
Volume 15, No. 3
May 2017

ISSN: 1545-679X

Information Systems

Education Journal

In this issue:

4. Java vs. Python Coverage of Introductory Programming Concepts: A

Textbook Analysis

Kirby McMaster, Weber State University

Samuel Sambasivam, Azusa Pacific University

Brian Rague, Weber State University

Stuart Wolthuis, Brigham Young University - Hawaii

14. Agile Learning: Sprinting Through the Semester

Guido Lang, Quinnipiac University

22. Testing Frequency in an Introductory Computer Programming Course

Joni K. Adkins, Northwest Missouri State University

Diana R. Linville, Northwest Missouri State University

29. Pursuing a Vendor-Endorsed ERP Award for Better Job Prospect: Students'

Perceptions

LeeAnn Kung, Rowan University

Hsiang Jui Kung, Georgia Southern University

42. Developing an Approach to Harvesting, Cleaning, and Analyzing Data from

Twitter Using R

Stephen Hill, University of North Carolina Wilmington

 Rebecca Scott, Texas Tech University

55. Microsoft Excel®: Is It An Important Job Skill for College Graduates?

Sam K. Formby, Appalachian State University

B. Dawn Medlin, Appalachian State University

Virginia Ellington, Appalachian State University

64. Comparing Student Interaction in Asynchronous Online Discussions and in

Face-to-Face Settings: A Network Perspective

Elahe Javadi, Illinois State University

Judith Gebauer, University of North Carolina Wilmington

Nancy L. Novotny, Illinois State University

Information Systems Education Journal (ISEDJ) 15 (3)
ISSN: 1545-679X May 2017
__

©2017 ISCAP (Information Systems & Computing Academic Professionals) Page 2
http://iscap.info

The Information Systems Education Journal (ISEDJ) is a double-blind peer-reviewed
academic journal published by EDSIG, the Education Special Interest Group of AITP, the
Association of Information Technology Professionals (Chicago, Illinois). Publishing frequency is
six times per year. The first year of publication was 2003.

ISEDJ is published online (http://isedj.org). Our sister publication, the Proceedings of EDSIGCon
(http://www.edsigcon.org) features all papers, panels, workshops, and presentations from the
conference.

The journal acceptance review process involves a minimum of three double-blind peer reviews,
where both the reviewer is not aware of the identities of the authors and the authors are not aware
of the identities of the reviewers. The initial reviews happen before the conference. At that point
papers are divided into award papers (top 15%), other journal papers (top 30%), unsettled papers,
and non-journal papers. The unsettled papers are subjected to a second round of blind peer
review to establish whether they will be accepted to the journal or not. Those papers that are
deemed of sufficient quality are accepted for publication in the ISEDJ journal. Currently the target
acceptance rate for the journal is under 40%.

Information Systems Education Journal is pleased to be listed in the 1st Edition of Cabell's
Directory of Publishing Opportunities in Educational Technology and Library Science, in both the
electronic and printed editions. Questions should be addressed to the editor at editor@isedj.org
or the publisher at publisher@isedj.org. Special thanks to members of AITP-EDSIG who perform
the editorial and review processes for ISEDJ.

2017 AITP Education Special Interest Group (EDSIG) Board of Directors

Leslie J. Waguespack Jr

Bentley University

President

Jeffry Babb
West Texas A&M

Vice President

Scott Hunsinger
Appalachian State Univ

Past President (2014-2016)

Meg Fryling
Siena College

Director

Lionel Mew
University of Richmond

Director

Muhammed Miah
Southern Univ New Orleans

Director

Rachida Parks

Quinnipiac University
Director

Anthony Serapiglia

St. Vincent College
Director

Li-Jen Shannon

Sam Houston State Univ
Director

Jason Sharp

Tarleton State University
Director

Peter Wu
Robert Morris University

Director

Lee Freeman
Univ. of Michigan - Dearborn

JISE Editor

Copyright © 2017 by the Education Special Interest Group (EDSIG) of the Association of Information Technology
Professionals (AITP). Permission to make digital or hard copies of all or part of this journal for personal or classroom
use is granted without fee provided that the copies are not made or distributed for profit or commercial use. All copies
must bear this notice and full citation. Permission from the Editor is required to post to servers, redistribute to lists, or
utilize in a for-profit or commercial use. Permission requests should be sent to Jeffry Babb, Editor, editor@isedj.org.

http://www.cabells.com/
http://www.cabells.com/
mailto:editor@isedj.org
mailto:publisher@isedj.org

Information Systems Education Journal (ISEDJ) 15 (3)
ISSN: 1545-679X May 2017
__

©2017 ISCAP (Information Systems & Computing Academic Professionals) Page 3
http://iscap.info

Information Systems

Education Journal

Editors

Jeffry Babb
Senior Editor

West Texas A&M University

Thomas Janicki
Publisher

U of North Carolina Wilmington

Donald Colton
Emeritus Editor

Brigham Young Univ. Hawaii

Cameron Lawrence
Teaching Cases Co-Editor
The University of Montana

Guido Lang
Associate Editor

Quinnipiac University

Anthony Serapiglia
Teaching Cases Co-Editor

St. Vincent College

Muhammed Miah
Associate Editor

Southern Univ at New Orleans

Samuel Abraham
Associate Editor

Siena Heights University

Jason Sharp
Associate Editor

Tarleton State University

2017 ISEDJ Editorial Board

Ronald Babin
Ryerson University

Nita Brooks
Middle Tennessee State Univ

Wendy Ceccucci
Quinnipiac University

Ulku Clark
U of North Carolina Wilmington

Jamie Cotler
Siena College

Jeffrey Cummings
U of North Carolina Wilmington

Christopher Davis
U of South Florida St Petersburg

Gerald DeHondt II

Mark Frydenberg
Bentley University

Meg Fryling
Siena College

David Gomilion
Northern Michigan University

Audrey Griffin
Chowan University

Stephen Hill
U of North Carolina Wilmington

Scott Hunsinger
Appalachian State University

Musa Jafar
Manhattan College

Rashmi Jain
Montclair State University

Mark Jones
Lock Haven University

James Lawler
Pace University

Paul Leidig
Grand Valley State University

Cynthia Martincic
Saint Vincent College

Lionel Mew
University of Richmond

Fortune Mhlanga
Lipscomb University

Edward Moskal
Saint Peter’s University

George Nezlek
Univ of Wisconsin - Milwaukee

Rachida Parks
Quinnipiac University

Alan Peslak
Penn State University

James Pomykalski
Susquehanna University

Franklyn Prescod
Ryerson University

John Reynolds
Grand Valley State University

Samuel Sambasivam
Azusa Pacific University

Bruce Saulnier
Quinnipiac University

Li-Jen Shannon
Sam Houston State University

Michael Smith
Georgia Institute of Technology

Karthikeyan Umapathy
University of North Florida

Leslie Waguespack
Bentley University

Bruce White
Quinnipiac University

Peter Y. Wu
Robert Morris University

Information Systems Education Journal (ISEDJ) 15 (3)
ISSN: 1545-679X May 2017
__

©2017 ISCAP (Information Systems & Computing Academic Professionals) Page 4
http://iscap.info

Java vs. Python Coverage of Introductory

Programming Concepts: A Textbook Analysis

Kirby McMaster

kmcmaster@weber.edu
Computer Science - retired

Weber State University

Ogden, UT 84408 USA

Samuel Sambasivam
ssambasivam@apu.edu

Computer Science
Azusa Pacific University

Azusa, CA 91702 USA

Brian Rague
brague@weber.edu

Computer Science
Weber State University

Ogden, UT USA 84408

Stuart Wolthuis

stuartlw@byuh.edu
Computer and Information Sciences

Brigham Young University-Hawaii
Laie, HI 96762 USA

Abstract

In this research, we compare two languages, Java and Python, by performing a content analysis of
words in textbooks that describe important programming concepts. Our goal is to determine which
language has better textbook support for teaching introductory programming courses. We used the
TextSTAT program to count how often our list of concept words appear in a sample of Java and Python

textbooks. We summarize and compare the results, leading to several conclusions that relate to the
choice of language for a CS0 or CS1 course.

Keywords: programming concepts, Java, Python, textbooks.

1. INTRODUCTION

In the early years of computing, the choice of a
first language for programmers was often decided
by the work environment, typically Information
Technology divisions with specialized needs.
Assembly language for a specific hardware

system was the usual situation. Programming in

a higher-level language such as Fortran or Cobol
became common over time as more versatile
computing platforms and elaborate computing
problems emerged.

Information Systems Education Journal (ISEDJ) 15 (3)
ISSN: 1545-679X May 2017
__

©2017 ISCAP (Information Systems & Computing Academic Professionals) Page 5
http://iscap.info

When Computer Science programs at universities

began to develop, the choice of an introductory
programming language was determined primarily
by the curriculum designers, with an emphasis on

the pedagogical value of the language rather than
its popularity or practicality in developing real-
world applications. As might be expected in the
academic world, there was and still is a diversity
of opinion on what the first language should be
(Siegfried, Chays, & Herbert, 2008).

The most recent Computer Science Curriculum
Guidelines (2013) published by ACM/IEEE state
that "...advances in the field have led to an even
more diverse set of approaches in introductory
courses [and these] approaches employed in
introductory courses are in a greater state of

flux." Moreover, the report observes "...that
rather than a particular paradigm or language
coming to be favored over time, the past decade
has only broadened the list of programming
languages now successfully used in introductory
courses".

In the 1970s and 1980s, Pascal became the
language taught most often in introductory
programming courses. Eventually, many schools
moved to C for practical reasons, since graduates
rarely used Pascal in their employment. As the
benefits of object-oriented programming became
evident, the first language evolved to C++ and

later to Java, which provides a more managed
development environment (de Raadt, Watson, &

Tolman, 2002).

The tradeoffs of an object-first approach versus
an imperative-first approach in introductory

courses have been extensively and hotly debated
(Lister, 2006). This decision about which
programming paradigm to teach beginning
students strongly influences the choice of
introductory language. Alternatively, some early
courses in CS emphasized broader computing
concepts rather than the subtleties of

programming syntax (Sooriamurthis, 2010). The
paramount question regarding the delivery of an
effective introductory CS course remains "What to
teach?", followed immediately by "Which

language best supports the concepts to be
taught?".

In recent years, the increased demand for
programming courses for liberal arts students has
led to the development of what are termed CS0
courses (with CS1 courses aimed for CS majors).
The preferred programming language for a CS0
course is often different from the language taught

in CS1. CS0 languages trend toward

predominantly visual environments such as Alice,

or more dynamic popular choices such as Python.

Purpose of this Research

Much research has been performed over the last
few decades on which language is best for an
introductory programming course (Brilliant &
Wiseman, 1996). In an effort to contribute to this
discussion, our research focuses on two
languages--Java and Python. These languages
are increasing in popularity for introductory

courses, especially Python (Guo, 2014). Rather
than evaluate the usability or suitability of the
languages within an introductory context, we
performed a content analysis (Krippendorff,
2012) of Java and Python textbooks to determine
how well they cover important CS0/CS1

programming concepts such as class and
algorithm.

We developed a list of basic programming
concepts that might be taught in an introductory
course. Initial sources used for developing this
concepts list were drawn from various

instructional assessments, curriculum resources,
and introductory course content that we designed
ourselves or researched. We then counted how
often each textbook mentioned each concept. We
did not study the order in which the concepts
were presented, nor did we judge how well the
concepts were explained. We simply summarized

frequencies for the words that represented each
concept.

An instructor in a programming course usually
chooses a textbook to guide how she/he will
organize and present the material. Our main

research assumption is that the framework of the
author is reflected by the words used most often
in the textbook. The framework we are evaluating
is one that is appropriate for introductory
programming. From the author's choice of words,
we can judge how suitable the textbook will be for
teaching the main concepts of the programming

course.

2. METHODOLOGY

This section of the paper describes the
methodology used to collect word frequency data
from selected Java and Python textbooks. The

words we examine represent important concepts
for an introductory programming course.

Programming Concepts
We created a list of important programming
concepts from several sources. We started with

an initial list of programming terms taken from
quizzes and exams we have given to CS1

Information Systems Education Journal (ISEDJ) 15 (3)
ISSN: 1545-679X May 2017
__

©2017 ISCAP (Information Systems & Computing Academic Professionals) Page 6
http://iscap.info

students to measure their understanding of

course topics. In earlier research, we performed
a word frequency analysis of object-oriented
programming (OOP) textbooks (representing a

variety of languages) to empirically reveal
frequent OOP concepts. We used the results of
that study to form a list of OOP words.
In the current study, we created a list consisting
of programming concepts mentioned in the
Programming Fundamentals (PF) section of the
Computing Curricula 2001 Computer Science

Final Report (2001). We created an additional list
of concepts based on the Software Development
Fundamentals (SDF) section of the Computer
Science Curricula 2013 Final Report.

In constructing our list, we attempted to avoid

keywords from specific languages, such as float
and while. However, a few keywords, such as
class, were difficult to omit. From the above
sources, we formed a combined list that grew to
100 programming concepts. This larger list
evolved as we performed the actual word analysis
in the selected Java and Python books.

Sample of Textbooks
We collected a sample of 10 Java textbooks and
10 Python textbooks. We wanted our sample to
include popular books in both languages. Due to
budget constraints (i.e. no budget), we chose
textbooks that were available on the Internet and

could be downloaded as PDF files. We obtained a
reasonably diverse sample of books (see

References), but some were older editions (e.g
Zelle, 2002).

We later observed that the Java books tended to

be larger (i.e. contained more words). The
average size of the Java books was 222,953
words, whereas the average size for the Python
books was 144,039 words. As a quick check to
confirm that the sizes of our Java and Python
books were representative, we compared 10 Java
books and 9 Python books (not including very

short books) listed on Amazon. For the Amazon
books, the total number of words was not
available, but the number of pages was given.
The Amazon sample averages were 690 pages for

the Java books and 514 pages for the Python
books. So on Amazon, the Java books tend to be
larger, which is consistent with our downloaded

sample.

Convert PDF files to Text Files
Textbooks in PDF file format are not convenient
for performing repeated word searching and
counting. Fortunately, Adobe Reader has a

"File/save As" menu choice to convert the
contents of a PDF file to a text file. We used Adobe

Reader to create a text file for each of the 20

textbooks in our study.

We noticed that the text file versions of the books

included many character strings that contained
digits, punctuation, and other non-alphabetic
symbols. To simplify our counting of concept
words, we wrote a short program (in Python) that
removed all non-letter symbols and replaced
them with blank characters. This program also
converted all letters to lower-case. We used this

program to obtain a filtered set of 20 text files
which consisted of only letters and blanks. Note
that none of the targeted word groups contains a
numeric or special character.

Perform Word Counts

We used a popular program called TextSTAT
(Huning, 2007) to obtain word counts for all
words on our programming concept list. With
TextSTAT, you first define a "Corpus", which
holds a list of text files. We defined a corpus for
each textbook and linked the corpus to the
transformed textfile containing the textbook.

To perform a word search, a separate TextSTAT
screen allows the user to specify search options.
Most of the time, we used the option to include all
words, with the words and frequencies presented
in alphabetical order. We would then go through
the concept list (also in alphabetical order) and

record/total the frequencies for each word group.
This was the most labor-intensive part of our

methodology. Occasionally, we would enter a
short string (e.g. iterat) to search for all words
that contain the string (e.g. iterate, iteration,
iterator).

3. ANALYSIS OF DATA

The number of programming concepts on our
evolving list reached 100 by the end of our data
analysis. Alphabetically, the concepts ranged
from abstraction to variable. As mentioned in the

methodology section, each concept was
represented by a group of one or more words. For
example, the word group for the OOP concept
object contained two words--object (singular)

and objects (plural).

For every concept, we counted the number of

occurrences of each word group member in the
Java and Python textbooks. As an example, in the
Java book by Schildt (2007), the word object
appears 1674 times, and the word objects
appears 380 times. The total word count for the
concept is 2054.

Information Systems Education Journal (ISEDJ) 15 (3)
ISSN: 1545-679X May 2017
__

©2017 ISCAP (Information Systems & Computing Academic Professionals) Page 7
http://iscap.info

Convert Word Counts to Word Rates

Because each textbook contains a different
number of words, the actual word counts for
concepts are not comparable across books.

Larger books tend to have larger word counts. To
standardize the counts, we converted each word
count for a concept to a word rate. The rate we
chose was "per 100,000 words". That is, we
divided the concept word count by the total
number of words in the book and multiplied by
100,000.

For example, Schildt's book mentioned above
contains a total of 325,991 words. The word count
for the object concept is 2054. This count is
rescaled to a word rate as shown below:

 word rate = (2054/325,991)*100,000 = 630.1

This means that the object concept is mentioned
630.1 times per 100,000 words in Schildt's book.
Word rates were calculated for each concept in
each book.

Calculate Trimmed Means
After concept word rates were obtained in all Java

and Python textbooks, averages were calculated
separately for the Java and Python values.
Because the word rates for concepts (Java or
Python) often varied widely from book to book,
we calculated trimmed means (instead of the
usual untrimmed versions) to diminish the effect
of outliers. To provide a conservative treatment

for these outliers, our trimmed means include

only the middle 6 out of 10 word rates. The top
two and bottom two word rates are dropped.

For example, word rates for the object concept in
all 10 Java textbooks are:

 522.4 561.7 630.1 334.5 843.3
 684.9 703.5 767.2 863.5 488.4

Removing the two highest rates (863.5 and
843.3) and two lowest rates (334.5 and 488.4),
the trimmed mean for object in the Java books is
645.0. Two trimmed means were calculated for
each concept, one for Java and the other for

Python.

Distributions of Trimmed Means
Each set of books (Java and Python) provided a
sample of 100 trimmed means, representing word
rates for the 100 concepts. A statistical
description of the Java and Python distributions is

summarized in Table 1.

Many of the statistics are larger for the Java
distribution than the Python distribution. The
central tendency measures (mean and median)
are higher, and the dispersion measure (IQR) is

larger. This is primarily due to the greater number

of concept words in the Java books.

Statistic Java Python

Sample N 100 100

Minimum 0.34 0.00

Centile 25 18.92 10.50

Median 58.00 38.05

Centile 75 134.27 116.68

Maximum 987.40 601.93

IQR 115.35 106.18

Mean 109.95 90.59

 Table 1: Distributions of Trimmed Means

For the Java distribution, the maximum word rate

is for the concept class, and the minimum word
rate is for decomposition. For Python, the
maximum word rate is for function, while the

minimum word rate is (again) for decomposition.
The Java median word rate is the midpoint
between the word rates of the two middle
concepts stream and block. For Python, the two
middle concepts are block and event.

The mean of the Java word rates is almost twice

the size of the median. This indicates that the
distribution is positively skewed, mainly due to
the presence of several high word rates (including
the maximum value). The mean of the Python
word rates is more than twice the size of the
median, indicating another positively skewed

distribution.

The variability of scores in a distribution is usually
described by the standard deviation. However,
this statistic is inflated when outliers are present.
A more stable measure of variation is the
interquartile range IQR (Upton & Cook, 1996),

which is the difference between the 75th centile
value and the 25th centile value. For Java, the
75th centile concept is definition, and the 25th
centile concept is link. The corresponding
concepts for Python are set (75th centile) and
literal (25th centile).

The word rates for programming concepts tend to
be higher in the Java books. Overall, 62 of the

100 concepts have a higher word rate in the Java
books than in the Python books. The remaining
38 concepts appear more often in the Python
books. Additional details and comparisons of
these two word rate distributions are presented in

the following sections.

Information Systems Education Journal (ISEDJ) 15 (3)
ISSN: 1545-679X May 2017
__

©2017 ISCAP (Information Systems & Computing Academic Professionals) Page 8
http://iscap.info

Most Frequent Concepts

The fifteen programming concepts with the
highest word rates for Java and Python are listed
in Table 2.

Java
Concept

Rate

Python
Concept

Rate

class 987.4 function 601.9

method 949.8 list 487.0

object 645.0 program 462.1

value 477.5 value 451.1

program 460.6 string 410.4

string 399.8 file 372.0

type 369.5 object 336.7

variable 288.6 number 319.7

array 272.2 code 300.6

system 253.7 method 298.9

number 251.4 class 297.0

file 216.9 line 263.7

code 213.2 module 235.8

statement 212.1 type 204.0

thread 188.2 statement 203.1

 Table 2: Most Frequent Concepts
 (Differences in bold)

Eleven of the concepts appear on both lists, but
in different ranked positions. This demonstrates
substantial agreement by authors on which
concepts are most important in both languages.
Four concepts are on the Java list only, and four
others are confined to the Python list. The

concepts that are not on both lists are shown in
bold.

Among the Java concepts, the top three--class,
method, and object--describe features of object-
oriented programming (OOP). These concepts are

also on the Python list, but with lower word rates.
Six of the Java concepts--value, string, type,
variable, array, and number--describe data types
and data structures. The Python list contains four
of these concepts, but replaces array with list and
excludes variable.

The I/O concept file is on both lists, but has a
higher word rate in the Python books. The Java
concept thread is rarely mentioned in the Python

texts. Function and module are older terms used
to describe modular programming. Python retains
these terms, whereas the Java books prefer the
OOP concepts method and class.

Least Frequent Concepts
The fifteen programming concepts with the lowest
word rates for Java and Python are listed in Table
3. Again, eleven of the concepts appear on both
lists, but in different ranked positions. This shows

agreement by Java and Python authors on

concepts they perceive to be unimportant in both
languages. Concepts that appear on only one list
are shown in bold.

Java
Concept

Rate

Python
Concept

Rate

encapsulation 9.3 constant 6.6

debug 8.1 maintainable 5.8

signature 7.9 stream 5.1

record 7.9 encapsulation 4.0

maintainable 7.1 reserved 3.9

abstraction 5.9 branch 3.1
polymorphism 5.5 pointer 2.8

relation 5.4 polymorphism 2.5

reserved 5.1 procedure 1.6

procedure 4.7 signature 1.5

pointer 4.2 quality 1.5

branch 3.3 queue 0.6

module 1.3 thread 0.6

quality 0.6 abstraction 0.6

decomposition 0.3 decomposition 0.0

 Table 3: Least Frequent Concepts
 (Differences in bold)

The concepts that appear on both least-frequent
lists include a few surprises. Some of these
concepts are often considered important by
programming instructors. Certainly abstraction is
a key programming topic. Of the three pillars of
OOP (encapsulation, inheritance, and

polymorphism), two are on both least-frequent
lists. Thankfully, these textbooks spare
inheritance from such neglect. The signature
concept, relevant to polymorphism, is rarely
mentioned.

Function and procedure were once distinct
concepts in modular programming. Perhaps due
to compromises made in the design of the C
language (and perpetuated in C++ and Java), the
procedure word has been replaced with "void"
functions.

From the Software Engineering (SE) vocabulary,
quality and maintainable are held in low regard
by both Java and Python textbooks. The concept

of pointer has low word rates, although the
substitute term reference does appear more often
in both sets of books. Keyword is more popular
than reserved word. Finally, almost none of the

books contain decomposition, which is the least
frequent word on both lists. This concept
embodies a core strategy in modular
programming.
Middle Frequency Concepts

Information Systems Education Journal (ISEDJ) 15 (3)
ISSN: 1545-679X May 2017
__

©2017 ISCAP (Information Systems & Computing Academic Professionals) Page 9
http://iscap.info

We have presented word rates for the top 15 and

bottom 15 programming concepts, and now turn
our attention to the 70 concepts with middle-level
usage rates. This list of concepts is too long to

include in a single table in the paper. Instead, in
Table 4 we present 10 Software Engineering
concepts that have middle-level word rates in the
programming textbooks.

 Java Python

Concept Rate Rate

problem 63.9 57.9

solution 32.1 48.1

requirement 29.9 42.8

specification 55.5 39.5

model 25.1 13.6

algorithm 34.9 22.5

design 49.2 12.3

test 85.5 138.2

style 21.1 17.7

document 40.5 44.0

 Table 4: Middle Frequency Concepts

 Software Engineering Words

For Java books, the SE word rates range from
21.1 (for style) to 85.5 (for test). The word rates
in Python books range from 12.3 (for design) to
138.2 (again for test).

Concepts on the list include problem (Java/Python
rates 63.9/57.9) and solution (Java/Python rates

32.1/48.1), reflecting the problem-solving focus
in SE. The words requirement, specification,
model, algorithm, design, and document are life
cycle development activities. Style is a

consideration to ensure source code is readable
and maintainable. The relatively low word rates
for style (Java/Python rates 21.1/17.7) and for
model (Java/Python rates 25.1/13.6) are
unfortunate.

As Table 4 indicates, all of these concepts appear

with moderate word rates in both the Java and
Python textbooks. Six of the concepts appear
more often in Java books, while the other four are
more frequent in Python books. There is no
obvious single criterion for determining which

language favors which SE concepts.

Word Rate Correlation
In this section, instead of examining the Java and
Python word rate distributions separately, we
consider the joint distribution of the two rates. If
the focus on key introductory concepts is
consistent across all examined textbooks, we

would expect to find a positive relationship
between the Java and Python word rates. For

most programming concepts, a higher word rate

in the Java books should suggest a higher word
rate in the Python books, and vice versa.

To measure the degree of linearity in the
relationship, we calculated the Pearson
correlation coefficient. The correlation value we
obtained for our 100 pairs of scores was 0.601,
which is positive but far from 1.0.

We do not claim that the relationship should be

linear, but it should be monotonic. A better
statistic for monotonic relationships is the
Spearman rank-order correlation (Maritz, 1995).
Our result for the Spearman statistic was 0.726,
which describes a fairly strong increasing
relationship between Java and Python word

ranks.

A scatter diagram of the word rate pairs,
converted to ranks from 1 (highest rank) to 100
(lowest rank), is displayed as Figure 1.

 Figure 1: Java vs. Python Concept
Ranks

In this figure, we can see that most of the pairs
of ranks fall approximately along a line that runs
from pair (1,1) to pair (100,100). Below the

implied line, two obvious outliers are the pairs
(98,13) for module and (68,1) for function. In
these pairs, the Python rank is much higher
(closer to 1) than the Java rank. Above the line,

the two most noticeable outliers are (15,98) for
thread and (9,80) for array. These concepts have
a much higher Java rank (closer to 1).

A more complete list of outliers is presented in
Table 5.

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

Java Rank

P
y
th

o
n

 R
a
n

k

Information Systems Education Journal (ISEDJ) 15 (3)
ISSN: 1545-679X May 2017
__

©2017 ISCAP (Information Systems & Computing Academic Professionals) Page 10
http://iscap.info

 Java Python

Concept Rank Rank Diff

module 98 13 -85

function 68 1 -67

interface 16 46 30

system 10 41 31

component 35 69 34

event 17 51 34

stream 50 88 38

constant 46 86 40

declaration 41 82 41

constructor 21 76 55

array 9 80 71

thread 15 98 83

 Table 5: Largest Differences in Ranks

 ("Highest" rank is 1)

The choice of how large the difference in ranks
should be to consider a concept an outlier is
subjective. In this table, we include all pairs in

which the difference in ranks is 30 or larger. A
negative difference occurs when Python has a
higher rank. A positive difference favors Java.
Note that all but two of the concepts in Table 5
have a higher Java rank.

We noted earlier that function and module are
among the top fifteen concepts in word frequency
in Python books. This table indicates that these
two popular Python concepts appear much less
often in Java books. Three OOP concepts--

constructor, component, and interface--are
favored by Java books.

The data concepts array, declaration, and
constant appear less often in Python books for
various reasons. Python prefers lists over arrays.
Variables are not overtly declared in Python.
Stream I/O, as a generalization of file I/O, is
implemented in Java as stream classes. Real-time

events and threads are common Java features,
but not Python.

4. SUMMARY AND CONCLUSIONS

The choice of programming language for

introductory Computer Science courses is a

strong indicator of the concepts emphasized
during course instruction. Ongoing discussion
about what to teach and which language tool best
supports learning objectives for introductory
programming courses continues unabated among
instructors, administrators, and accreditation

organizations. A definitive “best practices”
approach in this area remains unresolved. Our
current work further informs this debate by
correlating core programming concepts with

specific textbooks that promote either Java or

Python as the coding language.

The primary purpose of this study was to compare

how well Java and Python textbooks provide
coverage of important introductory programming
topics. We developed a list of 100 programming
concepts, and we collected a sample of 10 Java
books and 10 Python books. We then counted
how often words that represent the concepts
appeared in the books. After standardizing the

data, we computed trimmed means of word rates
for all 100 concepts, with separate rates for Java
and Python. From this data, we draw the following
conclusions.

First, words that describe our 100 programming

concepts have a greater density (higher word
rates) in the Java books in our study. The word
rate distribution for Java has a mean of 109.25,
with a maximum value of 987.40. For Python,
the mean is 90.59, with a maximum of 601.93.

Second, there is remarkable agreement between

the programming concepts mentioned most often
in the Java and Python books. Eleven of the top
15 Java concepts are also included in the top 15
Python concepts. Highly-used concepts for both
languages include class, object, and method,
each representing OOP.

Third, there is also agreement on which concepts
are rarely mentioned in both sets of books. Eleven

of the bottom 15 Java concepts are also in the list
of 15 least-used Python concepts. Common
neglected concepts include encapsulation and
polymorphism for OOP, plus SE concepts quality

and maintainable. It is disappointing that
abstraction is on both bottom 15 lists.

Fourth, several concepts appear on only one of
the top 15 or bottom 15 word lists for Java and
Python. The top 15 Java-only concepts include
array and variable. Among the top 15 Python-only

concepts, array is replaced by list, and other
concepts are added. The bottom 15 Java concepts
include module, which is a top 15 concept for
Python. The bottom 15 Python list includes

thread, which is a top 15 concept for Java.

Fifth, a fairly strong increasing relationship exists

between concept ranks for Java vs. Python, as
indicated by a rank-order correlation of 0.726.
There are a few clear exceptions to this
relationship. Thread, constructor, and declaration
have much higher Java ranks. Module and
function have much higher Python ranks.

Information Systems Education Journal (ISEDJ) 15 (3)
ISSN: 1545-679X May 2017
__

©2017 ISCAP (Information Systems & Computing Academic Professionals) Page 11
http://iscap.info

Sixth, Java and Python textbooks devote

substantial time on practical concepts that
describe how to write code. Discussion of
Software Engineering concepts that deal with how

to think like a programmer and write efficient,
maintainable code receive less attention. This
learning goal may be less important in an
introductory programming course, but it becomes
a major focus as students progress through a
Computer Science degree program.

Overall, both Java and Python books provide
reasonable levels of support for most of the
programming concepts we considered. The choice
of Java or Python (or other language) for an
introductory class should be based on
considerations beyond textbook support for

important concepts. Whatever language and
textbook are chosen, instructors must be
prepared to provide additional material to achieve
their desired course objectives.

Future Research
Planned future research activities include:

1. Perform a similar study comparing Java
and C++ textbooks to determine how well they
support important CS1 concepts.

2. Perform a similar study comparing
textbooks for Python and another language (e.g.

Ruby) to determine how well they support
important CS0 concepts.

3. Perform research to provide empirical
support to improve our list of important
programming concepts. This is not a

trivial task, in light of previous research by Hertz
(2010) and Tew & Guzdial (2010).

Note: A complete list of our 100 programming
concepts, along with Java and Python trimmed
mean word rates, are presented in Table 6 in the
APPENDIX.

5. REFERENCES

Brilliant, S. S., and Wiseman, T., “The First

Programming Paradigm and Language
Dilemma”, ACM SIGCSE Bulletin Vol. 28, No.
1 (1996), p. 338-342.

Computing Curricula 2001 Computer Science
Final Report, Joint Task Force on Computing
Curricula, Association of Computing
Machinery, IEEE Computer Society, 2001.

Computer Science Curricula 2013, Joint Task
Force on Computing Curricula, Association of

Computing Machinery, IEEE Computer

Society, 2013.

deRaadt, Michael, Watson, Richard, and Toleman,
Mark, “Language Trends in Introductory

Programming Courses,” InSITE, June 2002.
proceedings.informingscience.org
/IS2002Proceedings/papers
/deRaa136Langu.pdf

Guo, Philip, "Python is Now the Most Popular
Introductory Teaching Language at Top U.S.
Universities." Communications of the ACM,

Blogs, 2014.

Hertz, Matthew, "What do 'CS1' and 'CS2' Mean?
Investigating Differences in the Early

Courses." SIGCSE Proceesings, Milwaukee,
2010.

Huning, M, TextSTAT 2.7 User’s Guide. TextSTAT,

created by Gena Bennett, 2007.

Krippendorff, Klaus H., Content Analysis: An
Introduction to Its Methodology, 3rd Ed.
 SAGE Publications, 2012.

Lister, Raymond, E. A. Research perspectives on
the objects-early debate. In ITiCSE
proceedings (2006), pp. 146--165.

Maritz, J. S., Distribution-Free Statistical Methods
(2nd ed). Chapman and Hall, 1995.

Siegfried, Robert M., Chays, David, and Herbert,
Katherine G., “Will There Ever be Consensus
on CS1?” In Proceedings of FECS. 2008, 18-
23. home.adelphi.edu/~siegfried
/Consensus.pdf

Sooriamurthi, Raja, The Essence Of Object
Orientation For CS0: Concepts Without Code.
Journal of Computing Sciences in Colleges,
Vol. 25 (3), p 67-74, January, 2010.

Tew, Allison Elliott, & Guzdial, M., Developing a
Validated Assessment of Fundamental

CS1Concepts, SIGCSE Proceedings,
Milwaukee, 2010.

Upton, Graham, and Cook, Ian, Understanding
Statistics. Oxford University Press, 1996,
p.55.

Java Textbooks:

Arnold, Ken, James Gosling, and David Holmes,

THE Java Programming Language (4th
ed).Addison Wesley Professional, 2005.

Information Systems Education Journal (ISEDJ) 15 (3)
ISSN: 1545-679X May 2017
__

©2017 ISCAP (Information Systems & Computing Academic Professionals) Page 12
http://iscap.info

Deitel, Harvey, and Paul Deitel, Java How to

Program (4th ed). Prentice Hall, 2002.

Downey, Allen B., Think Java: How to Think Like
a Computer Scientist. Allen Downey,

 2012.

Eck, David J., Introduction to Programming Using
Java (Version 6.0.3). Hobart and William
College, 2014 (PDF version of on-line book).

Lemay, Laura, and Charles L. Perkins, Teach
Yourself JAVA in 21 Days. Sams.net
Publishing, 1996.

Roberts, Eric. S., The Art and Science of Java
(Preliminary Draft). Stanford University,
2006.

Schildt, Herbert, Java: The Complete Reference
(7th ed). McGraw-Hill, 2007.

Sierra, Kathy, and Bert Bates, Head First Java

(2nd ed). O'Reilly.

Stein, Lynn Andrea, Interactive Programming in
Java. Lynn Andrea Stein, 1999.

Wu, C. Thomas, An Introduction to Object-
Oriented Programming with Java (5th ed).
McGraw-Hill, 2010.

Python Textbooks:

Downey, Allen, Think Python: How to Think Like
a Computer Scientist (Version 2.0.15). Green
Tea Press, 2015.

Halterman, Richard L., Learning to Program with
Python. Richard L. Halterman, 2011.

Heinold, Brian, Introduction to Programming
Using Python. Brian Heinold, 2012.

Jackson, Cody, Learning to Program Using
Python. Cody Jackson, 2011.

Kuhlman, Dave, A Python Book: Beginning

Python, Advanced Python, and Python
Exercises. Dave Kuhlman, 2009.

Lutz, Mark, Programming Python (4th ed).
O'Reilly, 2011.

Maruch, Stef, and Aahz Maruch, Python for
Dummies. Wiley, 2006.

Payne, James, Beginning Python: Using Python
2.6 and Python 3.1. Wiley Publishing, 2010.

Pilgrim, Mark, Dive Into Python. Mark Pilgrim,
2004.

Zelle, John M., Python Programming: An
Introduction to Computer Science (Version
1). Wartburg College, 2002.

Information Systems Education Journal (ISEDJ) 15 (3)
ISSN: 1545-679X May 2017
__

©2017 ISCAP (Information Systems & Computing Academic Professionals) Page 13
http://iscap.info

APPENDIX

Table 6: Concept Word Rate Trimmed Means for Java and Python

Concept

Java

Rate

Python

Rate

Concept

Java

Rate

Python

Rate

1 abstraction 5.9 0.6 51 literal 14.0 10.5

2 algorithm 34.9 22.5 52 local 36.2 36.0

3 argument 114.4 142.7 53 loop/looping 112.6 152.5

4 array 272.2 7.8 54 maintain/maintainable 7.1 5.8

5 assignment/assign 53.7 55.8 55 method 949.8 298.9

6 block 56.9 38.4 56 model/modeling 25.1 13.6

7 boolean 82.0 19.8 57 module 1.3 235.8

8 branch/branching 3.3 3.1 58 nest/nested 23.0 22.4

9 case 127.0 81.0 59 number/numeric 251.4 319.7

10 character 120.0 119.6 60 object 645.0 336.7

11 class 987.4 297.0 61 operation/operator 139.1 157.7

12 code 213.2 300.6 62 output 106.8 80.0

13 component 100.4 17.2 63 parameter 92.7 84.0

14 condition/conditional 49.1 53.1 64 pattern 37.1 32.5

15 constant 63.1 6.6 65 pointer 4.2 2.8

16 constructor 141.1 9.9 66 polymorphism 5.5 2.5

17 control 61.7 22.7 67 problem 63.9 57.9

18 correct/correctness 21.2 18.1 68 procedure 4.7 1.6

19 data 133.5 175.5 69 process/processing 61.7 74.0

20 debug/debugging 8.1 15.0 70 program 460.6 462.1

21 declaration/declare 80.9 7.6 71 quality 0.6 1.5

22 decomposition/decompose 0.3 0.0 72 queue 16.1 0.6

23 definition/define 134.3 95.1 73 record 7.9 6.9

24 design 49.2 12.3 74 recursion/recursive 25.0 28.0

25 development/develop 23.9 27.5 75 reference 84.2 34.4

26 documentation/document 40.5 44.0 76 relation/relational 5.4 6.6

27 dynamic/dynamically 9.3 7.6 77 requirement/require 29.9 42.8

28 efficient/efficiency 12.7 9.9 78 reserved 5.1 3.9

29 encapsulation/encapsulate 9.3 4.0 79 scope 12.5 7.7

30 error 77.9 102.9 80 selection 13.1 10.9

31 event 152.8 37.7 81 sequence 50.3 67.2

32 exception 125.3 89.7 82 set 142.4 116.7

33 expression 98.1 111.0 83 signature 7.9 1.5

34 file 216.9 372.0 84 software 20.2 21.1

35 floating/floating-point 13.5 16.7 85 solution/solve/solving 32.1 48.1

36 function 24.8 601.9 86 specification/specify 55.5 39.5

37 identifier 11.8 9.8 87 stack 56.2 9.7

38 implementation/implement 144.4 45.2 88 statement 212.1 203.1

39 index 60.5 74.2 89 stream 59.1 5.1

40 information 68.4 72.2 90 string 399.8 410.4

41 inheritance/inherit 44.1 21.1 91 structure 33.5 44.7

42 input 74.6 128.9 92 style 21.1 17.7

43 instance 137.3 110.4 93 system 253.7 55.5

44 integer 116.0 94.0 94 test/testing 85.5 138.2

45 interface 161.0 44.4 95 thread 188.2 0.6

46 iteration/iterate 11.7 20.5 96 tree 16.8 19.6

47 keyword 21.4 23.1 97 type 369.5 204.0

48 line 146.4 263.7 98 user 110.9 151.7

49 link/linked 18.9 17.4 99 value 477.5 451.1

50 list 137.1 487.0 100 variable 288.6 164.8

