
Volume 7, Number 80 http://isedj.org/7/80/ July 20, 2009

In this issue:

A Qualitative Look at Alice and Pair-Programming

Elizabeth V. Howard Donna Evans
Miami University Middletown Miami University Middletown
Middletown, OH 45042 USA Middletown Ohio 45042 USA

Jill Courte Cathy Bishop-Clark
Miami University Hamilton Miami University Middletown
Hamilton, OH 45011 USA Middletown, OH 45042 USA

Abstract: In previous studies, we have used quantitative methods to examine the effectiveness of
the Alice programming language in terms of student enjoyment, confidence, and learning outcomes.
However, in terms of the overall quality of a learning experience, quantitative measures provide only
part of the story. This paper reports on the use of Alice from a student perspective using qualitative
data gathered from student reflective exercises and focus groups. Eighty-nine (89) students from
six (6) different sections of an introductory computing class for non-majors completed a 2.5-week
programming module using the Alice interactive graphical programming language. Students in two
(2) sections completed the Alice programming module individually and students in four (4) sections
used the pair-programming paradigm, where two programmers work on the same program at the
same time using the same computer. At the end of the module, all 89 students wrote a reflective essay
on their experience with Alice and focus groups were facilitated in three (3) different sections. This
qualitative data indicates that students who used Alice reported that they enjoyed programming, had
confidence in their programming ability, understood basic programming concepts, and understood
the relationship between algorithms and Alice stories.

Keywords: Alice programming language, pair-programming, attitudes, introductory programming

Recommended Citation: Howard, Evans, Courte, and Bishop-Clark (2009). A Qualitative Look
at Alice and Pair-Programming. Information Systems Education Journal, 7 (80).
http://isedj.org/7/80/. ISSN: 1545-679X. (A preliminary version appears in The Proceedings of
ISECON 2006: §2342. ISSN: 1542-7382.)

This issue is on the Internet at http://isedj.org/7/80/

ISEDJ 7 (80) Information Systems Education Journal 2

The Information Systems Education Journal (ISEDJ) is a peer-reviewed academic journal
published by the Education Special Interest Group (EDSIG) of the Association of Information
Technology Professionals (AITP, Chicago, Illinois). • ISSN: 1545-679X. • First issue: 8 Sep 2003.
• Title: Information Systems Education Journal. Variants: IS Education Journal; ISEDJ. • Phys-
ical format: online. • Publishing frequency: irregular; as each article is approved, it is published
immediately and constitutes a complete separate issue of the current volume. • Single issue price:
free. • Subscription address: subscribe@isedj.org. • Subscription price: free. • Electronic access:
http://isedj.org/ • Contact person: Don Colton (editor@isedj.org)

2009 AITP Education Special Interest Group Board of Directors

Don Colton
Brigham Young Univ Hawaii
EDSIG President 2007-2008

Thomas N. Janicki
Univ NC Wilmington
EDSIG President 2009

Kenneth A. Grant
Ryerson University
Vice President 2009

Kathleen M. Kelm
Edgewood College

Treasurer 2009

Wendy Ceccucci
Quinnipiac Univ
Secretary 2009

Alan R. Peslak
Penn State

Membership 2009
CONISAR Chair 2009

Steve Reames
Angelo State Univ
Director 2008-2009

Michael A. Smith
High Point

Director 2009

George S. Nezlek
Grand Valley State
Director 2009-2010

Patricia Sendall
Merrimack College
Director 2009-2010

Li-Jen Shannon
Sam Houston State
Director 2009-2010

Albert L. Harris
Appalachian St

JISE Editor

Paul M. Leidig
Grand Valley State University

ISECON Chair 2009

Information Systems Education Journal Editors

Don Colton
Brigham Young University Hawaii

Editor

Thomas N. Janicki
Univ of North Carolina Wilmington

Associate Editor

Information Systems Education Journal 2006-2007 Editorial Review Board

Samuel Abraham
Siena Heights Univ

Janet Helwig
Dominican Univ

D. Scott Hunsinger
Appalachian State Univ

Terri L. Lenox
Westminster College

Doncho Petkov
Eastern Connecticut St U

Steve Reames
Angelo State Univ

Michael Alan Smith
High Point University

Belle S. Woodward
Southern Illinois Univ

Charles Woratschek
Robert Morris Univ

Peter Y. Wu
Robert Morris Univ

EDSIG activities include the publication of ISEDJ and JISAR, the organization and execution of
the annual ISECON and CONISAR conferences held each fall, the publication of the Journal of
Information Systems Education (JISE), and the designation and honoring of an IS Educator of the
Year. • The Foundation for Information Technology Education has been the key sponsor of ISECON
over the years. • The Association for Information Technology Professionals (AITP) provides the
corporate umbrella under which EDSIG operates.

c© Copyright 2009 EDSIG. In the spirit of academic freedom, permission is granted to make and
distribute unlimited copies of this issue in its PDF or printed form, so long as the entire document
is presented, and it is not modified in any substantial way.

c© 2009 EDSIG http://isedj.org/7/80/ July 20, 2009

ISEDJ 7 (80) Howard, Evans, Courte, and Bishop-Clark 3

A Qualitative Look at Alice

and Pair-Programming

Elizabeth V. Howard
howardev@muohio.edu

Donna Evans
evansd@muohio.edu

Miami University Middletown
Middletown Ohio 45042 USA

Jill Courte
courteje@muohio.edu

Miami University Hamilton
Hamilton Ohio 45011 USA

Cathy Bishop-Clark
bishopcu@muohio.edu

Miami University Middletown

Middletown Ohio 45042 USA

Abstract

In previous studies, we have used quantitative methods to examine the effectiveness of the

Alice programming language in terms of student enjoyment, confidence, and learning out-

comes. However, in terms of the overall quality of a learning experience, quantitative meas-

ures provide only part of the story. This paper reports on the use of Alice from a student

perspective using qualitative data gathered from student reflective exercises and focus groups.

Eighty-nine (89) students from six (6) different sections of an introductory computing class for

non-majors completed a 2.5-week programming module using the Alice interactive graphical

programming language. Students in two (2) sections completed the Alice programming mod-

ule individually and students in four (4) sections used the pair-programming paradigm, where

two programmers work on the same program at the same time using the same computer. At

the end of the module, all 89 students wrote a reflective essay on their experience with Alice

and focus groups were facilitated in three (3) different sections. This qualitative data indicates

that students who used Alice reported that they enjoyed programming, had confidence in their

programming ability, understood basic programming concepts, and understood the relation-

ship between algorithms and Alice stories.

Keywords: Alice, pair-programming, attitudes, introductory programming

1. INTRODUCTION

Students (non-majors) enrolled in a survey

course designed to introduce a myriad of

computing topics have often struggled with

programming concepts. Learning to create a

substantial program using a traditional pro-

gramming language requires more exposure

than a survey course typically can devote.

Additionally, non-majors often have a nega-

tive attitude towards programming. Work-

ing with a traditional programming language

to produce even a simple program can be

frustrating, which merely reinforces stu-

c© 2009 EDSIG http://isedj.org/7/80/ July 20, 2009

ISEDJ 7 (80) Howard, Evans, Courte, and Bishop-Clark 4

dents’ attitudes that programming is dull

and tedious. For many students, a survey

course will be the only formal exposure that

they have to programming. For others, such

a course creates a lasting impression of the

computing field and may even be the decid-

ing factor on whether they will major in

computing.

Figure 1. Screen Shot of an
Alice Program

Figure 2. Objects in an Alice Program

Figure 3. Typical Methods of the

Snowman Object

There have been many efforts to design in-

troductory programming tools and environ-

ments in order to facilitate the difficult

process of learning to program, and Kelleh-

er and Pausch (2005) provide an excellent

summary of several such tools. One of

these is Alice, a 3-D interactive graphical

programming language that gently introduc-

es programming concepts. With Alice, pro-

grammers create stories in a virtual world

while learning common programming con-

structs (Cooper, Dann, and Pausch, 2000).

Figure 1 displays a screen shot of a simple

Alice program. Alice programs are con-

structed of pre-built objects with methods

that students can use to create interactions

between the objects to build a story (see

Figures 2 and 3). For example, to make the

snowman move, a student can choose the

movement by using the menu structure

comprised of simple English terms (see Fig-

ure 3). Alice, created by the Stage3 Re-

search Group at Carnegie Mellon University,

is freely distributed and may be accessed

through the website www.alice.org.

Alice has been used successfully to introduce

programming concepts in an engaging man-

ner to students with little or no exposure to

formal problem-solving methods (Cooper,

Dann, and Pausch, 2003; Courte, Howard,

and Bishop-Clark, in press). In one study,

students in an introductory survey course

reported a positive change in attitude to-

wards programming after just a one-week

introduction to programming using Alice

(Courte, Howard, and Bishop-Clark, 2006;

Bishop-Clark, Courte, and Howard, in press).

Alice has also been used to prepare students

for introductory computer science courses,

particularly for students who are considered

“at-risk” for failure (Cooper, Dann, and

Pausch, 2000, 2003, 2004; Dann, et al,

2003; Moskel, Lurie, and Cooper, 2004).

Additionally, Dann, Cooper, and Pausch

(2001) introduced recursion using Alice and

Cooper, Dann, and Pausch (2003) taught an

“objects-first” approach using Alice.

The story-telling nature of Alice creates a

natural collaboration among students. When

using Alice, students routinely ask their

peers for their opinions of the objects, ac-

tions, and stories. When the Alice stories

are completed, the majority of students rea-

dily demonstrate their programs. This natu-

ral collaboration led us to combine pair-

programming with programming in Alice. In

pair-programming, two programmers work

on the same program on the same computer

at the same time. “One person is the ‘driv-

er’ and has control of the pen-

cil/mouse/keyboard and is developing the

c© 2009 EDSIG http://isedj.org/7/80/ July 20, 2009

ISEDJ 7 (80) Howard, Evans, Courte, and Bishop-Clark 5

design or code. The other person, the ‘ob-

server,’ continuously and actively examines

the work of the driver - watching for defects,

thinking of alternatives, looking up re-

sources, considering strategic implications of

the work at hand, and asking questions.

The observer identifies tactical and strategic

deficiencies in the work (Williams & Upc-

hurch, 2001).” Howard (in press) describes

pair-programming partners as working “to-

gether on the same task in much the same

way as an actor and a director. An actor

delivers the dialogue while the director pro-

vides feedback based on a broader view of

the entire production. Likewise, the pair-

programming ‘driver’ creates the program

under the direction of the ‘observer’ or ‘na-

vigator.’” Studies have shown that pair-

programming increases understanding of

programming by learning from a peer

(McDowell, Hanks, Bullock, & Fernald, 2002;

Williams & Kessler, 2000), reduces frustra-

tion experienced by novice programmers by

having a partner with whom to reason

through the program, increases student sa-

tisfaction, and fosters positive attitudes

(Howard, in press; LeJeune, 2006; Preston,

2005; Mendes, Al-Fakhri & Luxton-Reilly,

2005; Hanks, McDowell, Draper, & Krnjajic,

2004; VanDeGrift, 2004; DeClue, 2003; He-

din, Bendix, & Magnusson, 2003; McDowell,

Hanks, Bullock, & Fernald, 2002; McDowell,

Werner, Bullock, & Fernald, 2003; Nagappan

et al., 2003; Thomas, Ratcliffe, & Robertson,

2003).

The researchers intentionally chose to collect

and analyze qualitative data from the stu-

dents because “the key concern [of qualita-

tive research] is understanding the pheno-

menon of interest from the participants’

perspectives, not the researcher’s (Merriam,

1998).” As educators, we make assump-

tions about our teaching and the students’

feedback, whether in the form of reflective

papers or focus groups, forces us to recon-

sider those assumptions. “The qualitative

paradigm includes a reflexive stance that

provides the opportunity for the researcher

to examine her or his biases. (Auerbach &

Silverstein, 2003).” Qualitative feedback

allows students to express their opinions

outside of the framework determined by re-

searchers in surveys and other quantitative

methods. By collecting qualitative data, we

can focus on the entire experience since

quantitative data often examines the indi-

vidual components of the experience while

qualitative data shows how those compo-

nents interact (Merriam, 1998).

2. METHOD

Participants

During Spring 2006, students in six (6) sec-

tions of an introductory non-majors compu-

ting survey course participated in the Alice

programming module. Reflective essays

from all 89 students were analyzed and fo-

cus groups were facilitated in three sections.

All of the students were undergraduates at

regional campuses of a medium-sized, mid-

western university. The course fulfills a lib-

eral education requirement in the category

of math, logic, and formal reasoning. Three

different instructors were involved in the

study and all instructors used identical

handouts, assignments, and class notes.

Procedure

The Alice programming module spanned five

(5) class sessions (6 hours and 15 minutes)

during the third week of the semester. In

the first class session, the instructors pre-

sented a brief introduction to programming

terminology. The students then completed

the guided online tutorials that accompany

the Alice software. During the second class

session, students created their first Alice

world from scratch. The instructors provided

the students with additional paper instruc-

tions on the basics of creating a world, add-

ing objects, using methods along with deci-

sions and iterations. In the third class ses-

sion, students were introduced to algo-

rithms. During this session, students

created flowcharts to solve simple computing

problems. Students also completed a

homework assignment where they produced

algorithmic solutions to several different

problems. By introducing algorithms in the

middle of Alice programming, we hypothe-

sized that students would be able to recog-

nize explicit connections between algorithms

and Alice stories. In the final two sessions,

students created Alice worlds and demon-

strated them to the rest of the class. In two

(2) of the sections, students worked inde-

pendently (31 students) and in four (4) of

the sections, students worked with partners

using the pair-programming method (58

students).

c© 2009 EDSIG http://isedj.org/7/80/ July 20, 2009

ISEDJ 7 (80) Howard, Evans, Courte, and Bishop-Clark 6

Reflective Essays

At the end of the 2.5-week module, we

asked students to reflect on their Alice expe-

rience and answer several questions. All

students answered questions about using

Alice (please see Table 1) and on the rela-

tionship between algorithms and Alice

(please see Table 2). Student working with

partners also answered questions about

pair-programming (please see Table 3).

Focus Groups

Focus groups were facilitated in a section

taught by each of the instructors for a total

of three (3) different sections. Students in

two (2) of the sections worked with partners

using the pair-programming paradigm and

students in the third section worked indivi-

dually. The instructor was not present dur-

ing the focus groups. The researchers were

trained in holding focus groups and facili-

tated the focus groups for one another.

Students were divided into small groups and

asked to discuss their Alice experience. Af-

ter the small groups had concluded their dis-

cussions, the entire class was reconvened

and responses were solicited from each

small group. After all responses had been

recorded, students voted for the responses

with which they agreed. By using small

groups, the researchers were not directly

involved in the conversations so that stu-

dents might express their opinions more

freely.

3. RESULTS

The reflective essays were coded for three

sets of variables intended to capture student

perceptions of the learning experience and

process of using Alice. The first set ex-

amined student attitudes regarding confi-

dence, enjoyment, and overall use of Alice

(please see Table 4). The second set ex-

amined student perceptions of the relation-

ship between algorithms and Alice (Table 5).

The third set examined student attitudes

toward programming in pairs versus pro-

gramming individually (Table 6). To estab-

lish reliability, two coders coded 25% of the

essays and one of the coders coded all of the

essays. The coders were reliable with a

mean agreement level of .88 (range was .77

to 1.00).

Student Attitudes Regarding

Confidence, Enjoyment, and Use

of Alice

Table 4 contains the results of the content

analysis for variables regarding attitudes,

confidence, enjoyment, and overall use of

Alice. As shown, this analysis was done

separately for students programming in

pairs and individually. Two of these dimen-

sions showed significant results between

pairs and non-pairs as described below.

A majority of students (69% overall) re-

ported that they were comfortable pro-

gramming in Alice and found it easy and

simple. Additionally, students working in

pairs reported significantly more comfort

and ease of use, 78% (pairs) versus 52%

(non-pairs) with a significant difference
(χ2(1) = 6.32, p = .012).

Overall, 33% of all students thought that

they were able to do more complex pro-

gramming than they had initially expected,

while conversely, 26% reported lack of con-

fidence in programming ability. Also overall,

58% of all students reported that they en-

Describe the advantages and disadvan-

tages of programming in pairs? What did

you like? What did you dislike? Did pro-

gramming in pairs help or hurt your

learning? Explain.

Table 3. Questions on Pair-Programming

How are Algorithms related to what you

did in Alice? What is the relationship be-

tween the symbols in a flowchart and the

stories that you created in your labs?

Can algorithms help you create better

Alice stories? Explain.

Table 2. Questions on Relationship
Between Algorithms and

Alice Programming

Describe what you liked about Alice and

what you did not like. Do you feel like

you now understand some of the basics

of computer programming? What sur-

prised you about computer program-

ming? What did you learn that you ex-

pected?

Table 1. Questions on
Alice Programming

c© 2009 EDSIG http://isedj.org/7/80/ July 20, 2009

ISEDJ 7 (80) Howard, Evans, Courte, and Bishop-Clark 7

joyed programming in Alice while only 4%

overall reported that they disliked program-

ming in general. Nearly half of all students

(48%) commented on the complexity and

difficulty of programming with a significant
difference (χ2(1) = 5.00, p = .022) between

pairs (40%) and non-pairs (65%).

Variable pairs non-
pairs

overall

easy, simple,

comfort
78%1 52%1 69%

did more

than expected
34% 29% 33%

lack of

confidence
22% 32% 26%

fun,

entertaining,

enjoy, like

64% 48% 58%

imaginative,

creative,

interesting

66% 65% 65%

dislike the

programming

process

2% 10% 4%

difficulty or

complexity,

respect

for the process

40%2 65%2 48%

educational,

learning,

understanding

74% 77% 75%

Alice language

limitations
88% 97% 91%

Alice language

positives
43% 35% 40%

1 (χ2(1) = 6.32, p = .012)

2 (χ2(1) = 5.00, p = .022)

Table 4. Content Analysis for Questions

on Alice Programming.

Overall, the majority of students thought

that they were creative and imaginative

(65%), reported that the Alice module pro-

moted learning and understanding about

programming (75%), and felt that Alice

software had limitations that hampered their

projects (91%). Despite this perception of

limitations, 40% of all students commented

on the positive attributes of Alice.

Student Perceptions of the

Relationship Between Alice and

Algorithms

In addition to use of Alice, the programming

module included instruction and assignments

on developing algorithms. It was hoped that

the step by step nature of Alice would facili-

tate algorithmic thought. Table 5 contains

the results of the content analysis for ques-

tions on the relationship between algorithms

and Alice programming. As shown, this

analysis was done separately for students

programming in pairs and individually. None

of these dimensions showed significant re-

sults between pairs and non-pairs.

Variable pairs non-
pairs

Overall

what is an

algorithm
97% 90% 94%

words like

input/output,

sequence,

process,

decision

84% 81% 83%

appreciate

complexity
45% 32% 40%

how a story

line in Alice

relates to an

algorithm

91% 87% 90%

positive

algorithm

comment

84% 81% 83%

negative

algorithm

comment

5% 10% 7%

Table 5. Content Analysis for Questions
on Relationship Between

Algorithms and Alice Programming

Overall, 94% of all students correctly de-

fined an algorithm, and 83% of all students

included words typically used to describe

algorithms, such as input, output, process,

sequence, or decision. 40% of all students

commented on the complexity of algorithms

and Alice programming. The majority (90%)

of all students demonstrated that they un-

c© 2009 EDSIG http://isedj.org/7/80/ July 20, 2009

ISEDJ 7 (80) Howard, Evans, Courte, and Bishop-Clark 8

derstood how a story line in Alice related to

an algorithm, and a majority (83%) also

commented that generating an algorithm

helped them to create more complex Alice

stories. Conversely, only 7% of all students

reported that algorithms did not help them

create better Alice stories.

Student Perceptions of Pair-

programming with Alice

Table 6 contains the result of content analy-

sis regarding comments about pair-

programming from students who worked

with a partner during the Alice module.

Nearly all students (95%) reported that

working with a partner increased their learn-

ing. A majority of the students (67%)

thought that they were more creative work-

ing with a partner than they would have

been had they worked independently. Re-

ports of difficulty with pair-programming

included the idea that having a partner

slowed down the process (34%), problems

can arise if partners had different ideas

about the story (38%) and that only one (1)

person is hands-on at a time (29%).

Variable pairs

increased learning 95%

more creativity (more ideas) 67%

slowed down process 34%

difficult if two people had different

ideas about the story

38%

only 1 person is hands-on at a

time 29%

Table 6. Content Analysis for Questions
on Pair-Programming

Focus Groups

As mentioned previously, focus groups were

facilitated in three (3) different sections.

Students in two (2) of the sections worked

with partners using the pair-programming

paradigm and students in the third section

worked individually. All students were asked

to comment on what they enjoyed and did

not enjoy about Alice. Overall, student

comments in the focus groups were similar

to comments in their reflection papers. Stu-

dents in all three (3) sections enjoyed being

able to create their own stories. Many stu-

dents reported that the Alice environment

was user-friendly, that they enjoyed Alice’s

graphical nature, that they were able to be

creative, and that Alice was an interesting

way to learn basic programming concepts.

Students reported that they did not like the

limited choices of methods and objects, that

the tutorials did not provide sufficient under-

standing, and that testing and debugging

were time-consuming.

Students in the two (2) pair-programming

sections were asked what they enjoyed and

did not enjoy about pair-programming. Stu-

dents in both sections reported that they

enjoyed the increased creativity resulting

form merging the ideas of both partners.

Students also reported that working with a

partner resulted in less pressure on each

individual and that finding solutions to diffi-

culties was much faster. Students reported

that they thought their own experience was

limited since the hands-on work was done by

one (1) person at a time, that partners

working at different speeds was frustrating,

and that scheduling to meet outside of class

was difficult.

Students in the section where they pro-

grammed individually were asked what they

enjoyed and did not enjoy about working

alone. Students reported that they enjoyed

the individuality including not having to rely

on others and in the uniqueness of their sto-

ries. Students found that working alone was

challenging especially when they encoun-

tered difficulties and did not have a partner

with whom to collaborate to solve the prob-

lem. Students did not like that they were

unable to divide the responsibility and labor.

Some students thought that working alone

was less creative.

4. DISCUSSION

Overall, students in the non-majors survey

course responded favorably, both in the fo-

cus groups and in the reflective essays, to

their experience of programming in Alice.

Perhaps the most noteworthy response was

that only 4% of all students indicated that

they disliked the programming process.

That response is a drastic departure from

prior students’ reactions to programming in

a traditional programming language. When

asked to describe what they did not like

about the Alice programming module, most

students (91%) commented on a limitation

of the Alice software. It is because students

c© 2009 EDSIG http://isedj.org/7/80/ July 20, 2009

ISEDJ 7 (80) Howard, Evans, Courte, and Bishop-Clark 9

find Alice entertaining and easy to under-

stand that they were able to critically con-

sider any limitations in the software, which

is another drastic difference from using a

traditional programming language. By in-

terweaving algorithms and Alice program-

ming, students were able to make a strong

connection between algorithms and the sto-

ries that they created in Alice. Students who

worked with a partner overwhelmingly re-

ported (95%) that they had learned from

their partner and that they felt that they

were more creative than had they worked

individually.

Chi-square analysis was performed on the

reflective essays to test the hypotheses that

pairs would find Alice programming easier,

enjoy it more, experience more creativity,

better understand algorithms, and have few-

er difficulties than non-pairs. As previously

mentioned, the frequency of responses for

pairs differed from non-pairs on easy, sim-

ple, comfort of the Alice Programming ques-
tion (χ2(1) = 6.32, p = .012) and Difficul-

ty/complexity, respect for the process of the
Alice Programming question (χ2(1) = 5.00, p

= .022). There were no statistical differenc-

es between pairs and non-pairs on the other

variables. Although the other variables were

not statistically significant, they still support

a pattern of pairs being more positive about

the Alice programming module than non-

pairs.

5. CONCLUSION

Students in a non-majors introductory com-

puting survey course successfully completed

a 2.5-week module in computer program-

ming using Alice. Analysis of qualitative da-

ta from reflective essays and focus groups

suggests that students enjoy programming

in Alice and report a positive attitude to-

wards programming. Students were also

able to understand and describe the rela-

tionship between algorithms and their Alice

stories. Students working with partners be-

lieved that they had learned from their part-

ner and that they were more creative be-

cause of the partnership. Because of the

natural collaborative nature of story-telling,

Alice is a good choice for introductory

courses where teamwork is emphasized.

Based on the results of this study, we con-

clude that non-majors can improve their ini-

tial computing experiences by using software

such as Alice and by working in pairs. Stu-

dents clearly demonstrated improved learn-

ing and attitudes toward computing, and it

may be hoped that these students would

take further classes in computing based on

this positive first experience.

6. REFERENCES

Auerbach, C.F. & Silverstein, L.B. (2003).

Qualitative data : an introduction to cod-

ing and analysis. New York: New York

University Press.

Bishop-Clark, C., Courte, J., & Howard, E.V.

(in press) “Programming in Pairs with

Alice to Improve Confidence, Enjoyment,

and Achievement.” Journal of Educational

Computing Research.

Cooper, S., Dann, W., Pausch, R. (2003 Feb-

ruary). Teaching objects-first in introduc-

tory computer science. Proceedings of the

34th SIGCSE technical symposium on

Computer Science Education, Reno, Ne-

vada.

Cooper, S., Dann, W., Pausch, R. (2000

April). Alice, a 3-D tool for introductory

programming concepts. Proceedings of

the 5th annual CCSC northeastern confe-

rence on The journal of computing in

small colleges, 107-116, New Jersey.

Cooper, S., Dann, W., Pausch, R. (2000 No-

vember). Developing algorithmic thinking

with Alice. The Proceedings of ISECON

2000, (17), 506-539, Philadelphia, PA.

Courte, J., Howard, E., & Bishop-Clark, C.

(in press) “Using Alice in a Computer

Science Survey Course.” Information

Systems Educators Journal (also pub-

lished in The Proceedings of ISECON

2005).

Dann, W., Cooper, S., Pausch, R. (2001

June). Using visualization to teach novic-

es recursion. Proceedings of the 6th an-

nual conference on Innovation and tech-

nology in computer science education,

109-112, United Kingdom.

DeClue, T. (2003) Pair programming and

pair trading: effects on learning and mo-

tivation in a CS2 course, Journal of Com-

puting in Small Colleges, 18(5), 49-56.

Hanks, B., McDowell, C., Draper, D. &

Krnjajic, M. (2004). Program quality with

pair programming in CS1. Proceedings of

c© 2009 EDSIG http://isedj.org/7/80/ July 20, 2009

ISEDJ 7 (80) Howard, Evans, Courte, and Bishop-Clark 10

the 9th annual SIGCSE conference on In-

novation and technology in computer

science education (ITiCSE 2004), 176-

180.

Hedin, G., Bendix, L. & Magnusson, B.

(2003). Introducing software engineer-

ing by means of Extreme Programming.

ICSE 2003: Proceedings of the 25th In-

ternational Conference on Software Engi-

neering, 586-593.

Howard, E.V. (in press) “Attitudes on Pair-

Programming.” Journal of Educational

Technology Systems, 35(1).

Kelleher, C., Pausch, R. (2005). Lowering

the barriers to programming: A taxonomy

of programming environments and lan-

guages for novice programmers. ACM

Computing Surveys, 37:2, 83-137.

LeJeune, N. (2006). Teaching software engi-

neering practices with Extreme Pro-

gramming. Journal of Computing in Small

Colleges, 21(3), 107-117.

McDowell, C., Werner, L., Bullock, H., & Fer-

nald, J., (2003). The impact of pair pro-

gramming on student performance, per-

ception and persistence. ICSE 2003:

Proceedings of the International Confe-

rence on Software Engineering, 602-607.

McDowell, C., Werner, L., Bullock, H., & Fer-

nald, J. (2002). The effects of pair-

programming on performance in an in-

troductory programming course. Proceed-

ings of the 33rd SIGCSE technical sym-

posium on Computer science education,

38-42.

Mendes, E., Al-Fakhri, L. B., & Luxton-Reilly,

A. (2005). Investigating pair-

programming in a 2nd-year software de-

velopment and design computer science

course. Proceedings of the 10th Annual

SIGCSE Conference on innovation and

Technology in Computer Science Educa-

tion, 296-300.

Merriam, S.B. (1998). Qualitative Research

and Case Study Applications in Education,

2nd edition. San Francisco: Jossey-Bass.

Moskel, B., Lurie, D., Cooper, S. (2004

March). Evaluating the effectiveness of a

new instructional approach. Proceedings

of the 35h SIGCSE technical symposium

on Computer Science Education, 75-79,

Norfolk, Virginia.

Nagappan, N., Williams, L., Ferzli, M.,

Wiebe, E., Yang, K., Miller, C., et al.

(2003). Improving the CS1 experience

with pair programming. Proceedings of

the 34th SIGCSE technical symposium on

Computer science education, 359-362.

Preston, D. (2005). Pair programming as a

model of collaborative learning: a review

of the research. Journal of Computing in

Small Colleges, 20(4), 39-45.

Thomas, L., Ratcliffe, M., & Robertson, A.

(2003). Code warriors and code-a-

phobes: a study in attitude and pair pro-

gramming. Proceedings of the 34th

SIGCSE technical symposium on Com-

puter science education, 363-367.

VanDeGrift, T. (2004). Coupling pair pro-

gramming and writing: learning about

students' perceptions and processes. Pro-

ceedings of the 35th SIGCSE technical

symposium on Computer science educa-

tion, 2-6.

Williams, L. & Kessler, R. (2000). All I really

need to know about pair programming I

learned in kindergarten. Communications

of the ACM, 43(5), 108-114.

Williams, L. & Upchurch, R. L. (2001). In

support of student pair-programming.

Proceedings of the thirty-second SIGCSE

technical symposium on Computer

Science Education, 327-331.

c© 2009 EDSIG http://isedj.org/7/80/ July 20, 2009

