
Volume 7, Number 53 http://isedj.org/7/53/ June 10, 2009

In this issue:

Teaching Relational Database Concepts to Computer Literacy Students:
The Spreadsheet Metaphor

Geoffrey Steinberg
Kent State University
Kent, OH 44240 USA

Abstract: A challenge facing computer literacy classes is the proper course content level. The
challenge is to take the students to a higher level academically but without driving them away be-
cause they feel an “easy” course has become “hard.” Accepting this challenge, we have moved the
database portion of the computer literacy class beyond keystrokes (rote learning) to data modeling
using the spreadsheet as a metaphor for a relational database. Although not found in the current
literature, this metaphor facilitates the understanding of the foundations of relational theory and
enables computer literacy students to design normalized multi-entity databases within several class
sessions. Students combine relational theory and keystroke knowledge of Microsoft Access to imple-
ment finished applications. The resultant applications are free of data redundancy problems that
often plague non-normalized databases.

Keywords: Database, Computer Literacy, Pedagogy, Teaching, Normalization, Data Modeling,
Spreadsheet, End User

Recommended Citation: Steinberg (2009). Teaching Relational Database Concepts to
Computer Literacy Students: The Spreadsheet Metaphor. Information Systems Education
Journal, 7 (53). http://isedj.org/7/53/. ISSN: 1545-679X. (A preliminary version appears in The
Proceedings of ISECON 2007: §1545. ISSN: 1542-7382.)

This issue is on the Internet at http://isedj.org/7/53/

ISEDJ 7 (53) Information Systems Education Journal 2

The Information Systems Education Journal (ISEDJ) is a peer-reviewed academic journal
published by the Education Special Interest Group (EDSIG) of the Association of Information
Technology Professionals (AITP, Chicago, Illinois). • ISSN: 1545-679X. • First issue: 8 Sep 2003.
• Title: Information Systems Education Journal. Variants: IS Education Journal; ISEDJ. • Phys-
ical format: online. • Publishing frequency: irregular; as each article is approved, it is published
immediately and constitutes a complete separate issue of the current volume. • Single issue price:
free. • Subscription address: subscribe@isedj.org. • Subscription price: free. • Electronic access:
http://isedj.org/ • Contact person: Don Colton (editor@isedj.org)

2009 AITP Education Special Interest Group Board of Directors

Don Colton
Brigham Young Univ Hawaii
EDSIG President 2007-2008

Thomas N. Janicki
Univ NC Wilmington
EDSIG President 2009

Kenneth A. Grant
Ryerson University
Vice President 2009

Kathleen M. Kelm
Edgewood College

Treasurer 2009

Wendy Ceccucci
Quinnipiac Univ
Secretary 2009

Alan R. Peslak
Penn State

Membership 2009
CONISAR Chair 2009

Steve Reames
Angelo State Univ
Director 2008-2009

Michael A. Smith
High Point

Director 2009

George S. Nezlek
Grand Valley State
Director 2009-2010

Patricia Sendall
Merrimack College
Director 2009-2010

Li-Jen Shannon
Sam Houston State
Director 2009-2010

Albert L. Harris
Appalachian St

JISE Editor

Paul M. Leidig
Grand Valley State University

ISECON Chair 2009

Information Systems Education Journal Editors

Don Colton
Brigham Young University Hawaii

Editor

Thomas N. Janicki
Univ of North Carolina Wilmington

Associate Editor

Information Systems Education Journal 2007-2008 Editorial Review Board

Sharen Bakke, Cleveland St
Alan T. Burns, DePaul Univ
Wendy Ceccucci, Quinnipiac U
Janet Helwig, Dominican Univ
Scott Hunsinger, Appalachian
Kamal Kakish, Lawrence Tech
Sam Lee, Texas State Univ
Paul Leidig, Grand Valley St
Terri L. Lenox, Westminster

Anene L. Nnolim, Lawrence Tech
Alan R. Peslak, Penn State

Doncho Petkov, E Connecticut
James Pomykalski, Susquehanna

Steve Reames, Angelo State
Samuel Sambasivam, Azusa Pac
Bruce M. Saulnier, Quinnipiac
Patricia Sendall, Merrimack C

Li-Jen Shannon, Sam Houston St
Michael A. Smith, High Point U
Robert Sweeney, South Alabama

Stuart A. Varden, Pace Univ
Judith Vogel, Richard Stockton

Bruce A. White, Quinnipiac Univ
Belle S. Woodward, S Illinois U

Charles Woratschek, Robert Morris
Peter Y. Wu, Robert Morris Univ

EDSIG activities include the publication of ISEDJ and JISAR, the organization and execution of
the annual ISECON and CONISAR conferences held each fall, the publication of the Journal of
Information Systems Education (JISE), and the designation and honoring of an IS Educator of the
Year. • The Foundation for Information Technology Education has been the key sponsor of ISECON
over the years. • The Association for Information Technology Professionals (AITP) provides the
corporate umbrella under which EDSIG operates.

c© Copyright 2009 EDSIG. In the spirit of academic freedom, permission is granted to make and
distribute unlimited copies of this issue in its PDF or printed form, so long as the entire document
is presented, and it is not modified in any substantial way.

c© 2009 EDSIG http://isedj.org/7/53/ June 10, 2009

ISEDJ 7 (53) Steinberg 3

Teaching Relational Database Concepts to

Computer Literacy Students:

The Spreadsheet Metaphor

Geoffrey Steinberg
gsteinbe@kent.edu

College of Business, Kent State University
Kent, OH 44120 USA

Abstract

A challenge facing computer literacy classes is the proper course content level. The challenge

is to take the students to a higher level academically but without driving them away because

they feel an “easy” course has become “hard.” Accepting this challenge, we have moved the

database portion of the computer literacy class beyond keystrokes (rote learning) to data

modeling using the spreadsheet as a metaphor for a relational database. Although not found in

the current literature, this metaphor facilitates the understanding of the foundations of rela-

tional theory and enables computer literacy students to design normalized multi-entity data-

bases within several class sessions. Students combine relational theory and keystroke know-

ledge of Microsoft Access to implement finished applications. The resultant applications are

free of data redundancy problems that often plague non-normalized databases.

Keywords: Database, Computer Literacy, Pedagogy, Teaching, Normalization, Data Modeling,

Spreadsheet, End User

1. INTRODUCTION

A challenge facing computer literacy classes

is the proper course content level. Courses

containing material too elementary for the

student are spurned as “blow-offs” resulting

in declining enrollments (Tucci). Literacy

classes with an in-depth exploration of com-

puter science material may scare away all

but the most mathematically inclined stu-

dent. The challenge is to take students to a

higher level academically without driving

them away because they feel an “easy”

course has become “hard.” Accepting this

challenge, we have moved the database por-

tion of the computer literacy class beyond

keystrokes (rote learning) to data modeling.

Effective data modeling requires an under-

standing of the foundations of relational da-

tabase theory. Without these foundations,

students typically develop multi-entity data-

bases using a single table. The resultant ap-

plications suffer from data redundancy prob-

lems associated with non-normalized data-

bases.

Database theory is given little emphasis in

computer literacy classes (Hutchings). Text-

books universally present word processing

before spreadsheets are introduced. Appro-

priately, the final topic is database, a more

abstract application than word processing or

spreadsheet. Unfortunately, textbooks typi-

cally continue the keystroke methodology of

word processing and spreadsheet and forgo

discussion of relational theory. Usually the

most basic database concepts (such as table

or attribute) are presented using metaphors

and terminology from an Information Sys-

tems (IS) based perspective.

In a computer literacy class, the IS perspec-

tive is difficult because it fails to build on

and is not associated with prior student

knowledge. Assimilation theory holds that a

familiar metaphor functions as an advance

organizer and facilitates the understanding

of new knowledge, that is, concepts from

relational database theory (Mayer). This ar-

ticle describes an approach to the introduc-

tion of fundamental relational concepts using

a familiar metaphor, the spreadsheet. This

c© 2009 EDSIG http://isedj.org/7/53/ June 10, 2009

ISEDJ 7 (53) Steinberg 4

metaphor is more consistent with the end-

user’s knowledge base that traditional IS

oriented presentations, a factor critical to

learning the subject material.

The metaphor of a spreadsheet as a rela-

tional database table can be inferred from

both the “conventional” IS database defini-

tion and from relational theory. An IS-

oriented definition of a database is a group

of logically related files, files being a group

of logically associated records and fields. A

spreadsheet may be viewed as a sequential

file of fixed length records. (This article pre-

sumes that the reader possesses a basic un-

derstanding of spreadsheet software. Refer-

ences will presume the “typical” orientation

with rows being records and columns being

fields. There is no loss of generality if the

orientation is reversed.) The fixed record

length characteristic is derived from the

spreadsheet requirement that all rows

(representing the file’s records) of a given

spreadsheet has the same number of col-

umns. Thus a spreadsheet is logically

equivalent in structure to a fixed-length,

fixed field, sequential file.

The spreadsheet metaphor is also derivable

from relational database theory as follows. A

spreadsheet, in its most basic form, is a rec-

tangular grid. A column’s content and do-

main (set of allowable values, i.e., pool of

values for an attribute (Teorey)) are defined

by the column width, data type (e.g., cur-

rency, fixed decimal, date, string, etc.), and

the column heading (attribute name). Col-

umns are attributes. Column cell values em-

body attribute values; tuples are rows. The

set of column headings with the visual for-

matting characteristics (such as column

width) are akin to a relation’s heading (fixed

set of attribute pairs that define the domain

of the attribute, each attribute belonging to

only one domain (Teorey)). Thus the

spreadsheet metaphor can be derived from

the representation of a relation as a table as

well as from the IS perspective as a group of

related files.

This article is divided into seven sections -

this Introduction being the first. Second is

an anecdotal survey of the treatment of re-

lational theory in computer literacy. Section

3 reviews the consequences of designing

relational databases without a theoretical

foundation and presents justification for

teaching these concepts. Section 4 presents

a review of assimilation theory concepts that

becomes the foundation for Section 5 in

which the spreadsheet metaphor is pre-

sented. The final sections chronicle the prac-

tical application of the metaphor in the

classroom and end with a conclusion.

2. CURRENT DATABASE EDUCATION

The importance of the database topic in for-

mal IS education is well documented. Stu-

dies have addressed the general technical

knowledge and skill requirements of IS per-

sonnel (Baroudi, Breivik, Marcum, Neslon).

The Association for Computing Machinery

(ACM) curriculum committee makes periodic

recommendations regarding the content of

model curricula for computer science and IS

disciplines. At least one and most often sev-

eral database courses are recommended at

all levels: graduate and undergraduate

(Kung,Wu, Chrysler, Gorgone, Denning).

Current literature promotes use of relational

database software rather than older network

and hierarchical approaches. Studies have

addressed specifically the content and pres-

entation sequence of IS database courses

using relational databases (Wilkins, Connol-

ly, Robbert, Keys). Relational concepts pre-

sented as theory or practice application are

widely recommended topics. Specifically

championed are the theoretical topics of

conceptual data modeling and normalization.

Classroom projects involving the design and

implementation of a relational database are

common exercises that demonstrate and

reinforce theory.

With respect to non-IS database education

little emphasis is given to database theory

(Hutchings). In support of this assertion, we

appraised non-IS education by surveying

textbooks used in computer literacy courses.

All considered computer literacy textbooks

shared similar formats and covered three

basic PC applications: (1) word processing,

(2) spreadsheets, and (3) database. Univer-

sally, word processing is introduced initially.

Being the least abstract of the three, it tends

to build student confidence and thus de-

crease student anxiety because students are

familiar with the written or typed word.

Spreadsheet software follows word

processing and is deemed more difficult, be-

ing less familiar as well as more quantitative

and abstract. Neither topic possesses signifi-

cant underlying theory regarded as critical

c© 2009 EDSIG http://isedj.org/7/53/ June 10, 2009

ISEDJ 7 (53) Steinberg 5

for application development. A keystroke or

rote learning approach (discussed later) is

appropriate for these applications.

In the surveyed texts, the database section

is the final topic, and this is appropriate –

database being the most abstract topic. Un-

fortunately textbooks continue the keystroke

methodology and relational theory presenta-

tion is virtually non-existent. Students are

presented only the most basic concepts

(such as file or field) using metaphors and

terminology from an IS-based perspective.

In a literacy class, it is difficult to build on

this perspective or associate it with prior

knowledge.

Frequently, students use aftermarket books

and software manuals accompanying com-

mercial software. These are only marginal

improvements. Such sources contain in-

depth, keystroke-oriented instruction for

manipulating selected software packages.

Basic terminology is mentioned in a brief,

introductory chapter (typically six or fewer

pages), followed by mechanical or keystroke

instruction. There is no coverage of impor-

tant relational concepts. For example, the

critical concepts regarding database norma-

lization are not found in any surveyed

sources.

Summarizing, we believe non-IS students

receive database education through intro-

ductory microcomputer-based database

courses, supplemented with tutorials and

reference manuals that accompany software

as well as aftermarket texts describing spe-

cific database management system (DBMS)

software. No source presents any relational

database theory. Students become end-

users knowledgeable with regard to the me-

chanics of the specific software applica-

tion(s) but ignorant of database design

theory, the consequences of which are de-

scribed in the following section.

3. NEED FOR RELATIONAL THEORY

The lack of relational theory presents diffi-

culties for the database designer. Students

unfamiliar with theoretical foundations of

database design bypass the critical steps of

conceptual data modeling and normalization

during application development. The conse-

quences of bypassing the critical data mod-

eling and normalization steps can lead to

poor design, which in turn, can lead to lost,

inconsistent, and redundant data (Teorey).

For example, the database in Figure 1 is a

multi-entity table that has data redundancy

(a vendor twice and a product twice) as well

as other problems associated with non-

normalized databases.

Figure 1: Multi-entity Spreadsheet

Some end-users recognize their deficiency

and rely on IS specialists for critical data-

base design. However, often end-users felt

IS involvement might jeopardize their inde-

pendence (Ahrens). Consequently, end-

users undertake design without assistance

with the aforementioned results.

We are not alone in recognizing end-users’

need for an education in database theory.

Others have suggested that end-user data-

base designers will benefit from a greater

knowledge of database theory (Hutchings,

Robbert, Rob). The software development

community has responded to end-user de-

mand with new products. Ahrens and Sankar

(Ahrens) and Bostrom, Olfman, and Sein

(Sein) promote software tutors to acquaint

end-users with critical material for database

design. Steinberg, Faley and Chin (Stein-

berg) have developed software that uses an

English-based, non-contextual approach for

teaching relational database design including

normalization. Lim and Hunter (Lim) de-

scribe DBTool which assists the database

developer in the transformation of a concep-

tual model to an equivalent relational model.

Although these approaches show promise,

we offer an alternative that is simpler, does

not require special software, and is perhaps

more appealing: the spreadsheet metaphor.

4. ROTE AND MEANINGFUL

LEARNING – ASSIMILATION

THEORY

Our contribution to database education is

the introduction of a new presentation me-

taphor for relational database theory, the

spreadsheet. The choice of a spreadsheet

metaphor is best explained using terms from

assimilation theory.

Assimilation theory defines two types of

learning rote learning (for memorization)

c© 2009 EDSIG http://isedj.org/7/53/ June 10, 2009

ISEDJ 7 (53) Steinberg 6

and meaningful learning. “Rote learning in-

corporates new knowledge with existing

knowledge in an arbitrary and verbatim way.

Rote learners memorize information with

little or no regard for its meaningful connec-

tion to prior knowledge” (Hung).

Traditional computer literacy database edu-

cation consists of rote learning, whereby the

student is taught the mechanics of database

generation without regard for relevant rela-

tional design theory. Students learn the

keystrokes necessary to generate and mani-

pulate single-table databases. The instruc-

tion terminology is IS-based, with little or no

regard for its meaningful connection to the

student’s prior knowledge base.

The second type of learning, meaningful

learning, occurs “when an individual con-

nects new information in a non-arbitrary and

substantive manner with knowledge that

already exists in memory.” With meaningful

learning comes a fundamental understand-

ing of concepts underlying the newly ac-

quired information and ability to apply those

concepts to situations not yet encountered.

Advance organizers are “familiar” material

injected into the learning process prior to

the introduction of new material. The pur-

pose of the advance organizer is to facilitate

retrieval of current knowledge from long-

term memory that will be necessary and/or

useful in the synthesis of forthcoming infor-

mation (Mayer). Thus, models, metaphors,

and analogies make learning new material

easier because they organize the new ma-

terial in advance for the learner (Hung).

The traditional, IS-oriented database ap-

proach fails to make effective use of ad-

vance organizers when dealing with the

computer literacy student, defining relational

concepts using unfamiliar terms and analo-

gies. Virtually, all IS-oriented database

classes begin defining the term “database”

after the terms “field,” “record,” and “file”

are discussed with reference to the hierarchy

of data. Thus, although the hierarchy of data

serves as an advance organizer to IS stu-

dents, the new terms become an additional

burden to the computer literacy student.

For example, the following definition, a com-

posite of many sources, is used in our In-

formation Systems database classes: A da-

tabase is a group of logically associated files

organized for storage and retrieval of data.

As the typical IS students’ background in-

cludes elementary programming classes in

one or more of, say, Java, C#, or Visual Ba-

sic, the following association is expected:

The database is composed of some number

of files, each of which is composed of fixed-

length records, that in turn, are composed of

fixed-length fields. As the definitions of “re-

lation,” “tuple,” and “attribute” are intro-

duced, the IS student mentally references

programming experiences with “files,”

“records,” and “fields,” the descending hie-

rarchical structure of data. Thus, the hie-

rarchy of data is used as an advance orga-

nizer, a learning facilitator for the definition

of “database.”

The advance organizers concept is used to

introduce other relational theory concepts.

The organizers are drawn from the IS stu-

dent’s programming background, as would

be expected in IS curricula or texts. Howev-

er, the background or knowledge base of the

computer literacy student differs from that

of the IS student. Therefore, the IS-oriented

advance organizers are ineffective as they

are not integrated within the end-user’s

knowledge base. In fact, they may serve as

a learning inhibitor by increasing the total

amount of new information introduced.

We contend that the spreadsheet metaphor

is effective for teaching relational database

theory to students. This metaphor is pro-

posed because (1) as an advance organizer,

it lies within the students’ existing know-

ledge base; (2) the spreadsheet, inherently,

can be used as an example of relational con-

cepts; (3) we have obtained good results

using this metaphor, as presented in Section

6. To illustrate the metaphor’s potential;

next we explain selected relational database

concepts using the spreadsheet metaphor.

5. THE SPREADSHEET METAPHOR

The introduction of basic relational terms

employs the spreadsheet metaphor at its

most elementary level. The students, al-

ready familiar with spreadsheets, are intro-

duced to relational terms using the spread-

sheet terms as advance organizers. In a

classroom environment, the instructor

makes an conscious effort to employ inter-

changeably the relational and spreadsheet

terms in explanation of succeeding concepts,

reinforcing the terms already defined, treat-

ing as synonyms the relational term and

c© 2009 EDSIG http://isedj.org/7/53/ June 10, 2009

ISEDJ 7 (53) Steinberg 7

spreadsheet counterpart. The remainder of

this article is written in this style.

Continuing with the terminology develop-

ment, the following relational theory terms

are defined using the spreadsheet metaphor.

An “instance” of the relation (tuple) is a row

within the spreadsheet. The set of instances

at any moment comprises the relation’s “ex-

tension,” and the set of columns comprises

its “intension.”

Concepts of intermediate difficulty are intro-

duced with a minimum of difficulty. Consider

the concept of stability of the database’s

intension and extension, certainly abstract

topics for computer literacy students. These

topics are introduced through a discussion

regarding the types of changes made to a

spreadsheet. Students will agree that after

initial spreadsheet development, changes

such as row (tuple) addition or deletion are

more likely than the addition or deletion of a

column (attribute). Hence, the spreadsheet

student is already aware that a relation’s

intension (number of columns) is relatively

stable, as compared with its extension

(number of rows).

Further relational theory topics are intro-

duced using the spreadsheet as an advance

organizer. For example, the need for norma-

lization (the process of organizing data into

relations so as to remove or update anoma-

lies (Lightstone)), and the nature of (cardi-

nality of) relationships between entities are

abstract topics easily explained with the

spreadsheet metaphor. These topics are in-

troduced by creating a multi-entity spread-

sheet. For example, the relational university

model (RUM) spreadsheet (Figure 2) might

be considered a “typical” end-user spread-

sheet, created to reflect the recording needs

of the university.

Figure 2: Relational University Model

(RUM)

In the spreadsheet an instance contains

attributes that describe two physical objects,

students and classes. It is not uncommon for

end-users designed spreadsheet rows to

contain data about multiple entities (objects

about which information is stored). The nat-

ural grouping and association of attributes

within a row renders ease of reading. Infor-

mation about different objects within an in-

stance (row) reflects the relationships

among objects: students enrolled in classes.

IDs represent each entity’s unique identifica-

tion (primary key); the other columns

represent the non-key attributes. However,

this spreadsheet is not without problems.

The most apparent problem, which the stu-

dents immediately identify, is data duplica-

tion. Each row represents a class taken by

one student. For each individual student’s

classes, the attributes (field) values for ID,

NAME, and GPA are replicated. Obvious dup-

lication of information exists for the CLASS

entity.

These discoveries are typically followed by a

discussion of the problems inherent to re-

dundant data. The consumption of unneces-

sary primary and secondary storage is readi-

ly apparent. The potential entry and main-

tenance errors are more subtle, but never-

theless are realized by the students as dis-

cussion progresses.

This simple spreadsheet illustrates another

serious problem that exists when spread-

sheet instances reflect information about

more than one entity; the logical data model

cannot accurately reflect the physical world.

For example, consider the common circums-

tances that cannot be depicted with RUM:

(1) Dino, a student who sits out a semester

is enrolled in no classes; (2) Philosophy II, a

class not being taught this semester has no

students. These problems, as many others,

are caused by the inability of a multiple enti-

ty instance to provide for the existence of

one entity coincident with the absence of an

associated entity. This general class of prob-

lems, known as data dependency problems,

arises when a spreadsheet instance contains

data about multiple entities. The spread-

sheet requires the presence of information

about all entities within a data instance. For

any multi-entity spreadsheet (Figure 1), the

unique identifying item (primary key) is a

concatenation of the primary keys (VENDOR

ID + PROD ID) of the individual entities.

Should one or more entities fail to exist, the

spreadsheet’s integrity is comprised because

c© 2009 EDSIG http://isedj.org/7/53/ June 10, 2009

ISEDJ 7 (53) Steinberg 8

instance identification becomes impossible;

part of the primary key is missing.

Students invariably propose to solve both

the data redundancy and data dependency

problems through data instance subdivision.

Intuitively, the division is according to the

logical grouping of attributes, that is, by ent-

ity. Thus, students begin the normalization

process, the process of decomposing a rela-

tion (table) to reduce data redundancy and

data dependency.

When using database software, the normali-

zation process consists of creating separate

tables, one for each entity. Students intui-

tively mirror the process by partitioning the

one physical spreadsheet into multiple “logi-

cal” spreadsheets, “spreadsheets within a

spreadsheet.” (The sub-grouping, columns

contained within a spreadsheet function in-

dependently, hence the name logical spread-

sheets.) Thus the student’s partitioning illu-

strates the creation of separate relations for

each entity within a database. The logical

spreadsheets derived from Figure 2 are illu-

strated in Figure 3, the student not currently

enrolled in a class (Dino) and the class not

currently being taught (Philosophy II) has

been added, creating an accurate reflection

of the physical world.

Figure 3: Partitioned Relational Univer-

sity Model

Students are asked to analyze the parti-

tioned spreadsheet compared with the sin-

gle-table spreadsheet of Figure 2. Students

easily identify the partitioning (normaliza-

tion) benefits. Logical databases are more

easily modified than the equivalent, multi-

entity database, as data redundancy is elim-

inated. The singular existence reduces re-

sources requirements (such as memory or

disk) and perhaps more importantly, reduces

the likelihood of error caused by inconsistent

or omitted updates. Each logical spreadsheet

can be maintained independently. Attributes

may be added to or deleted from one with-

out affecting the other. Rows may be added

to one spreadsheet and not the other. Row

addition independence allows the existence

of one entity instance (record) without re-

quiring the presence of another, resolving

the data dependency problem.

Also, students recognize immediately the

need for a logical association between spe-

cific spreadsheet instances, in this case

STUDENT and CLASS. Otherwise valuable

information between specific spreadsheet

instances is lost. For example, it would be

impossible to determine the classes of a par-

ticular student or the enrollment in a par-

ticular class if the spreadsheets remain un-

linked. The information is easily obtained

from Figure 2 but cannot be determined

from Figure 3. The pursuit of the resolution

to this problem triggers discussion of the

relational concepts associated with primary

and foreign keys, the features that facilitate

logical associations between unique in-

stances. Thus, students discover cardinality,

the type of relationship that exists between

entities.

At this juncture, students require judicious

guidance supplied by the instructor. The

suggestion that the needed correlations be

enumerated allows the students to see them

(in the physical sense). Using the un-

normalized database (Figure 2) the instruc-

tor extracts the STUD ID and CLASS ID col-

umns (attributes) and creates an intersec-

tion table (Figure 4) to enumerate the rela-

tionships.

Figure 4: Intersection Table for Rela-

tional University Model

Students discover the concept of the inter-

section or cross-reference table as the im-

plementation technique for M:M (many-to-

many) relationships, STUDENT-CLASS being

a specific example. Students easily recognize

the need to create a new, logical spread-

sheet that contains the connections. The

adjective logical is used because the new

entity reflects nothing tangible, merely the

c© 2009 EDSIG http://isedj.org/7/53/ June 10, 2009

ISEDJ 7 (53) Steinberg 9

association between STUDENT and CLASS.

Students enrolled in multiple classes are

represented by multiple rows in the STU-

DENT-CLASS entity. Similarly, classes with

multiple students have multiple instances in

STUDENT-CLASS. Students note that the

concatenation of the STUD ID and CLASS ID

keys is needed to form a unique identifier for

STUDENT-CLASS instances.

This example also illustrates the principal

that a normalized database (spreadsheet)

does not eliminate all data redundancy – but

controls data redundancy. Duplication of key

values is required to facilitate the logical as-

sociation between specific instances of two

entities. Thus, normalization controls data

redundancy by eliminating unnecessary data

redundancy.

This example becomes the advance organiz-

er for the generalized resolution of the M:M

relationship, the creation of an intersection

table concatenating the individual primary

keys to form the intersection’s primary key.

In addition, the M:M relationship is an ad-

vance organizer for the 1:M (one-to-many)

relationship that follows. Thus, the RUM

spreadsheets are used to introduce and illu-

strate the advantages of implementation

techniques associated with normalization.

Continuing the introduction of cardinality

with the spreadsheet metaphor, a second

spreadsheet, specialty merchandising model

(SMM) is introduced (Figure 5). The change

of example permits reinforcement of the

M:M normalization process and introduction

of the 1:M cardinality through the introduc-

tion of a third entity. This spreadsheet re-

flects the needs of a special retailer. During

the example’s introduction it is important to

include the assumption that each product

has only one vendor. The intent of this as-

sumption is to introduce a 1:M into the da-

tabase, later contrasting its implementation

with that of M:M.

Figure 5: Special Merchandising Model

(SMM)

Students identify the three entities in this

spreadsheet: CUSTOMER, PRODUCT, and

VENDOR and create the appropriate relation

(table) with redundancy removed for each

entity (Figure 6).

Figure 6: Partitioned Special Merchan-

dising Model (SMM)

The M:M relationship between CUSTOMER

and PRODUCT is readily apparent to the stu-

dent and easily implemented through crea-

tion of the logical spreadsheet CUSTOMER-

PRODUCT (Figure 7).

Figure 7: Intersection Table

Students recognize that the relationship be-

tween product and vendor is different from

CUSTOMER-PRODUCT. Students can visually

compare CUSTOMER-PRODUCT (Figure 7)

with the VENDOR ID and PRODUCT ID col-

umns as well as remember the example’s

introduction. Quickly students extract the

PRODUCT ID and VENDOR ID form their re-

spective entities (Figure 8-left) and then

eliminate duplicate rows (Figure 8-right).

Figure 8: Extract Columns (left) - Re-

duced Table (right)

Each product is associated with only one

VENDOR, that is, a PROD ID appears only

once in the listing as compared with several

listings of VENDOR. Figure 8-right illustrates

visually a 1:M relationship. One VENDOR has

c© 2009 EDSIG http://isedj.org/7/53/ June 10, 2009

ISEDJ 7 (53) Steinberg 10

many PRODUCTs, but each PRODUCT is sup-

plied by only one VENDOR. In addition, the

visual difference between CUSTOMER-

PRODUCT (Figure 7) and PRODUCT-VENDOR

(Figure 8-right) is an advance organizer to

suggest that implementation of 1:M relation-

ships is different from that of M:M.

Students, remembering the goal of eliminat-

ing redundancy, explore two open choices:

(1) place PROD ID in VENDOR or (2) place

VENDOR ID in PRODUCT. The choice is easily

resolved. All attributes are “single-valued”

(another relational term), therefore, one

attribute in VENDOR cannot simultaneously

“point” to multiple PRODUCT instances.

However, a PRODUCT instance may refer-

ence the one associated VENDOR instance.

Therefore, students invariably place VENDOR

ID within the PRODUCT relation (Figure 9).

Thus, this example will server as an advance

organizer in the discussion of foreign key

placement.

Figure 9: SMM Product Entity

The formal introduction of the term “foreign

key” proceeds naturally. A foreign key is an

attribute (simple or composite) of one table

whose values are required to match those of

the primary key (unique identifier) of anoth-

er entity (table) (Teorey). Using the SMM

example, the instructor notes that the for-

eign key placement is critical for a 1:M rela-

tionship. The foreign key must be placed in

the MANY entity instance, pointing to the

ONE entity instance. This somewhat abstract

discussion proceeds smoothly because the

exploration for resolution of the previous

example served as an advance organizer for

the foreign key topic. It is easily demon-

strated that the foreign key attribute need

not possess the same name as the asso-

ciated primary key; only the values need to

be matched.

In summary, we have used this section to

demonstrate that the spreadsheet metaphor

may be employed to illustrate relational

theory concepts at all levels of abstraction,

from intermediate nomenclature to advance

abstract topics such as normalization and

cardinality. We use other spreadsheet ex-

amples as advance organizers during the

introduction of further relational theory con-

cepts to successfully teach data modeling to

computer literacy students. Results obtained

by using this metaphor are detailed in the

next section.

6. PRACTICAL APPLICATION OF THE

SPREADSHEET METAPHOR

The spreadsheet metaphor has been em-

ployed in the computer literacy classes at

Kent State University for five semesters.

Students are primarily freshmen and have

diverse areas of concentration, but they are

not IS majors.

Students received computer instruction fol-

lowing the now traditional sequence: word

processing, spreadsheet, and finally data-

base. The database portion of lectures is

based on relational theory (using the

spreadsheet metaphor) for database design

and keystroke using Microsoft’s Access.

Thus, students could manipulate previously

defined databases as well as design new ap-

plications.

The database design segment consisted of

approximately 2.5 class hours of spread-

sheet metaphor lectures over four weeks.

Assignments required the students to read a

problem situation and design and implement

a normalized database using Microsoft

Access that would support the informational

needs dictated by the problem. Problem lev-

el difficulty ranged from easy (two entities

and 12 attributes) to moderately difficult (six

entities and 45 attributes). A sample of a

midlevel assignment follows:

Veterinarians in town can be identified by

a license number. Other characteristics of

the vets are their name, office address

and phone number. The vet treats many

dogs each of which has one owner. There

are no strays. Each owner, however, can

have more than one dog, and the owners

have unique names. The dog’s names are

not unique, nor are their breeds. All own-

ers reside with their dogs at a location

that is identified by its address. The

people never get their dogs mixed up be-

cause each license number is different.

Students were evaluated on the basis of

enumeration of the entities, association of

the attributes, the correct primary keys, and

c© 2009 EDSIG http://isedj.org/7/53/ June 10, 2009

ISEDJ 7 (53) Steinberg 11

the correct foreign keys. The evaluation was

done objectively; over- or under specifica-

tion of attributes and/or entities resulted in a

penalty to the student. Summary results for

the students’ homework assignments are

given in Figure 10. Data are presented for

the five semesters prior to and after the in-

troduction of the Spreadsheet Metaphor.

Specific assignments changed each seme-

ster. The structure of the assignments (enti-

ties, attributes, etc.) did not change, there-

fore the mix of objective score measure-

ments did not change. The average home-

work score increased pre to post introduc-

tion of the metaphor by more then four

points.

Figure 10: Student Homework Summary

To measure student learning about database

design, students were required to answer

questions about normalization in an exam

during the database portion of the class as

well as questions on the final. Therefore,

students were evaluated both from academic

(test) and practical demonstration (imple-

mentation) perspectives.

A sample test question of intermediate diffi-

culty was:

Given this scenario: A car has a color and

is identified by vehicle identification

number (VIN). The cars have a purchase

cost and an owner. The owners have an

address, phone number, and a social se-

curity number. A salesperson has a

name, sells the cars ands has a unique

tax identification number (TID). The sa-

lespeople only work at one dealership.

For this question, students were required to

identify the number of entities, the number

of attributes, the number of foreign keys in

the entity “car,” and the cardinality between

car and salesperson. A summary of student

performance is given in Figure 11. Data are

presented for the five semesters prior to and

after the introduction of the Spreadsheet

Metaphor. Although a statistical analysis

has not been performed, a general upward

trend can be observed perhaps indicating

increasing success with the pedagogical

technique.

Figure 11: Testing Results Summary

The “hands on” perspective required stu-

dents to synthesize their relational theory

and keystroke knowledge of Access to de-

velop applications. The resultant applications

were generally free of the data redundancy

problems that plague non-normalized data-

bases.

In summary, the spreadsheet metaphor was

used for the introduction of relational data-

base theory concepts in a computer literacy

class. Literacy students were able to read a

relational database description, synthesize

it, and design normalized databases; these

tasks usually required only of IS students.

Literacy students later demonstrated their

mastery with the implementation of their

designs using Access.

7. CONCLUSION

This article describes a methodology em-

ployed to take computer literacy students to

a higher level academically. Computer litera-

cy students were introduced to data model-

ing using the spreadsheet metaphor as an

advance organizer for the relational data-

base concepts. By using examples more fa-

miliar to the subject audience that the ab-

stract concepts of, say, fields or files, the

spreadsheet metaphor facilitates under-

standing of the foundations of relational

theory and enables computer literacy stu-

dents to create normalized multi-entity rela-

tional databases free of data redundancy

problems associated with non-normalized

databases. Preliminary results of student

performance indicate an improvement in

knowledge and practical skill regarding nor-

malization and database design.

REFERENCES

Ahrens, J., D., and Sankar, C. S., (1991)

“Tailoring Database Training for End-

Users,” MIS Quarterly, vol 17. No 4, pp

419-439

c© 2009 EDSIG http://isedj.org/7/53/ June 10, 2009

ISEDJ 7 (53) Steinberg 12

Baroudi, J.J. (1995). “The Impact of Role

Variables on IS Personnel Work Attitudes

and Intentions,” MIS Quarterly, vol 9, no

4, pp 341-356

Bostrom, R., Olfman, L., Sein, M., (1988).

“End-User Computing: A Research

Framework for Investigating the Train-

ing/Learning Process,” Human factors in

MIS, J Carey, ed. Norwood, NJ, Ablex, pp

2221-250

Breivik, P. (1998). “Student Learning in the

Information Age,” Oryx Press

Chrysler, E., and Van Auken, S. (2002). "En-

try Level Value Versus Career Value of

MIS Courses: Faculty Expectations Versus

Alumni Perceptions, "Journal of Computer

Information Systems, vol. 42,, no. 3, pp

38-43.

Connolly, T., and Begg, C., (2006) "A Con-

structivist-Based Approach to Teaching

Database Analysis and Design," Journal

of Information Systems Education, Spring

2006

Denning, P. & McGettrick, A. (2005). Recen-

tering Computer Science. Communica-

tions of the ACM, vol. 48, no. 11, pp 15-

19.

Gorgone, J., Gray, P., Stohr, E., Valacich. J.,

and Wigand, R., (2006). “MSIS 2006:

Model Curriculum And Guidelines For

Graduate Degree Programs In Informa-

tion Systems,” Communications of the

Association for Information Systems, vol

17, 2006, pp 1-56

Hung, W., Chao, C., (2007). “Integrating

Advance Organizers and Multidimensional

Information Display in Electronic Perfor-

mance Support Systems,” Innovations in

Education & Teaching International, v44

n2 p181-198

Hutchings, D. and Stasko, J. (2002). “Quick-

Space: New Operations for the Desktop

Metaphor,” Extended Abstracts of the

Conference on Human Factors in Compu-

ting Systems.

Keys, A.C. (2003). Using Group Projects in

MIS: Strategies For Instruction and Man-

agement. Journal of Computer Informa-

tion Systems, vol. 43, no. 2, 42-50.

Kung, M., Yang, S., and Zhang, Y., (2006).

"The Changing Information Systems (IS)

Curriculum: A Survey of Undergraduate

Programs in the United States," The

Journal of Education for Business, Volume

81, No. 6

Lightstone, S., Teorey, T., and Nadeau, T.,

(2007). “Physical Database Design: the

database professional's guide to exploit-

ing indexes, views, storage, and more”,

Morgan Kaufmann Press

Lim, B. and Hunter, R. (1992). “DBTool: A

Graphical Database Design Tool for an In-

troductory Database Course,” SIGCSE

Papers of the Twenty-third Symposium,

pp 24-27

Marcum, J., (2002) “Rethinking Information

Literacy,” Library Quarterly, v72 n1 p1-

26

Mayer, R.E. (1979). “Can Advance Organiz-

ers Influence Meaningful Learning?” Re-

view of Educational Research, vol 49, no

2, pp 371-38

Neslon, R. and Lyons, N., (1991). Educa-

tional Needs as Perceived by IS and End-

User personnel: A Survey of Knowledge

and Skill Requirements,” MIS Quarterly,

vol 15, no 4, pp 503-536

Rob P., and Adams, C.N., (1990). “Micro-

computer Databases in the Classroom:

Its Time to Pay the (design) Piper,: Jour-

nal of Computer Information Systems,

vol 31, no 1, pp 18-24

Robbert, M., Wang, M., Guimaraes, M., and

Myers, M.E. (2000). The Database

Course: What Must be Taught. SIGCSE

Bulletin, vol. 32, no. 1, pp 403-404.

Steinberg, G., Faley, R., Chin, S., (1994).

“Automatic Database Generation by No-

vice End-Users Using English Sentences,”

Journal of Systems Management, vol. 45,

no 3, pp 10-15

Teorey, S. Lightstone, T. Nadeau, (2005).

“Database Modeling & Design: Logical

Design, 4th edition”, Morgan Kaufmann

Press.

Tucci, L., (2005). “College Students Contin-

ue To Shun Computer Science,” CIO

News, August 2005.

Wilkins, M., & Nolltt, C., (2000). "Critical

Skills of IS Professionals: Developing a

Curriculum for the Future," Journal of In-

c© 2009 EDSIG http://isedj.org/7/53/ June 10, 2009

ISEDJ 7 (53) Steinberg 13

formation Systems Education Vol 11, no.

3-4, pp 105-110.

Wu, J., Chen, Y., Chang, J., Lin, B., (2007).

"Closing off the Knowledge Gaps in IS

Education," International Journal of Inno-

vation and Learning, vol 4, no. 4. pp 357

- 375

c© 2009 EDSIG http://isedj.org/7/53/ June 10, 2009

