedj.org/2012- 10/N4/ISEDJv10n4p41.html https://isedj.org/2013- 11/N3/ISEDJv11n3p42.html https://isedj.org/2013- 11/N3/ISEDJv11n3p79.html https://isedj.org/2014- 12/n1/ISEDJv12n1p42.html https://isedj.org/2014- 12/n6/ISEDJv12n6p36.html https://isedj.org/2016-	Inventive Collaborative Professional Responsible Collaborative Adaptable,	 A Case Study: Applying Critical Thinking Skills to Computer Science and Technology Collaborative learning in online courses: Exploring students' perceptions Reassessing the Skills Required of Graduates of an Information Systems Program: An Updated Analysis Confronting the Issues of Programming In Information Systems Curricula: The Goal is Success Evaluating Effectiveness of Pair Programming as a Teaching Tool in Programming Courses Developing Capable Undergraduate
https://isedj.org/2012- 10/N4/ISEDJv10n4p41.html https://isedj.org/2013- 11/N3/ISEDJv11n3p42.html https://isedj.org/2013- 11/N3/ISEDJv11n3p79.html https://isedj.org/2014- 12/n1/ISEDJv12n1p42.html https://isedj.org/2014- 12/n6/ISEDJv12n6p36.html	Inventive Collaborative Professional Responsible Collaborative Adaptable, Purpose-driven,	A Case Study: Applying Critical Thinking Skills to Computer Science and Technology Collaborative learning in online courses: Exploring students' perceptions Reassessing the Skills Required of Graduates of an Information Systems Program: An Updated Analysis Confronting the Issues of Programming In Information Systems Curricula: The Goal is Success Evaluating Effectiveness of Pair Programming as a Teaching Tool in Programming Courses Developing Capable Undergraduate Students: A focus on Problem Based
https://isedj.org/2012-10/N4/ISEDJv10n4p41.htmlhttps://isedj.org/2013-11/N3/ISEDJv11n3p42.htmlhttps://isedj.org/2013-11/N3/ISEDJv11n3p79.htmlhttps://isedj.org/2014-12/n1/ISEDJv12n1p42.htmlhttps://isedj.org/2014-12/n6/ISEDJv12n6p36.htmlhttps://isedj.org/2016-14/n1/ISEDJv14n1p71.html	Inventive Collaborative Professional Responsible Collaborative Adaptable, Purpose-driven, Responsible	A Case Study: Applying Critical Thinking Skills to Computer Science and Technology Collaborative learning in online courses: Exploring students' perceptions Reassessing the Skills Required of Graduates of an Information Systems Program: An Updated Analysis Confronting the Issues of Programming In Information Systems Curricula: The Goal is Success Evaluating Effectiveness of Pair Programming as a Teaching Tool in Programming Courses Developing Capable Undergraduate Students: A focus on Problem Based Learning and Assessment
https://isedj.org/2012- 10/N4/ISEDJv10n4p41.html https://isedj.org/2013- 11/N3/ISEDJv11n3p42.html https://isedj.org/2013- 11/N3/ISEDJv11n3p79.html https://isedj.org/2014- 12/n1/ISEDJv12n1p42.html https://isedj.org/2014- 12/n6/ISEDJv12n6p36.html https://isedj.org/2016- 14/n1/ISEDJv14n1p71.html https://isedj.org/2016-	Inventive Collaborative Professional Responsible Collaborative Adaptable, Purpose-driven,	A Case Study: Applying Critical Thinking Skills to Computer Science and Technology Collaborative learning in online courses: Exploring students' perceptions Reassessing the Skills Required of Graduates of an Information Systems Program: An Updated Analysis Confronting the Issues of Programming In Information Systems Curricula: The Goal is Success Evaluating Effectiveness of Pair Programming as a Teaching Tool in Programming Courses Developing Capable Undergraduate Students: A focus on Problem Based Learning and Assessment Developing Project Based Learning,
https://isedj.org/2012-10/N4/ISEDJv10n4p41.htmlhttps://isedj.org/2013-11/N3/ISEDJv11n3p42.htmlhttps://isedj.org/2013-11/N3/ISEDJv11n3p79.htmlhttps://isedj.org/2014-12/n1/ISEDJv12n1p42.htmlhttps://isedj.org/2014-12/n6/ISEDJv12n6p36.htmlhttps://isedj.org/2016-14/n1/ISEDJv14n1p71.html	Inventive Collaborative Professional Responsible Collaborative Adaptable, Purpose-driven, Responsible	A Case Study: Applying Critical Thinking Skills to Computer Science and Technology Collaborative learning in online courses: Exploring students' perceptions Reassessing the Skills Required of Graduates of an Information Systems Program: An Updated Analysis Confronting the Issues of Programming In Information Systems Curricula: The Goal is Success Evaluating Effectiveness of Pair Programming as a Teaching Tool in Programming Courses Developing Capable Undergraduate Students: A focus on Problem Based Learning and Assessment
https://isedj.org/2012- 10/N4/ISEDJv10n4p41.html https://isedj.org/2013- 11/N3/ISEDJv11n3p42.html https://isedj.org/2013- 11/N3/ISEDJv11n3p79.html https://isedj.org/2014- 12/n1/ISEDJv12n1p42.html https://isedj.org/2014- 12/n6/ISEDJv12n6p36.html https://isedj.org/2016- 14/n1/ISEDJv14n1p71.html https://isedj.org/2016-	Inventive Collaborative Professional Responsible Collaborative Adaptable, Purpose-driven, Responsible	A Case Study: Applying Critical Thinking Skills to Computer Science and Technology Collaborative learning in online courses: Exploring students' perceptions Reassessing the Skills Required of Graduates of an Information Systems Program: An Updated Analysis Confronting the Issues of Programming In Information Systems Curricula: The Goal is Success Evaluating Effectiveness of Pair Programming as a Teaching Tool in Programming Courses Developing Capable Undergraduate Students: A focus on Problem Based Learning and Assessment Developing Project Based Learning,
https://isedj.org/2012- 10/N4/ISEDJv10n4p41.html https://isedj.org/2013- 11/N3/ISEDJv11n3p42.html https://isedj.org/2013- 11/N3/ISEDJv11n3p79.html https://isedj.org/2014- 12/n1/ISEDJv12n1p42.html https://isedj.org/2014- 12/n6/ISEDJv12n6p36.html https://isedj.org/2016- 14/n1/ISEDJv14n1p71.html https://isedj.org/2016-	Inventive Collaborative Professional Responsible Collaborative Adaptable, Purpose-driven, Responsible	A Case Study: Applying Critical Thinking Skills to Computer Science and Technology Collaborative learning in online courses: Exploring students' perceptions Reassessing the Skills Required of Graduates of an Information Systems Program: An Updated Analysis Confronting the Issues of Programming In Information Systems Curricula: The Goal is Success Evaluating Effectiveness of Pair Programming as a Teaching Tool in Programming Courses Developing Capable Undergraduate Students: A focus on Problem Based Learning and Assessment Developing Project Based Learning, Integrated Courses from Two Different Colleges at an Institution of Higher
https://isedj.org/2012- 10/N4/ISEDJv10n4p41.html https://isedj.org/2013- 11/N3/ISEDJv11n3p42.html https://isedj.org/2013- 11/N3/ISEDJv11n3p79.html https://isedj.org/2014- 12/n1/ISEDJv12n1p42.html https://isedj.org/2014- 12/n6/ISEDJv12n6p36.html https://isedj.org/2016- 14/n1/ISEDJv14n1p71.html https://isedj.org/2016-	Inventive Collaborative Professional Responsible Collaborative Adaptable, Purpose-driven, Responsible	A Case Study: Applying Critical Thinking Skills to Computer Science and Technology Collaborative learning in online courses: Exploring students' perceptions Reassessing the Skills Required of Graduates of an Information Systems Program: An Updated Analysis Confronting the Issues of Programming In Information Systems Curricula: The Goal is Success Evaluating Effectiveness of Pair Programming as a Teaching Tool in Programming Courses Developing Capable Undergraduate Students: A focus on Problem Based Learning and Assessment Developing Project Based Learning, Integrated Courses from Two Different Colleges at an Institution of Higher Education: An Overview of the Processes,
https://isedj.org/2012-10/N4/ISEDJv10n4p41.htmlhttps://isedj.org/2013-11/N3/ISEDJv11n3p42.htmlhttps://isedj.org/2013-11/N3/ISEDJv11n3p79.htmlhttps://isedj.org/2014-12/n1/ISEDJv12n1p42.htmlhttps://isedj.org/2014-12/n6/ISEDJv12n6p36.htmlhttps://isedj.org/2016-14/n1/ISEDJv14n1p71.htmlhttps://isedj.org/2016-14/n3/ISEDJv14n3p55.html	Inventive Collaborative Professional Responsible Collaborative Adaptable, Purpose-driven, Responsible Collaborative	A Case Study: Applying Critical Thinking Skills to Computer Science and Technology Collaborative learning in online courses: Exploring students' perceptions Reassessing the Skills Required of Graduates of an Information Systems Program: An Updated Analysis Confronting the Issues of Programming In Information Systems Curricula: The Goal is Success Evaluating Effectiveness of Pair Programming as a Teaching Tool in Programming Courses Developing Capable Undergraduate Students: A focus on Problem Based Learning and Assessment Developing Project Based Learning, Integrated Courses from Two Different Colleges at an Institution of Higher Education: An Overview of the Processes, Challenges, and Lessons Learned
https://isedj.org/2012-10/N4/ISEDJv10n4p41.htmlhttps://isedj.org/2013-11/N3/ISEDJv11n3p42.htmlhttps://isedj.org/2013-11/N3/ISEDJv11n3p79.htmlhttps://isedj.org/2014-12/n1/ISEDJv12n1p42.htmlhttps://isedj.org/2014-12/n6/ISEDJv12n6p36.htmlhttps://isedj.org/2016-14/n1/ISEDJv14n1p71.htmlhttps://isedj.org/2016-14/n3/ISEDJv14n3p55.html	Inventive Collaborative Professional Responsible Collaborative Adaptable, Purpose-driven, Responsible	A Case Study: Applying Critical Thinking Skills to Computer Science and Technology Collaborative learning in online courses: Exploring students' perceptions Reassessing the Skills Required of Graduates of an Information Systems Program: An Updated Analysis Confronting the Issues of Programming In Information Systems Curricula: The Goal is Success Evaluating Effectiveness of Pair Programming as a Teaching Tool in Programming Courses Developing Capable Undergraduate Students: A focus on Problem Based Learning and Assessment Developing Project Based Learning, Integrated Courses from Two Different Colleges at an Institution of Higher Education: An Overview of the Processes, Challenges, and Lessons Learned Use of Failure in IS Development
https://isedj.org/2012-10/N4/ISEDJv10n4p41.htmlhttps://isedj.org/2013-11/N3/ISEDJv11n3p42.htmlhttps://isedj.org/2013-11/N3/ISEDJv11n3p79.htmlhttps://isedj.org/2014-12/n1/ISEDJv12n1p42.htmlhttps://isedj.org/2014-12/n6/ISEDJv12n6p36.htmlhttps://isedj.org/2016-14/n1/ISEDJv14n1p71.htmlhttps://isedj.org/2016-14/n3/ISEDJv14n3p55.html	Inventive Collaborative Professional Responsible Collaborative Adaptable, Purpose-driven, Responsible Collaborative	A Case Study: Applying Critical Thinking Skills to Computer Science and Technology Collaborative learning in online courses: Exploring students' perceptions Reassessing the Skills Required of Graduates of an Information Systems Program: An Updated Analysis Confronting the Issues of Programming In Information Systems Curricula: The Goal is Success Evaluating Effectiveness of Pair Programming as a Teaching Tool in Programming Courses Developing Capable Undergraduate Students: A focus on Problem Based Learning and Assessment Developing Project Based Learning, Integrated Courses from Two Different Colleges at an Institution of Higher Education: An Overview of the Processes, Challenges, and Lessons Learned

1		
https://isedj.org/2017-	Adaptable,	Identifying The Real Technology Skills
15/n6/ISEDJv15n6p72.html	Professional	Gap: A Qualitative Look Across
		Disciplines
https://isedj.org/2018-	Meticulous, Self-	Reaching and Retaining the Next
<u>16/n3/ISEDJv16n3p45.html</u>	directed	Generation: Adapting to the Expectations
		of Gen Z in the Classroom
https://isedj.org/2019-	Inventive	Using Codecademy Interactive Lessons as
17/n3/ISEDJv17n3p20.html		an Instructional Supplement in a Python
		Programming Course
https://isedj.org/2019-	Passionate	A Preliminary Study: The Use of
17/n3/ISEDJv17n3p29.html		VoiceThread in Online Business Courses
https://isedj.org/2019-	Adaptable	Applying an Agile Approach in an
17/n3/ISEDJv17n3p41.html	/ duptuble	Information Systems Capstone Course
https://isedj.org/2019-	Collaborative,	Toward Visualizing Computing Curricula:
17/n4/ISEDJv17n4p51.html	Professional,	The Challenge of Competency
<u>17/14/13/03/17/14/031.11(111</u>	Purpose-driven,	
	Responsible	
https://icodi.org/2010		Hour of Codos A Study of Condor
https://isedj.org/2019-	Responsive	Hour of Code: A Study of Gender
17/n4/ISEDJv17n4p91.html	Adaptabla	Differences in Computing Integrating AWS Cloud Practitioner
https://isedj.org/2022-	Adaptable	
20/n5/ISEDJv20n5.pdf#page=17		Certification into a Systems
		Administration Course
https://isedj.org/2022-	Adaptable,	Beyond Competency: The Imperative to
20/n5/ISEDJv20n5.pdf#page=67	Collaborative,	Foster Professionalism in Computing
	Inventive,	Graduates
	Meticulous,	
	Passionate,	
	Proactive,	
	Professional,	
	Purpose-driven,	
	Responsible,	
	Responsive, Self-	
	directed	
https://isedj.org/3/10/ISEDJ.3(10).	Self-directed	Service Learning in Computer
Saulnier.pdf		Information Systems: "Significant"
		Learning for Tomorrow's Computer
		Professionals
https://isedj.org/6/19/ISEDJ.6(19).	Responsible	The Design Charrette in the Classroom as
Eagen.pdf		a Method for Outcomes-based Action
		Learning in IS Design
https://isedj.org/6/39/ISEDJ.6(39).	Responsive	How Important is Student Computing
Wolk.pdf		Ability? The Role of Information
		Technology Competence in Business
		School Accreditation
https://isedj.org/7/43/ISEDJ.7(43).	Inventive	Using the Technology Acceptance Model
Wolk.pdf		for Outcomes Assessment in Higher
<u>work.pur</u>		Education
https://icodi.org/7/CO/ICED1.7/CO)	Colf ding to d	
https://isedj.org/7/60/ISEDJ.7(60).	Self-directed	From "Sage on the Stage" to "Guide on
Saulnier.pdf		the Side" Revisited: (Un)Covering the
		Content in the Learner-Centered
	1	Information Systems Course

Appendix D. Word Cloud Visualizations for Unique Article Titles

Word cloud from online tool that analyzes just words (freewordcloudgenerator.com).

Word cloud from online tool that analyzes words and phrases (monkeylearn.com).