
Volume 7, Number 85 http://isedj.org/7/85/ July 27, 2009

In this issue:

Issues and Challenges for Selecting a Programming Language in a
Technology Update Course

Azad Ali Scott Mensch
Indiana University of Pennsylvania Indiana University of Pennsylvania

Indiana, PA 15705, USA Indiana, PA 15705, USA

Abstract: The purpose of this paper is to identify the issues and challenges that face the decision
to select a programming language to teach in a technology update courses. This paper also makes
suggestions to address these existing issues in an effort to increase student success. The findings
of this paper has been implemented in a technology update course that is part of a master degree
program in education within the Technology Support and Training (TST) department at Eberly
College of Business and Information Technology (ECOBIT) at Indiana University of Pennsylvania
(IUP).

Keywords: Introduction to Programming, Programming for teachers and educators, Programming
for high schools, difficulty learning programming

Recommended Citation: Ali and Mensch (2009). Issues and Challenges for Selecting a
Programming Language in a Technology Update Course. Information Systems Education Journal,
7 (85). http://isedj.org/7/85/. ISSN: 1545-679X. (A preliminary version appears in The
Proceedings of ISECON 2008: §2513. ISSN: 1542-7382.)

This issue is on the Internet at http://isedj.org/7/85/

ISEDJ 7 (85) Information Systems Education Journal 2

The Information Systems Education Journal (ISEDJ) is a peer-reviewed academic journal
published by the Education Special Interest Group (EDSIG) of the Association of Information
Technology Professionals (AITP, Chicago, Illinois). • ISSN: 1545-679X. • First issue: 8 Sep 2003.
• Title: Information Systems Education Journal. Variants: IS Education Journal; ISEDJ. • Phys-
ical format: online. • Publishing frequency: irregular; as each article is approved, it is published
immediately and constitutes a complete separate issue of the current volume. • Single issue price:
free. • Subscription address: subscribe@isedj.org. • Subscription price: free. • Electronic access:
http://isedj.org/ • Contact person: Don Colton (editor@isedj.org)

2009 AITP Education Special Interest Group Board of Directors

Don Colton
Brigham Young Univ Hawaii
EDSIG President 2007-2008

Thomas N. Janicki
Univ NC Wilmington
EDSIG President 2009

Kenneth A. Grant
Ryerson University
Vice President 2009

Kathleen M. Kelm
Edgewood College

Treasurer 2009

Wendy Ceccucci
Quinnipiac Univ
Secretary 2009

Alan R. Peslak
Penn State

Membership 2009
CONISAR Chair 2009

Steve Reames
Angelo State Univ
Director 2008-2009

Michael A. Smith
High Point

Director 2009

George S. Nezlek
Grand Valley State
Director 2009-2010

Patricia Sendall
Merrimack College
Director 2009-2010

Li-Jen Shannon
Sam Houston State
Director 2009-2010

Albert L. Harris
Appalachian St

JISE Editor

Paul M. Leidig
Grand Valley State University

ISECON Chair 2009

Information Systems Education Journal Editors

Don Colton
Brigham Young U Hawaii

Editor

Thomas Janicki
Univ NC Wilmington

Associate Editor

Alan Peslak
Penn State University

Associate Editor

Information Systems Education Journal 2008-2009 Editorial and Review Board

Samuel Abraham, Siena Heights
Ronald Babin, Ryerson Univ
Sharen Bakke, Cleveland St
Wendy Ceccucci, Quinnipiac U
Janet Helwig, Dominican Univ
Scott Hunsinger, Appalachian St
Kathleen Kelm, Edgewood Coll
Frederick Kohun, Robert Morris
Terri Lenox, Westminster

Cynthia Martincic, St Vincent Coll
George Nezlek, Grand Valley St U
Monica Parzinger, St Mary’s Univ
Don Petkov, E Conn State Univ
Steve Reames, Angelo State Univ
Jack Russell, Northwestern St U
Patricia Sendall, Merrimack Coll
Li-Jen Shannon, Sam Houston St

Michael Smith, High Point Univ
Karthikeyan Umapathy, UNFlorida

Stuart Varden, Pace University
Laurie Werner, Miami University

Bruce White, Quinnipiac University
Belle Woodward, So Illinois Univ

Charles Woratschek, Robert Morris
Peter Y. Wu, Robert Morris Univ

Kuo-pao Yang, Southeastern LA U

EDSIG activities include the publication of ISEDJ and JISAR, the organization and execution of
the annual ISECON and CONISAR conferences held each fall, the publication of the Journal of
Information Systems Education (JISE), and the designation and honoring of an IS Educator of the
Year. • The Foundation for Information Technology Education has been the key sponsor of ISECON
over the years. • The Association for Information Technology Professionals (AITP) provides the
corporate umbrella under which EDSIG operates.

c© Copyright 2009 EDSIG. In the spirit of academic freedom, permission is granted to make and
distribute unlimited copies of this issue in its PDF or printed form, so long as the entire document
is presented, and it is not modified in any substantial way.

c© 2009 EDSIG http://isedj.org/7/85/ July 27, 2009

ISEDJ 7 (85) Ali and Mensch 3

Issues and Challenges for

Selecting a Programming Language in a

Technology Update Course

Azad Ali
azad.ali@iup.edu

Scott Mensch
s.mensch@iup.edu

Technology Support and Training Department

Indiana University of Pennsylvania
Indiana, PA 15705, USA

Abstract

The purpose of this paper is to identify the issues and challenges that face the decision to se-

lect a programming language to teach in a technology update courses. This paper also makes

suggestions to address these existing issues in an effort to increase student success. The find-

ings of this paper has been implemented in a technology update course that is part of a mas-

ter degree program in education within the Technology Support and Training (TST) depart-

ment at Eberly College of Business and Information Technology (ECOBIT) at Indiana Universi-

ty of Pennsylvania (IUP).

Keywords: Introduction to Programming, Programming for teachers and educators, Pro-

gramming for high schools, difficulty learning programming

1. INTRODUCTION

Educators in the computer field are facing a

dilemma when updating the content of their

technology courses. With enrollment drop-

ping steadily in technology related courses in

the past several years, efforts have been

made to strengthen courses to boost enroll-

ment. Among the technology area that has

been subject to continuous revisions and

updates are the teaching of programming

languages. Learning to program is consi-

dered to be a difficult task for many students

and remains to be contributing to the conti-

nuous drop in enrollment in computer re-

lated programs. It is estimated that between

25 to 80 percent of students drop their first

computer classes due to the difficulty they

face in learning a program language (Carter

& Jenkins, 2002).

Despite the difficult points of learning to

programming, teaching programming re-

mains an integral part of pedagogy in tech-

nology update courses. Moreover, the issues

surrounding the difficulty of programming

may need to be addressed when teaching

such programming languages. This paper

outlines the experience of faculty within the

TST department at IUP in updating their

courses that contain aspects of program-

ming. The TST department offers a master

degree program in education (M.ED) and

teaches a course in technology update in the

same program. The technology update

course includes programming topic among a

number of additional topics. This paper ex-

plains how the faculty within the TST de-

partment addressed the complexity that

programming languages introduce when re-

vising their technology update course.

2. PROGRAMMING LANGUAGES –

DIFFICULTY POINTS

Learning the art of computer programming

is considered to be a difficult task for many

students. By the same token, teaching pro-

c© 2009 EDSIG http://isedj.org/7/85/ July 27, 2009

ISEDJ 7 (85) Ali and Mensch 4

gramming courses is found to be equally

difficult for educators in different fields of

study (Baldwin & Kuljis, 2001). In some cas-

es, teaching programming is considered a

“turning-away” factor from courses in pro-

grams that do not specifically teach technol-

ogy related courses.

Numerous studies have been conducted to

identify the factors that contribute to the

difficulty in learning to program. Baldwin and

Kulijas (2001) explained about the difficulty

that students face when learning to program

“The majority of students, even those

enrolled in computer science courses, find

computer programming a difficult and com-

plex cognitive task” and further noted that

“learning programming demands complex

cognitive skills such as planning, reasoning

and problem-solving” (p. 1).

Other studies provided more comprehensive

analysis of the factors that contribute to this

difficulty. Dann, Cooper and Pausch (2006)

listed four factors that contribute to the diffi-

culty in learning to program: Fragile me-

chanics of program creation, particularly

syntax; the inability to see the result of

computation as the program runs, the lack

of motivation for programming and the diffi-

culty of understanding compound logic and

learning design techniques.

In a study conducted to suggest steps to

simplify learning to program, Kelleher and

Pausch (2005) compared a number of pro-

gramming languages that are commonly

used in beginner programming courses. The

same study wrote the following about the

difficulty of learning to program:

“Learning to program can be very difficult

for beginners of all ages. In addition to

the challenges of learning to form struc-

tured solutions to problems and under-

standing how programs are executed,

beginning programmers also have to

learn a rigid syntax and rigid commands

that may have seemingly and arbitrary or

perhaps confusing names. Tackling all of

these challenges simultaneously can be

overwhelming and often discouraging for

beginning programmers” (p. 83).

The studies listed above point to one com-

mon fact and that is learning to program for

a beginner is a considered to be a difficult

task. However, the factors that contribute to

these difficulties are not totally agreed upon.

Thus, further explanations of these factors

may shed some lights on the specific rea-

sons for the difficulty. The remainder of this

section explains in more detail some of these

reasons that contribute to the difficulty in

learning to program.

Rigid Syntax and Commands

Syntax is “the grammatical role of the pro-

gramming language” or so explained in typi-

cal programming courses. However, a closer

look at the rules of syntax in programming

languages reveals many differences from the

grammatical rules of typical spoken lan-

guages. These differences have to do with

the structure of commands, the stopping

character, naming of variables, passing pa-

rameters and other related issues when

structuring lines in programs.

A computer program is written to execute a

command or a series of commands (Porter &

Calder, 2004). A program contains a series

of instructions that use a set of variables to

perform specific tasks. The program is

usually typed in a text editor and saved. It is

then compiled to check for the correctness of

the syntax. If there is an error in the pro-

gram, the compiler displays an error mes-

sage to tell the exact location and meaning

of the error. The programmer accordingly

fixes the errors, recompile and repeat the

cycle again until all error are fixed and the

program will be ready to be executed.

A common programming language used to

be the BASIC programming language. The

syntax in BASIC was simpler, thus fitting

beginners who take it as their first pro-

gramming language. The commands were

separated by lines, in which one line

represented one command. The lines were

numbered sequentially, thus following the

commands used to take sequential or logical

order, similar to reading a book. The com-

mands were in a simple form that could be

more understandable sometimes even to

novice programmers.

BASIC was also simple enough to teach to

beginning programmers. BASIC however

was not able to handle large tasks that re-

quire writing longer programs. Thus the call

increased to produce a language that is

more understandable to the general user.

The call for a language that uses “English

Like” statements started to overcome this

problem. COBOL was the language used be-

c© 2009 EDSIG http://isedj.org/7/85/ July 27, 2009

ISEDJ 7 (85) Ali and Mensch 5

cause of this feature. COBOL uses com-

mands that looks like or resembles spoken

English language. However, programs writ-

ten in COBOL were longer and the pro-

grammer had to type all these commands

which then increased the chance for mistyp-

ing or misunderstanding the commands.

The use of the newer languages in the curri-

culum, such as Java and C++, added a new

dimension to the complexity of the syntax.

These languages attempted to minimize cod-

ing. They used a lot of abbreviated codes to

make it easer to write programs. However,

these languages used characters that are

easy to miss while typing. For example, the

program used characters such as a semi co-

lon to indicate the end of the command and

the use of curly brackets to indicate begin-

ning and end of block of lines of code. These

characters can be confusing and easily

mixed with regular brackets. Also, users

sometimes do not know when to use regular

brackets or curly brackets because both

types are used at various stages of within

the program. These issues get complicated

when the program contains multiple and

nested block of lines of code. These blocks of

code must each have their own opening and

closing brackets. When these blocks of code

are nested at multiple levels, beginning pro-

grammers have trouble understanding which

bracket belongs to what block.

The error messages that are generated by

the compiler are not always helpful. Some-

time, these error messages are designed for

advance programmers and the wording of

the messages do not help beginning pro-

grammers understand their meanings. Other

times, the error messages may point to a

particular line of code while the actual error

is at a previous or a totally different location

within the program. In these cases, the be-

ginning programmer keeps looking at the

line where the error message is pointing and

can’t identify the error which can become

frustrating.

Unfamiliar Structure

Creating a structure is not new in academia.

Structure has been used in different fields of

fields of study and provides a number of ad-

vantages when used. In computer pro-

gramming, the term “structure” is repeated

often and is practiced differently when writ-

ing programs. Actually, the word structure is

considered the foundation in three different

flows of code in writing different programs.

These three different procedures for control-

ling the flow of code are termed the three

control structures: sequence control struc-

ture, selection control structure and iteration

control structure. The level of “structure” is

practiced differently in each of the three

control structures that are mentioned above.

The sequence control structure is where the

commands are executed one line after

another and is the simplest one to follow.

Programmers can follow the code by reading

one line after another. Although the com-

mands may sound mysterious and the va-

riables may not be clear, the lines can be

read similar to reading a book. Familiarity

with the syntax may help understand the

program, but in either case it follows a pat-

tern that is familiar to most people. Due to

this it may be more understandable than

other control structures.

The selection control structure is included

when the program executes certain blocks of

code based on different conditions. The

blocks of code may be within the same pro-

gram file, or it can be written in a totally

different program. During the execution of

the program, branching out of sequence

may lead to another location and then the

program may encounter another selection

statement that branches out to another loca-

tion. This kind of branching out may contin-

ue at several levels and it may not be clear

at what point the program goes back to the

original code that it branched out from. Two

difficult points arises her from this kind of

branching out. First, identifying the block of

code that is executed as a result of this

branching out is difficult. Second, identifying

the multiple level of block that are executed

and then to return back to the original line of

execution is tricky. Both of these difficulty

points confuse many new programmers and

lead to frustration as the program becomes

longer.

The iteration, or loop control structure, faces

similar problems but at a different level. In

this structure, the programming code seg-

ment is executed a specific number of times

or until a specific condition is met to halt the

execution of the loop. The difficulty here is

similar to the selection statement in that it is

not clear which statements are executed

within the loop. Also, the idea of repetition is

c© 2009 EDSIG http://isedj.org/7/85/ July 27, 2009

ISEDJ 7 (85) Ali and Mensch 6

foreign to many users in thinking of a loop

until a condition is met.

Initial teaching programs in BASIC pro-

gramming language did not follow a particu-

lar structure. Programs were written in one

block of code and they were not broken

down into many distinct blocks. Beginners

did not have to remember different module

names, nor how to pass variables, parame-

ters and other related names. This practice

was simple enough to teach to students un-

familiar with programming. However, as

programs became longer and as some of the

tasks were repeated from one program to

another the need to structure the solution

increased. This structured solution is

achieved with two purposes in mind: first to

break down the program into smaller mod-

ules to make them easy to read and follow.

The second purpose is to increase the usa-

bility of the code [12]. In other words, a

module written for one purpose need not be

repeated in other programs over and over

again. Instead, the module is written inde-

pendently and other programs use the same

module in their programs. However, this

multiple level of branching out and calling

other programs is confusing.

This call for structure is designed to make a

program development cycle more efficient

and aimed at standardizing the coding of

programs and reusing existing code of the

programs. However, this kind of structure is

difficult for inexperienced programmers. Lat-

er development in the programming industry

introduced the use of Object Oriented Pro-

gramming (OOP) methodology which

stresses more of the usability and the struc-

ture issue in the program. The OOP metho-

dology introduced many new concepts that

needed to be understood along with learning

the programming concepts. Dann et al [5]

noted that today’s beginning programmers

have to learn the original concepts of pro-

gramming such as loop, selection, and itera-

tion along with the new concepts of OOP

such as classes, objects, encapsulation, in-

heritance and others. Thus, it places an ex-

tra layer which make it more difficult to

learn.

Time/Output Ratio

A common first program that is used during

an entry level programming courses displays

a message that prints “Hello World” to the

audience. Additional typical programming

examples may include writing a program to

convert Fahrenheit to Centigrade or convert-

ing miles driven to kilometers.

Writing the programs to produce the exam-

ples that are mentioned above may follow

different steps when switching from one

programming language to another. However,

it is safe to say that producing small output

like the ones described above take a number

of steps and a certain amount of time. To

the average students that do not know a lot

about programming, putting this kind of ef-

fort to produce a simple output may not be

justified and may not be time efficient. After

all, the same students can repeat similar

statements and produce the similar calcula-

tions multiple times with less effort. Stu-

dents may question the feasibility of spend-

ing this much time to produce simple out-

puts that are generated from writing pro-

grams.

3. PROGRAMMING LANGUAGES –

SIMPLIFYING THE PROCESS

A number of studies have been conducted

that acknowledged the difficulty with learn-

ing a new programming language and sug-

gested steps to simplify this learning

process. These suggestions range from sim-

ple (such as changing the programming lan-

guage) to more detailed suggestions that

deal with the conceptual model and the pa-

radigm of teaching the programming lan-

guages.

In a study that was conducted to explain

about the conceptual model and the learn-

er’s understanding of the programming lan-

guage, Baldwin and Kulijas (2001) noted the

following:

“It has been argued that conceptual

models can serve to enhance learners'

conceptual understanding of program-

ming. The methods used to enhance the

development of accurate mental models

include: designing the interface so that

users can interact actively with it; using

metaphors and analogies to explain con-

cepts; and using spatial relationships so

that users can develop capabilities for

mental simulations (P.1)

Dann, Cooper and Pausch (2006) noted

three topics that students in programming

courses should learn: algorithm thinking and

c© 2009 EDSIG http://isedj.org/7/85/ July 27, 2009

ISEDJ 7 (85) Ali and Mensch 7

expression, abstraction, and appreciation of

elegance. Adams explained that in order to

solve the problems associated with introduc-

tory programming courses, faculty must in-

clude examples that are engaging and cap-

ture the imagination of today’s student.

Herbert (2007) explained that the best way

to teach programming ideas is to expose it

to the students gently, and then to gradually

add more and more detail until one day they

realize they’ve learned quite a bit. This kind

of approach to learning programming is re-

ferred to as the “spiral approach”. The

process can be long and sometimes tedious,

thus programming educators need to moti-

vate students along the way to keep them

interested.

Dealing with the Syntax

The programming industry in general has

been trying to solve the syntax issues of

programming languages for some time.

Starting with the early days of teaching pro-

gramming, error messages displayed from

compilers were generally vague and did not

help in identifying the meaning of the error

or the location. As programming increased,

the error messages became more descriptive

and meaningful.

As programming turned into full gear with

the Graphical User Interface (GUI) objects,

more help was given to programmers. Ma-

nuals and online help provided examples of

how to code. Description of error messages

became more elaborate. Helpful hints were

given as the programmer types the pro-

gram. An example of this is the use of “intel-

license” where the users type something and

the system gives suggestions to complete

the commands.

Despite these advancements, programmers

in general still had to type the program. Ad-

ditional studies suggested means of commu-

nicating instructions that did not include a

lot of tying. Kelleher and Pausch (2005)

suggested simplifying the syntax so that be-

ginners can more easily learn or find alter-

nate ways to communicate their instructions

to the computers. Baldwin and Kuljis (2001)

suggested the use of visual systems in

creating a program and further noted about

this issue:

Herbert (2007) noted that in order to make

it easier to learn programming, three factors

must be maintained: minimize the syntax,

provide visual feedbacks and shorten the

creative cycle of conceptualization, and im-

prove the implementation and results. Bald-

win and Kuljis (2001) on the other hand,

stressed about the benefits of using visual

metaphors because they provide more mea-

ningful clues than verbal ones.

Syntax problems occur as a result of pro-

grammers incorrectly typing commands into

the program. An effective way to deal this

problem is to eliminate typing the syntax.

However commands have to be coded into

the program in order for the program to be

executed and produce the intended output.

A number of studies have suggested using

visual objects that produce commands and

lines of code. These visual objects can be

buttons or images that can be dragged and

dropped into the lines of code. Once

dragged, the objects provide the program-

mer with different options. For example, if

programmers want to execute moving an

object from one location to another, the can

do so by dragging the object from the loca-

tion where it is placed move and drop it in

code. Once dropped in the correct location

the program then displays a menu asking for

the next option to select. In other words,

this kind of coding eliminates the possibility

of syntax errors by using predefined visual

objects that can be moved and placed in the

lines of code.

Addressing the Structure Issue

The structure of the program has been ad-

dressed in various programming languages.

Programming code editors have been im-

proved significantly and serve as an aid to

help the programmer with the structure.

Some editors require the programmer to

indent certain elements of the program to

indicate belonging to a particular block or

segment of the program. Other editors do

the indentation for the programmer. An ex-

ample of this indentation would be coding an

“if” statement in the program. Once the pro-

grammer codes the first line of the state-

ment, the editor automatically indents the

code under it to indicate a subordinate. Oth-

er editors complete the statement for the

programmer such as the case in writing

HTML programs. When the programmer

codes the opening tag for HTML, the editor

automatically completes the code for the

c© 2009 EDSIG http://isedj.org/7/85/ July 27, 2009

ISEDJ 7 (85) Ali and Mensch 8

closing tag once the user types the back

slash character.

The use of flowcharts, pseudo code and hie-

rarchy charts was introduced to illustrate the

different segments within the program and

the relationship among the segments of the

program. In these tools, programmers draw

symbols that show these segments. Intro-

ducing objects to help with program code

rather than tying the commands provides an

advantage in understanding the structure of

the program. Providing these “visual” ob-

jects make the concept more concrete be-

cause these provide visual clues as com-

pared to the same display when it is typed.

Enhancing Time/Output Ratio

Since programming is considered “boring” by

many accounts, providing some interesting

applications may help fade away this notion.

The output that is generated by a program

may be more interesting if it provides visual

clues such as photos, shapes, buttons and

so on.

Engaging the user in the program output

helps with the development of the program

at several fronts. First it provides a feedback

to the user, and second it helps makes pro-

gramming interesting (Porter & Calder,

2004). The introduction of GUI objects

helped with this type of output when writing

programs. By using GUI objects, program-

mers can use buttons, shapes and other

tools that make a program more interesting

than just plain “text” output.

Guibert, Girard and Guittet (2004) stressed

on the positive experience of using pro-

gramming by example (PbE) where pro-

grammers design methods to provide conti-

nuous feedback. In other words, such pro-

grams contain methods that are intended to

continuously provide feedbacks to the pro-

grammer about the program execution, thus

engaging the programmer during program

execution.

4. ALICE PROGRAMMING

Alice programming was introduced by Car-

negie Mellon University and it seems that it

has provided the answers to the questions

that were raised about the difficulty of pro-

gramming languages. Alice provides a visual

interface that makes it easier to follow and

cuts down on the syntax and coding.

Alice has increased in popularity in use in

first year programming courses at both col-

leges and high schools. The increasing popu-

larity of Alice as a first programming lan-

guage is due to the many advantages that it

provides over traditional or general purpose

programming languages. Adams (2008)

noted 3 advantages to using Alice in intro-

ductory programming courses:

The allure of 3D graphics. It is difficult to

overstate the visual appeal of 3D anima-

tions, especially to today’s visually-

oriented students. When you program

works, you feel euphoric! But even when

you make a mistake (a logic error), the

results are often comical, producing

laughter instead of frustration.

The Alice IDE. Alice includes a drag-and—

drop integrated development environ-

ment (IDE) that eliminates syntax errors.

The IDE eliminates all of the missing se-

micolons, curly braces, quotation marks,

misspelled keywords or identifiers, and

other syntax problems that bedevil CS1

students.

Object-oriented programming. Alice in-

cludes a huge library of off-the-shelf 3D

objects ranging from astronauts to ants,

cowboys to castles, fairies to farms,

mummies to motorboats, ponds to pago-

das, robots to rowboats, skyscrapers to

space shuttles, turtles to T-rexes, wizards

to waterfalls and zombies to Zambonis –

each of which can be animated through a

variety of predefined methods. Alice

makes t easy to build 3D worlds from

these objects. Those objects can be ani-

mated using object-oriented program-

ming.

The remainder of this section details how the

Alice programming language addressed the

difficulty factors that were identified earlier.

Alice Syntax

When developing a program in Alice, users

do not have to type the program. Instead,

users pull down objects and align them ac-

cording with specified commands that are

already drawn for the user (Powers, Ecott,&

Hirshfield, 2007). As the user pulls a particu-

lar object, another dropdown menu appears

that gives the user options to choose from.

The key here is that there is no room to

make syntax errors when using Alice. In-

c© 2009 EDSIG http://isedj.org/7/85/ July 27, 2009

ISEDJ 7 (85) Ali and Mensch 9

stead, efforts can be directed to understand

the mechanism and the concepts of the pro-

gram.

The Structure in Alice

Alice uses the structure of object oriented

programming (Marrero & Settle, 2005). Alice

uses classes of objects and each object has

its own properties and methods. Classes are

clearly defined through the use of the class

library. This class library contains a large

collection of visual objects that are easily

recognized and noticed. Once an object from

a class is drawn in the editor area, the ob-

jects can be seen as having properties, me-

thods and functions. These terms can be

easier understood because they refer to cha-

racteristics of visual objects such as height,

width, moving in one direction, distance and

other similar characteristics.

Similar to other programming languages,

Alice uses functions, methods, and events. It

passes parameters, receives output, and

creates a structure to the program. All of

this is done very similarly to other pro-

gramming languages except that Alice uses

visual objects which are easier seen and un-

derstood.

The Output from Alice

Alice uses visual output. All objects within

Alice are three dimension visual objects,

thus the output that is generated from a

typical Alice program is more visually ap-

pealing. The objects represent popular me-

taphors which tell stories, draw shapes, and

have moving components. These move-

ments on the screen provide an interesting

application to the programmer.

Development time in Alice program is mi-

nimal compared to general purpose pro-

gramming languages. Additionally, Alice en-

gages the programmer during development

times as well as during the testing phase. By

using metaphors that are popular in the so-

ciety, the program will not be limited to dis-

playing simple text output. Instead, the pro-

gram generates objects that are jumping,

talking, and changing color or similar tech-

niques that are used in game development.

Drawback of Alice

The main drawback of teaching Alice is that

it is strictly used for educational purposes

and for beginner programming cases. In

other words, people who learn Alice do not

expect to use it in payroll applications, in-

ventory or scientific applications, or business

environments. Instead, teaching Alice is

strictly used for teaching introductory con-

cepts of programming. Newer versions of

Alice can be easily lined to other program-

ming languages such as Java, so it may help

transitioning into more advanced program-

ming courses. But generally, Alice is used for

teaching in introductory programming

courses.

5. THE TST PROGRAM AT IUP

The TST department within the ECOBIT at

IUP offers two bachelor degrees and one

associate degree. The first Bachelor of

Science degree is in Business Technology

Support while the second is in Business Edu-

cation. The Associate degree is in Computer

and Information Technology.

The TST program also offers a master de-

gree in business education. The main goal of

this master degree is to prepare students to

be teachers in the business and technology

field. One particular course that is included

in this master degree program is a capstone

course called BTST680 Technical Update.

The course teaches the latest in technology

and includes four categories or sub-coverage

areas: Programming, Database, Digital Me-

dia and Networking. The following describes

the selection of a programming language for

this course and the methods in which it is

being taught.

One of the main difficulties in teaching this

course is that most of the students enrolled

do not have prior programming experience.

Some students may have had exposure to

programming languages prior to this course,

but the information is often outdated and

forgotten. Due to these dilemmas the course

must begin by teaching the principles of

programming and the syntax and logic of

programming.

The Alice programming language was se-

lected for this course. The main reason for

selecting Alice is that the students in this

course are perspective teachers. Therefore it

will be useful to teach them this language as

they may need it for their professional lives.

The students in this course are not looking

for a programming job in the industry;

hence it will not help them to teach a gener-

c© 2009 EDSIG http://isedj.org/7/85/ July 27, 2009

ISEDJ 7 (85) Ali and Mensch 10

al programming language such as Java or

C++. Instead, they can focus on learning

the concepts of programming by using the

tools available in Alice.

The feedback from selecting Alice in this

course has been positive and enrollment has

increased in this course since introducing

Alice to the course. The learning curve in the

course has also increased. The students

master the programming concepts quicker

as compared to previous semesters. Stu-

dents are required to complete and present

a final comprehensive project with Alice. All

presentations have been successful while the

students showed good understanding of the

programming terminology such as objects,

properties, methods, encapsulation, and in-

heritance.

6. SUMMARY

This paper discussed the issues and chal-

lenges that face the decision to select a pro-

gramming language to teach for students

enrolled in a master degree in education. It

focused on the factors that make learning

programming languages a difficult task for

students and the steps that have been taken

to simplify the teaching of programming lan-

guages. The paper further elaborated on the

new language that is increasingly being

taught in introductory level programming

courses: Alice. In addition this paper focused

on the experience of a course that is taught

at the Technology Support and Training

(TST) program at Indiana University of

Pennsylvania. This course introduced Alice

as the programming language to teach and

feedback from students enrolled in the

course has been positive about the selection

of Alice.

7. REFERENCES

Adams, J. (2008). Alice in Action Computing

Through Animation. Boston, Massachu-

setts: Course Technology.

Anewalt, K.(2008). “Making CS0 fun: an ac-

tive learning approach using toys, games

and Alice”. Journal of Computing Sciences

in Colleges, 23(3), 98-105. Retrieved

March 28, 2008 from ACM Digital Library

http://www.acm.org/dl.

Baldwin, L.P.; Kuljis, J. (2001). “Learning

Programming Using Program Visualization

Techniques”. Proceedings of the 34th

Hawaii International Conference on Sys-

tem Sciences – 2001. Retrieved April 17,

2008 from IEEE Computer Society Digital

Library http://www.computer.org/portal/

Carter, J.; Jenkins, T. (2002). “Gender dif-

ferences in programming?”. Proceedings

of the 7th annual conference on Innova-

tion and technology in computer science

education, Retrieved April 15, 2008 from

ACM Digital Library: www.acm.org/dl

Dann, W.; Copper, S. & Pausch, R. (2006).

Learning to Program with Alice. Upper

Saddle River, NJ: Prentice Hall.

Guibert, N.; Girard, P.; Guittet, L. (2004).

“Example-based programming: a perti-

nent visual approach for learning to pro-

gram”. Proceedings of the working confe-

rence on Advanced visual interfaces 358

– 361. Retrieved March 30, 2008 from

ACM Digital Library

http://www.acm.org/dl

Herbert, Charles (2007). “An Introduction to

Programming with Alice”. Boston, Massa-

chusetts: Course Technology.

Marrero, W.; Settle, A. (2005). “Testing

first: emphasizing testing in early pro-

gramming courses”. Proceedings of the

10th annual SIGCSE conference on Inno-

vation and technology in computer

science education, 4-8. Retrieved March

28, 2008 from ACM Digital Library

http://www.acm.org/dl.

Kelleher, C; Pausch, Randy (2005) “Lower-

ing the Barriers to Programming: A Tax-

onomy of Programming Environment and

Languages for Novice Programmers”.

ACM Computing Surveys 37(2) 83-137.

Retrieved March 28, 2008 from ACM Digi-

tal Library http://www.acm.org/dl.

Porter, R.; Calder, P. (2004). “Patterns in

learning to program: an experiment?”.

Proceedings of the sixth conference on

Australasian computing education - Vo-

lume 30, 241-246. Retrieved April 18,

2008 from ACM Digital Library

http://www.acm.org/dl

Powers, K.; Ecott, S.; & Hirshfield, L.

(2007). “Through The Looking Glass:

Teaching CS0 with Alice”. ACM SIGCSE

Bulletin 39(1) 213-217. Retrieved March

28, 2008 from ACM Digital Library

http://www.acm.org/dl

c© 2009 EDSIG http://isedj.org/7/85/ July 27, 2009

