
Volume 2, Number 5 http://isedj.org/2/5/ February 4, 2004

In this issue:

Simplicity First: Use of Tools in Undergraduate Computer Science and
Information Systems Teaching

David Naugler Ken Surendran
Southeast Missouri State University Southeast Missouri State University

Cape Girardeau, MO 63701 Cape Girardeau, MO 63701

Abstract: Use of tools – either home grown or industry supported - is inevitable in teaching
CS/IS courses. The authors first examine the pros and cons of using tools in Computer Science
and Information Systems courses. They briefly discuss the side effects of using tools on learning.
In light of these discussions, they then focus on the impact of using tools in database management,
and systems analysis and design on the students’ overall learning by analyzing student feedback in
these courses and student performance in the capstone project course in which knowledge gained
in these two are applied. Based on their observations, the authors make a few suggestions for the
appropriate use of tools and conclude that more care is required in using tools in lower-level courses.

Keywords: software tools, database, analysis and design, industry partnership, tool selection

Recommended Citation: Naugler and Surendran (2004). Simplicity First: Use of Tools in
Undergraduate Computer Science and Information Systems Teaching. Information Systems
Education Journal, 2 (5). http://isedj.org/2/5/. ISSN: 1545-679X. (Also appears in The
Proceedings of ISECON 2003: §2232. ISSN: 1542-7382.)

This issue is on the Internet at http://isedj.org/2/5/

ISEDJ 2 (5) Information Systems Education Journal 2

The Information Systems Education Journal (ISEDJ) is a peer-reviewed academic journal
published by the Education Special Interest Group (EDSIG) of the Association of Information
Technology Professionals (AITP, Chicago, Illinois). • ISSN: 1545-679X. • First issue: 8 Sep 2003.
• Title: Information Systems Education Journal. Variants: IS Education Journal; ISEDJ. • Phys-
ical format: online. • Publishing frequency: irregular; as each article is approved, it is published
immediately and constitutes a complete separate issue of the current volume. • Single issue price:
free. • Subscription address: subscribe@isedj.org. • Subscription price: free. • Electronic access:
http://isedj.org/ • Contact person: Don Colton (editor@isedj.org)

Editor
Don Colton

Brigham Young Univ Hawaii
Laie, Hawaii

The Information Systems Education Conference (ISECON) solicits and presents each year papers
on topics of interest to IS Educators. Peer-reviewed papers are submitted to this journal.

2003 ISECON Papers Chair
William J. Tastle
Ithaca College

Ithaca, New York

Associate Papers Chair
Mark (Buzz) Hensel

Univ of Texas at Arlington
Arlington, Texas

Associate Papers Chair
Amjad A. Abdullat

West Texas A&M Univ
Canyon, Texas

EDSIG activities include the publication of ISEDJ, the organization and execution of the annual
ISECON conference held each fall, the publication of the Journal of Information Systems Education
(JISE), and the designation and honoring of an IS Educator of the Year. • The Foundation for
Information Technology Education has been the key sponsor of ISECON over the years. • The
Association for Information Technology Professionals (AITP) provides the corporate umbrella under
which EDSIG operates.

c© Copyright 2004 EDSIG. In the spirit of academic freedom, permission is granted to make and
distribute unlimited copies of this issue in its PDF or printed form, so long as the entire document
is presented, and it is not modified in any substantial way.

c© 2004 EDSIG http://isedj.org/2/5/ February 4, 2004

ISEDJ 2 (5) Naugler and Surendran 3

Simplicity First: Use of Tools in Undergraduate
Computer Science and Information Systems

Teaching

David Naugler
and

Ken Surendran
Department of Computer Science

Southeast Missouri State University
Cape Girardeau, MO 63701

Abstract

Use of tools – either home grown or industry supported - is inevitable in teaching CS/IS
courses. The authors first examine the pros and cons of using tools in Computer Science and
Information Systems courses. They briefly discuss the side effects of using tools on learning.
In light of these discussions, they then focus on the impact of using tools in database man-
agement, and systems analysis and design on the students’ overall learning by analyzing stu-
dent feedback in these courses and student performance in the capstone project course in
which knowledge gained in these two are applied. Based on their observations, the authors
make a few suggestions for the appropriate use of tools and conclude that more care is re-
quired in using tools in lower-level courses.

Keywords: software tools, database, analysis and design, industry partnership, tool selection

1. INTRODUCTION

Information Systems and Computer Science
(IS/CS) instruction often make use of soft-
ware tools to help students master funda-
mental concepts. Depending on the type of
course the tools used could be a program-
ming language, an application development
environment, a database management sys-
tem, a productivity package, or even a com-
plex application package. Developing or se-
lecting appropriate tools for teaching CS / IS
courses is an ongoing effort among acade-
micians. Development of the programming
language Pascal is a classic example. One
can find a range of tools for most courses.
Some of the tools used are industrial
strength products, sometimes available in
‘lighter’ versions. These complex visual pro-
fessional tools are made available to univer-
sities on excellent terms (e.g. Microsoft,
IBM, Oracle, Borland, Metrowerks, and Cin-
com all make many of their tools available
for a nominal cost), are free (e.g. Sun’s Java

environment), are available with a grant
(e.g. IBM’s Rational Rose), or come with the
textbook. Since these are professional tools
it can even be argued that experience in
their use adds to the students’ skill set.

Also, it is not uncommon to see courses that
are built around a specific tool. For example,
in an effort to combine teaching of both the
principles and the practices of database sys-
tems, a course was designed around Java 2
Enterprise Edition (Moore 2003).

In this paper, the authors, based on their
collective experience in teaching a range of
CS / IS courses, argue for the importance of
using simple tools especially in lower-level
courses. They examine the use of tools in
two lower-level courses and apply learning
concepts to highlight the negative impacts of
using complex tools at this level. They dis-
cuss the consequences of inappropriate tool
use in analysis and design. Based on stu-
dents’ feedback, they also show how tools

c© 2004 EDSIG http://isedj.org/2/5/ February 4, 2004

ISEDJ 2 (5) Naugler and Surendran 4

were used effectively in higher-level courses.
Finally, they discuss a few precautions to
bear in mind while selecting industrial
strength tools for higher-level courses.

2. STUDENTS ARE NOT PROFESSIONALS

Humans, especially those in western cul-
tures, are extremely visually oriented.
When the innovators at Xerox Park in the
1970’s (Hiltzig 1999) determined to make
computers easy to use they developed the
visual interface controlled primarily with a
mouse that Apple Computer borrowed for
the Lisa and later, with major success in
1984, for the MacIntosh, and that Microsoft
then borrowed for the ubiquitous Windows
interface. Even the Linux flavor of Unix pro-
vides mouse controlled visual interfaces.
Widespread use of the computer by non-
specialists had to wait for such an interface
for the operating system and major applica-
tions. Even though such visual tools provide
convenient user interfaces, they are the
most problematic for educational purposes,
especially in the lower-level courses.

Professional tools are designed for the pro-
fessional practitioner and not with pedagogy
in mind. A 747 is not an especially appro-
priate airplane in which to first learn to fly; a
semi-truck is not an especially appropriate
vehicle in which to first learn to drive. Stu-
dents are not yet professionals – they do not
have the subject mastery, the domain
knowledge and the experience we require in
a professional. Nevertheless, we often use
such complex tools in both the lower-level
and the upper-level courses. In the follow-
ing we examine how tools are used in lower-
level courses such as programming and in-
formation systems.

2.1 Learning Programming
Complicated programming environments
such as Visual Studio .NET, CodeWarrior,
JBuilder, and Sun ONE are fine professional
tools but are overwhelming environments for
the beginner or even the intermediate pro-
gramming student. Students initially strug-
gle with a programming environment more
than with the language they are learning –
after all, no program can be written until the
environment can be used.

Holt Software produces a Java environment
called Ready which was written after study-

ing the way programming students use
software. Ready is a simple visual environ-
ment for learning Java programming – for
example it has no toolbar icon since it was
determined that students constantly used
the tooltips to determine which icon was
which.

The ideal would be the use of restricted de-
velopment environments whose features
could gradually be made apparent. An ex-
ample of this kind of environment is Dr
Scheme for learning the Scheme program-
ming language which lets the user select
several different versions of Scheme includ-
ing beginner, intermediate and advanced
levels. More difficult language features can
remain hidden and unusable until the stu-
dent is ready for them.

Neither of the products mentioned above is
produced by a commercial software devel-
opment environment company. Indeed, it
makes better economic sense for a company
to provide the professional product at a low
price to university than to develop a sepa-
rate pedagogically sound product.

A makeshift solution is to use a reasonably
simple programmers’ editor such as TextPad
along with command line versions of soft-
ware. Such editors usually have syntax
awareness of languages available, and can
handle program output and error messages
in various windows. Programmers’ editors
such as emacs, although immensely capable
and extremely flexible, can be overwhelming
for novices.

2.2 Learning Information Systems
(Fundamentals and Practice)
It is expected that the CS and IS students
are familiar with productivity tools, even
though these are not taught in a core
course. Market forces determine the specific
products used in preparatory courses. Such
tools, in particular an electronic spreadsheet
(Excel) and a database management system
(Access), are used in the early IS courses -
such as Fundamentals and Practice under
the new curriculum guideline (Gorgone
2003). In these courses a core set of fea-
tures in Excel and Access are normally con-
sidered, leaving complex features for stu-
dents to learn on their own as and when a
need arises. These productivity tools, by
design, hide many complexities and focus on

c© 2004 EDSIG http://isedj.org/2/5/ February 4, 2004

ISEDJ 2 (5) Naugler and Surendran 5

user convenience (usually with a high level
of visual features).

While these tools are essential, the students
may develop tendencies to misapply them.
It is not uncommon students use Excel for
solving a database problem until they are
unable to meet some requirements.

In using Access the usual starting point is
creating tables, with “common sense” re-
placing design. (This is so since at this stage
the students have not been exposed to de-
sign.) However, they do explore the facilities
within Access and learn to produce the rela-
tionship diagrams for the tables they are
using in the application they have devel-
oped. As a result, after solving quite a few
simple Access exercises, the students de-
velop a false sense that database is Access
and the use of reverse engineering is the
normal system design approach. This causes
difficulties in learning the concepts in the
analysis and design courses and also in the
higher-level database courses. To minimize
the development of such erroneous concep-
tions, the students should initially be given
the appropriate design as input and asked to
develop the application. Since at this stage
much learning is by example, poorly de-
signed databases should be avoided in ex-
amples.

3. SIDE EFFECTS OF TOOLS ON

LEARNING

The most widely held theory of learning is
constructivism. See (Ben-Ari 1998) for a
survey of constructivism in the Computer
Science Education on which much of this
section is based. According to constructiv-
ism, students actively construct knowledge,
building on knowledge that the students al-
ready have. Such knowledge includes facts
(correct or incorrect), ideas and beliefs. This
theory sheds some light on the uses of tools
in the lower-level courses.

3.1 Inadequate Mental Models
Ben-Ari (1998) points out that an icon is just
a representation and is only as useful as the
mental model the user constructs – thus a
Graphical User Interface (GUI) can be nei-
ther friendly nor intuitive to a novice.
WYSIWYG (what you see is what you get) is
not true since what you see is a visual rep-
resentation of an internal data structure. In

other words, GUI’s and even WYSIWYG
GUI’s hide what is really happening and to
be used effectively require that the user has
an effective mental model of what is really
happening. For general CS/IS pedagogy the
moral is that the model must be explicitly
taught.

The real problem is not that the student has
absolutely no mental model for a tool or
concept – such total ignorance would be
quickly noticed and probably remedied. The
students almost always have some mental
models, which they will apply. The problem
is that inappropriate mental models can se-
riously impede learning.

The term bricolage was coined by the an-
thropologist Lévi-Strauss. Bricolage is de-
fined as construction or creation from what-
ever is immediately available for use; some-
thing constructed or created in this way, an
assemblage of haphazard or incongruous
elements (Brown 1993). Hacking, in the
sense of trying something and seeing what
happens, is a manifestation of bricolage of-
ten observed in CS/IS students, particularly
in programming. Although hacking is occa-
sionally done by almost anyone when pro-
gramming, and trial and error is at times a
valid learning approach, bricolage in not an
adequate method for developing the kinds of
knowledge that must be constructed by stu-
dents of CS/IS, and indeed is a sign that the
student has not developed an adequate
mental model.

3.2 Designing Without a Conceptual
Model
According to (Norman 2002; p xiii) “The
human mind is a wonderful organ of under-
standing – we are always trying to find
meaning in the events around us. One of
the greatest frustrations of all is trying to
learn how to do something that seems com-
pletely arbitrary and capricious. … A good
conceptual model can make the difference
between successful and erroneous operation
of many devices in our lives. … When the
designers fail to provide a conceptual model,
we will be forced to make up our own, and
the ones we make up are apt to be wrong.
Conceptual models are critical to good de-
sign.”

Although Norman is concerned primarily with
physical devices, his book is a mainstay of

c© 2004 EDSIG http://isedj.org/2/5/ February 4, 2004

ISEDJ 2 (5) Naugler and Surendran 6

the field of Human Computer Interaction
(HCI), which deals largely with the design of
usable software interfaces. Unfortunately
many software interfaces are designed
poorly. Most professional development tools
have a steep learning curve and assume
some very specific background, almost al-
ways including a good understanding (i.e.
mental model) of the area the tool is being
used for. Thus a Java programming envi-
ronment assumes that the user is already a
knowledgeable Java developer, and a data-
base environment usually assumes that the
user understands databases. It is small
wonder that we so often see our students so
frustrated learning to use “completely arbi-
trary and capricious” software. Even if the
interfaces are well designed for their in-
tended audience (professionals) they are not
designed for novices; indeed, the two audi-
ences may need quite different interfaces.

In the following, use of tools in higher-level
courses is discussed. The importance of the
theoretical concepts discussed above help us
in analyzing the impact of tools in these
courses.

4. TEACHING ANALYSIS AND DESIGN
CONCEPTS

Analysis and design concepts are often
taught primarily in a systems analysis and
design or a software engineering course and
to some extent in a database course. Ra-
tional Rose and Oracle Design tools are
some of the tools available in teaching
analysis and design.

4.1 Wrong Emphasis
The main learning objectives in this course
relate to learning the analysis and design
concepts and applying them in generating
analysis and design models - e.g. Entity Re-
lationship Diagrams (ERD), Data Flow Dia-
grams (DFD).

It is very tempting to use various graphics
tools for ERDs, DFDs, and so forth. Under
the object paradigm, products from Rational
Software (now IBM) cater to software engi-
neering activities. Products such as Rational
Rose or Oracle Designer may be overwhelm-
ing especially compared to the concept being
learned.

Most students want to use graphical tools to
produce nice looking output. This puts the
emphasis on a matter of secondary or even
tertiary importance and encourages the stu-
dents to focus on a relatively minor aspect.
A related issue is the degree to which the
instructor should use such tools in teaching.
There is nothing wrong with displaying a fin-
ished ER diagram for a class but the teacher
must also show hand drawn examples and
even draw some, step-by-step, with the
class’s help on the board. (A calculus
teacher who always effortlessly chooses the
correct next step solving a complicated in-
definite integral sets up a very false model
for what the student should (realistically) be
able to do and makes it look too easy – as a
result many students seriously misestimate
the effort required and become frustrated
when it is so much more difficult than they
were lead, by example, to believe.)

4.2 Lack of Flexibility
In HCI, the use of paper prototypes (story-
boards) for interface design is strongly rec-
ommended even for the early versions
shown to the user. It may take considerable
effort to produce UI prototypes using various
tools. Tool use should be avoided at the ini-
tial stages of requirements analysis. Some of
the reasons (Snyder 2001) for the success of
the paper-prototype approach are especially
instructive for education and design in gen-
eral. Paper prototypes involve no coding at
all. Clients feel free to comment on paper
prototypes and suggest changes. This al-
lows many problems to be found quickly and
at a low cost largely by focusing on the func-
tionality of the interface itself and not on
issues such as color, fonts, and graphics
which are not important at this stage but
which are extremely easy to focus on. With
paper prototypes feedback not pertaining to
functionality is avoided. Since the clients
are not intimidated by a paper prototype as
they may well be by a working prototype
they will be more comfortable and creative
in examining the design. Thus paper proto-
types are very effective during the early de-
sign stage. It is easy for a group to work on
a paper prototype and to change it. Coding
is a much more solitary activity and it is very
difficult for more than three people to feel
useful at coding time. A working prototype
is psychologically quite hard to change sig-
nificantly.

c© 2004 EDSIG http://isedj.org/2/5/ February 4, 2004

ISEDJ 2 (5) Naugler and Surendran 7

4.3 Students’ Perceptions
One of the authors recently taught a data-
base course for a mixed group of CS and IS
students. A survey at the end of the course
was conducted to find out, among other
things, the need for more tools and/or con-
cepts. While a large majority wanted more
of neither, 30% wanted more tools and only
5% indicated more concepts. In their re-
sponse to topics that were most difficult and
easiest, 75% chose normalization as the dif-
ficult topic and 70% chose SQL as the easi-
est topic. In answering the question on most
important and least important topics, 40%
chose SQL as the least important and 50%
chose design as the most important. The
familiarity with SQL (used by some in earlier
IS courses) and a background in program-
ming seems to be the reason for choosing
SQL as the easiest and least important topic.

Beginners make mistakes in database design
(Antony 2002), in particular normalization
and identifying necessary relationships accu-
rately. Hence it is quite reasonable that
students find normalization difficult. How-
ever, even though they found normalization
difficult and recognized that design was im-
portant, they still wanted more tools than
concepts. It appears that students perceive
that learning tools (which often have a short
useful life) is more important than learning
concepts (which have lasting value). One
reason for this could be the early emphasis
that is placed on learning packages such as
Access without due regard for design. Be-
sides, by just creating tables for some sim-
ple systems the students tend to believe
they are capable of developing database ap-
plications.

4.4 Student Performance
The other author has been teaching Systems
Analysis and Design for sometime now. In
this Visio, MS Project, Excel, and Access are
used. The omission of complex CASE tools
such as Oracle Designer, Developer was de-
liberate, even though the course is taught
using the procedure-centric paradigm. The
main assessment for the course is a group
project with four-phases: planning, require-
ments specification, design and prototype.
The instructor serves as the client, trying to
simulate a real life situation. Since the focus
is on applying the concepts, there is less
emphasis on the tools: for instance, the use
of Visio is not mandatory (however, the stu-

dents are encouraged to learn these tools on
their own).

Students produced good process and data
models at the analysis stage. However, the
data designs were not as good as the proc-
ess designs (there were significantly more
design errors in the data model). Some pro-
duced data models using reverse engineer-
ing (i.e., creating the tables in Access and
using the relationships facility). In this
process, they also failed to appreciate the
significance of the relationships and normali-
zation.

5. CAPSTONE COURSE

Software Engineering is the capstone course.
In this course, the students work in teams
on client sponsored system development
projects. They use Rational Rose for model-
ing and, in addition, depending on the pro-
ject, the teams use various other tools,
which include specific programming lan-
guages, database management systems,
and connectivity products. Following a set
process, each team develops a useable
product along with all the intermediary sys-
tem documentation.

The course focuses initially on the principles
and techniques used in Analysis and Design
under the object paradigm. A few Rational
Rose lab sessions are organized for the stu-
dents to familiarize themselves with the tool.
The students seem to have enough confi-
dence to learn to draw the main diagrams
(use-case, sequence, class, state, package)
using Rational Rose on their own for docu-
menting the results of their analysis and de-
sign. Features like reverse engineering are
demonstrated just to let them know that
there are several others features in Rose,
which they may not be using in the course.
However, they will explore these features
and use them if and when their project re-
quired them.

5.1 Paradigm Shift
A common problem observed in most of the
projects which use Access as the database
management system is the discontinuity be-
tween the object model (class design) and
relational data model. Instead of transform-
ing the object model into the data model,
the students carryout a separate ERD model
from scratch. Access is designed for end

c© 2004 EDSIG http://isedj.org/2/5/ February 4, 2004

ISEDJ 2 (5) Naugler and Surendran 8

users as a productivity tool rather than a
database development tool for building ap-
plications. As a result, it does not facilitate
the treatment of object-relational transfor-
mations. Indeed, even major database ven-
dors such as Oracle have only been gradu-
ally adding object-relational and object-
oriented capabilities. There are still some
relational versus object issues. Thus the
techniques for manually transforming the
object model into a data model have to be
taught either in the analysis and design, in
the software engineering, or in the database
course.

5.2 Learning New Tools
Some of the projects required the use of
Java for implementation with Access for da-
tabase management. These teams had to
learn the use of connectivity tools like JDBC
on their own. Further, such topics are not
necessarily considered in the database man-
agement course or in a course using Java for
want of time. These senior students clearly
demonstrated that they were able to learn
such new tools - to the necessary extent -
on their own and use them in their projects.
The effort they had to put in depended on
the relevant knowledge they had from other
optional courses.

5.3 Significance of Design
In the capstone course the students are
asked to state their individual reflections in
their final project report. Most of the teams
seemed to have realized the importance of
design and design reviews. Some of the
groups (which carried out proper design re-
views) were surprised to find that they had
spent only 20% of the project time on actual
coding and testing. All the teams used the
modeling tools (UML diagrams in Rational
Rose) effectively to document the require-
ments spec and design, even though they
had only a few Rational Rose lab sessions.
The course has helped them develop enough
confidence to conduct analysis and design
and to document the resulting specifications
using Rational Rose, a modeling tool used
extensively in software houses. However,
they did not exploit the other features (such
as reverse engineering) the tool offers.

6. PRECAUTIONS

Usually, university departments sign agree-
ments with software vendors for using their

products in their course work. The cost and
conditions of use vary. Some consider such
agreements between an academic depart-
ment and industry as invasion by industry
into the educational system. Deron Boyles
(Boyles 1998) gives several examples as to
how companies use schools as a platform to
promote themselves. His work is confined to
school-industry partnerships where the tan-
gible benefits to companies are normally
hidden. However, in industry-university
partnerships, the expectations are clearly
understood. In some cases, universities get
product licenses that are normally very ex-
pensive (such as ERP systems). Perhaps
what is important for a university in this
situation is to maintain academic neutrality
even when using specific products.

6.1 Academic Neutrality
Academic neutrality is apparent when the
primary purpose of using an industrial prod-
uct in an academic curriculum is confined to
that of a tool and there is consideration of
other products in the course even if they are
not used in practical sessions. There should
be sufficient learning elements so that the
product is only one element of the whole
course. This may require careful course
planning to ensure the product is used pri-
marily as a tool for meeting the course ob-
jectives.

6.2 Hidden Costs
It is not possible to foresee all possible costs
in fulfilling contractual obligations. Some of
the hidden costs are:
• Staff time – both when they are training

and when they are organizing the pro-
ject

• Unforeseen Implementation Costs
• Unforeseen Training Costs
• Support Costs
There is also the issue of staff turnover.
Generally only one faculty member teaches
a course using a particular tool.

These tools go through continuous changes.
Some of the organizations include, as part of
the agreement, the use of latest versions.
Some leave it to the academic institutions to
make a change request. There is also a cost
for upgrading the course content and the
teaching material.

c© 2004 EDSIG http://isedj.org/2/5/ February 4, 2004

ISEDJ 2 (5) Naugler and Surendran 9

6.3 Education versus Training
In using tools, there is the risk of keeping
the content of the course limited to what the
tools offer. It is important to ensure that
there are sufficient knowledge components
in the course. Students may be able to get
training for today’s jobs but we need to en-
sure they get the education for tomorrow’s
changing requirements. Tool based training
certainly increases employment opportuni-
ties. However, a long-term career requires
a broader foundation. Thus even a tool-
centered course must retain the knowledge
focus.

6.4 Tool Selection
Some of the other risks pertain to the selec-
tion of the tool and the intended scope of
use. In many areas of CS/IS, it is hard to
predict which product will be the market
leader (hence the possible demand for
skilled graduates). One needs to study mar-
ket conditions fairly thoroughly before
choosing a product for use in the curriculum.
It is also possible that some industries may
use the academic partnership as a short
phase in their overall product life cycle strat-
egy. They might stop supporting or go for
alternative training sources once market
penetration is achieved. It is important to
ensure long-term support for the product
through contractual agreements.

In the new IS curriculum, a lot more empha-
sis is placed on e-commerce and web related
applications i.e. a course on E-business and
another on implementation in emerging en-
vironments (Gorgone 2003). Currently
there are two competing products in the web
services area (J2EE and .NET). It is quite
likely the market is big enough for two prod-
ucts since they address different non-
functional requirements (Williams, 2003 and
Miller, 2003): openness and integration.
What the academic community selects to
teach will not depend on such non-functional
factors (which may be crucial to the specific
business organizations) but on the conven-
ience the products offer in the overall flow of
the curriculum. The academy also has a
minor say in the sense it supplies the man-
power for developing and supporting the
applications.

6.5 Complexity of tools
Complex tools (like some integrated Devel-
opment Environments - IDEs) take consider-

able effort to learn. For lower-level courses
tools that are easy to learn should be con-
sidered. If a complex IDE is chosen for
other reasons it should be used in several of
the higher-level courses so that it is worth
the overhead in learning it.

6.6 Support in Learning Concepts
McCracken (1998) raised the following ques-
tion concerning the use of tools: at what
point do you draw the line between basic
concepts (good) and new and useful tools
(also good)? There is no clear-cut universal
answer to this. However, what is important
is to ensure the tools do not create any
pedagogical problems but instead enhance
the learning of concepts.

7. CONCLUSION

Use of tools in both lower-level and upper-
level courses has been considered in this
paper. Both instructor experience and stu-
dent feedback has been used to arrive at
suggestions for appropriate use of tools.
The significance of building conceptual mod-
els as part of learning has also been empha-
sized. In this regard the use of tools in
lower-level courses needs to be examined
carefully and with due consideration of the
knowledge required to build appropriate
mental models, not just to use the particular
tool but to use similar tools. The models
needed to learn tools is part of what must be
taught. It is not necessary or usually appro-
priate to teach all the features of a profes-
sional tool – a well chosen subset will serve
pedagogically. It is best to use tools de-
signed or suitable for learners; such tools
when available can make it easier both for
teacher and students and even increase the
learning of the subject material. Bricolage
needs to be recognized as a symptom of an
inadequate mental model.

Senior students should be encouraged to
learn tools on their own but only after they
have developed adequate mental models
usually by instruction in a subset of features
of the tool or by experience with similar
tools.

Several suggestions have been made con-
cerning the choice of tools for use in
courses, including maintaining academic
neutrality, examining tool complexity, and
ensuring ease of use in learning concepts.

c© 2004 EDSIG http://isedj.org/2/5/ February 4, 2004

ISEDJ 2 (5) Naugler and Surendran 10

Further, in selecting a tool, it is important to
use criteria that are drawn from the philoso-
phy of the program and apply it consistently.
Evaluating the use of a tool in a course in
light of student feedback is essential even if
it is popular tool (Hadjerrouit 1998).

8. REFERENCES

Antony, S. R. and D Batra (2002). “CODA-

SYS: A Consulting Tool for Novice Data-
base Designers,” The Database for Ad-
vances in Information Systems, Vol. 33,
No. 1.

Ben-Ari, Mordechai (1998). “Constructivism

in Computer Science Education,” Inroads
SIGCSE Bulletin, Vol. 30 No. 1, pp. 257-
261.

Boyles, D. (1998). American Education and

Corporations: The Free Market Goes to
School Garland Publishing, New York.

Brown, Leslie (Ed) (1993). The New Shorter

Oxford English Dictionary, Clarendon
Press, Oxford.

Gorgon, J. T., G.B. Davis, J.S. Valacich, H.

Topi, D.L. Feinstein, and H. E. Longe-
necker, Jr. (2003). “IS 2002 Model Cur-
riculum and Guidelines for Undergradu-
ate Degree Programs in Information
Systems”,” The Database for Advances
in Information Systems, Vol 34, No. 1.

Hadjerrouit, S. (1998). “Java as First Pro-

gramming Language: A Critical Evalua-
tion,” Inroads SIGCSE Bulletin, Vol 33
No. 2, pp 43-47.

Hiltzig, Michael (1999). Dealers Of Light-

ning: Xerox PARC and the Dawn of the
Computer Age, HarperBusiness.

McCracken, D. D. and D. J. Frailey (1998).

“A conversation about Computer Science
Education,” Inroads SIGCSE Bulletin,
Vol. 30 No. 2, pp. 36-39.

Miller, G. (2003). “.NET vs. J2EE,” Commu-

nications of the ACM, Vol. 46, No. 6, pp.
64-67.

Moore, T. K. (2003). “Bringing The Enter-

prise into a Database Systems Course,”

SIGCSE Bulletin – Inroads, Vol 34 No.
1., pp. 262-265.

Norman, D. A. (2002). The Design of Every-

day Things, Basic Books.

Snyder, C. (2001). “Paper prototyping.”

(http://www-
106.ibm.com/developerworks/library/us-
paper/?dwzone=usability) IBM develop-
erWorks. (accessed 12 May 2003).

Williams, J. (2003). ‘J2EE vs. .NET,’ Com-

munications of the ACM, Vol. 46, No. 6,
pp 59-63.

c© 2004 EDSIG http://isedj.org/2/5/ February 4, 2004

ISEDJ 2 (5) Naugler and Surendran 11

David Naugler is an Associate Professor of
Computer Science at Southeast Missouri State
University. He earned a B.Sc., M.A. and Ph.D. in
Mathematics from Dalhousie University. His
research interests include programming languages
and database systems. He a member of the ACM
and Sigma Xi.

Ken Surendran is an Associate Professor in the
Department of Computer Science at Southeast
Missouri State University. His research interests
include Software Engineering and Security
Management Education. His industrial experiences
in IT were with Indian Space Research Organization
and Zambia Consolidated Copper Mines. His
previous academic assignments in IT were with
Rose-Hulman Institute of Technology; UNITEC
Institute of Technology, New Zealand; Copper-belt

University, Zambia; and PSG College of Technology, India. Surendran
received a B.E. in Electrical Engineering from University of Madras,
India, M. Tech. in Electrical Engineering from Indian Institute of
Technology, India, and Ph. D. in Applied Analysis from State University
of New York at Stony Brook. He serves on the editorial board for the
Journal of Information Systems Education. He is a senior member of
IEEE and a member of ACM.

c© 2004 EDSIG http://isedj.org/2/5/ February 4, 2004

