
Volume 7, Number 28 http://isedj.org/7/28/ April 16, 2009

In this issue:

Creating Web Services for Legacy COBOL

Craig A. VanLengen John D. Haney
Northern Arizona University Northern Arizona University

Flagstaff, AZ 86011-5066 USA Flagstaff, AZ 86011-5066 USA

Abstract: Billions of lines of COBOL code are executed on a daily basis, primarily in financial
transactions. With the presence of newer development environments these programs must be rewrit-
ten or accessed in a viable way. Placing legacy programs into web services is one way to interface
existing functional programs with contemporary interfaces, whether Windows or Web. This study
presents how a COBOL legacy program can be placed into a web service and accessed from a COBOL
client, a Windows client, and a web client. The inclusion of this type of skill into the curriculum is
highly desirable in order to address the skill loss due to the retirement of COBOL programmers.

Keywords: web services, client, COBOL, .NET, legacy, Windows, web

Recommended Citation: VanLengen and Haney (2009). Creating Web Services for Legacy
COBOL. Information Systems Education Journal, 7 (28). http://isedj.org/7/28/. ISSN:
1545-679X. (Preliminary version appears in The Proceedings of ISECON 2006: §2142. ISSN:
1542-7382.)

This issue is on the Internet at http://isedj.org/7/28/



ISEDJ 7 (28) Information Systems Education Journal 2

The Information Systems Education Journal (ISEDJ) is a peer-reviewed academic journal
published by the Education Special Interest Group (EDSIG) of the Association of Information
Technology Professionals (AITP, Chicago, Illinois). • ISSN: 1545-679X. • First issue: 8 Sep 2003.
• Title: Information Systems Education Journal. Variants: IS Education Journal; ISEDJ. • Phys-
ical format: online. • Publishing frequency: irregular; as each article is approved, it is published
immediately and constitutes a complete separate issue of the current volume. • Single issue price:
free. • Subscription address: subscribe@isedj.org. • Subscription price: free. • Electronic access:
http://isedj.org/ • Contact person: Don Colton (editor@isedj.org)

2009 AITP Education Special Interest Group Board of Directors

Don Colton
Brigham Young Univ Hawaii
EDSIG President 2007-2008

Thomas N. Janicki
Univ NC Wilmington
EDSIG President 2009

Kenneth A. Grant
Ryerson University
Vice President 2009

Kathleen M. Kelm
Edgewood College

Treasurer 2009

Wendy Ceccucci
Quinnipiac Univ
Secretary 2009

Alan R. Peslak
Penn State

Membership 2009
CONISAR Chair 2009

Steve Reames
Angelo State Univ
Director 2008-2009

Michael A. Smith
High Point

Director 2009

George S. Nezlek
Grand Valley State
Director 2009-2010

Patricia Sendall
Merrimack College
Director 2009-2010

Li-Jen Shannon
Sam Houston State
Director 2009-2010

Albert L. Harris
Appalachian St

JISE Editor

Paul M. Leidig
Grand Valley State University

ISECON Chair 2009

Information Systems Education Journal Editors

Don Colton
Brigham Young University Hawaii

Editor

Thomas N. Janicki
Univ of North Carolina Wilmington

Associate Editor

Information Systems Education Journal 2006-2007 Editorial Review Board

Samuel Abraham
Siena Heights Univ

Janet Helwig
Dominican Univ

D. Scott Hunsinger
Appalachian State Univ

Terri L. Lenox
Westminster College

Doncho Petkov
Eastern Connecticut St U

Steve Reames
Angelo State Univ

Michael Alan Smith
High Point University

Belle S. Woodward
Southern Illinois Univ

Charles Woratschek
Robert Morris Univ

Peter Y. Wu
Robert Morris Univ

EDSIG activities include the publication of ISEDJ and JISAR, the organization and execution of
the annual ISECON and CONISAR conferences held each fall, the publication of the Journal of
Information Systems Education (JISE), and the designation and honoring of an IS Educator of the
Year. • The Foundation for Information Technology Education has been the key sponsor of ISECON
over the years. • The Association for Information Technology Professionals (AITP) provides the
corporate umbrella under which EDSIG operates.

c© Copyright 2009 EDSIG. In the spirit of academic freedom, permission is granted to make and
distribute unlimited copies of this issue in its PDF or printed form, so long as the entire document
is presented, and it is not modified in any substantial way.

c© 2009 EDSIG http://isedj.org/7/28/ April 16, 2009



ISEDJ 7 (28) VanLengen and Haney 3

Creating Web Services for Legacy COBOL 

Craig A. VanLengen 

craig.vanlengen@nau.edu 

John D. Haney 

john.haney@nau.edu 

The W. A. Franke College of Business 

Northern Arizona University 
Flagstaff, AZ 86011-5066 USA 

Abstract 

Billions of lines of COBOL code are executed on a daily basis, primarily in financial transac-
tions.  With the presence of newer development environments these programs must be rewrit-
ten or accessed in a viable way.  Placing legacy programs into web services is one way to in-
terface existing functional programs with contemporary interfaces, whether Windows or Web.  
This study presents how a COBOL legacy program can be placed into a web service and ac-
cessed from a COBOL client, a Windows client, and a web client.  The inclusion of this type of 
skill into the curriculum is highly desirable in order to address the skill loss due to the retire-

ment of COBOL programmers. 

Keywords: web service, client, COBOL, .NET, legacy, Windows, web 
 

1. INTRODUCTION 

Business organizations have a large invest-
ment in software written in COBOL. Evelyn 

(2002) estimates the investment in COBOL 
“to be $3 trillion.” It is estimated that 70 
percent of the world’s data is processed by 
COBOL, that nine out of 10 ATM transactions 
are done using COBOL with thirty billion on-
line COBOL transactions processed daily. 

This volume of COBOL based software is sig-
nificant considering that the programs were 
written 10, 20, 30, or more years ago and 
the programmers that wrote and maintained 
them are retiring (Evelyn, 2002). 

 The loss of experienced COBOL program-
mers to retirement is compounded by the 

fact that only a few colleges offer courses 
and programs with COBOL skills (Mitchell, 
2006b). Mitchell (2006b) estimates that the 
COBOL software base will grow “3% to 5% 
annually through 2010,” but mostly from 
maintenance of the COBOL code. 

Since the prognosis is a significant reduction 

in COBOL proficient programmers, there 
must be alternatives to COBOL development. 

One alternative would be to replace existing 
COBOL programs with programs written in 
more current languages. This is not feasible 

in the short-term given the amount of exist-
ing COBOL code. Instead of replacing this 
large software base, alternatives to extend-
ing the life of the code should be considered 
(Coyle, 2001) (Evelyn, 2002).  Provision 
should be provided for enhancements with-
out touching the mostly stable COBOL code 

(Mitchell, 2006b). Haney (2005) presented a 
way to wrap the legacy COBOL code with an 
objected-oriented COBOL proxy that could 
be called from a C# program or any other 
programming language written in a Microsoft 
.NET environment. Another way is to mini-
mally modify the legacy COBOL by making it 

a web service that can be called from cur-
rent environments including Windows and 
web browser based software. 

The advantage of converting the legacy CO-
BOL to web services is that standards for 
web services are provided (Evelyn, 2002) 

which allow components to be developed 
that can communicate over the Internet 
without worrying about the operating system 

c© 2009 EDSIG http://isedj.org/7/28/ April 16, 2009



ISEDJ 7 (28) VanLengen and Haney 4

or programming language (Micro, 2001). 
Other technologies such as, Common Object 
Request Broker Architecture (CORBA), En-
terprise Java Beans (EJB), or the Distributed 

Component Object Module (DCOM), are 
code-centric and in some cases operating 
system dependent (Coyle, 2001).  XML-
based web services allow a web service on 
one server to be executed from an applica-
tion on the same or a different server by 
sending an XML message using standard 

HTTP (Coyle, 2001). The SOAP messages, 
which are XML documents, are carried as 
HTTP requests and responses and can be 
used across organization firewalls (Micro, 
2001). Another XML document is the Web 
Service Description Language (WSDL) file. 

This document lays out the contract between 
the web service and the client, by exposing 
the methods as services and defining data 
parameters (Micro, 2001). 

Converting the legacy COBOL into web ser-
vices can also be part of a service-oriented 
architecture (SOA) strategy for an organiza-

tion where the interface is exposed and new 
developers are insulated from the COBOL 
code (Mitchell, 2006a). Kanter and Muscarel-
lo (2005) conducted a study on effective 
ways to web-enable mission-critical legacy 
systems. They compared the adaptation of 
legacy COBOL systems using Fujitsu Soft-

ware migration tool and a full rewrite of the 
legacy system using the Java programming 
language.  The migration tool solution re-
quired “less than 3% of the time needed to 
rewrite the application in JAVA” (Kanter & 
Muscarello, 2005). 

Figure 1 presents an overview of an example 
COBOL web service.  The COBOL web ser-
vice contains the legacy program, which per-
forms an update of an indexed sequential 
master file using a sequential transaction 
data file.  An object-oriented COBOL proxy 
program, within the web service, acts as an 

interface between the legacy program and 
the client program (Haney, 2005).  The 
transference of data is through the Data Ob-
ject class.  The client references the web 
service. 

This example demonstrates how to create a 
web service using a legacy COBOL program, 

and then consume the web service using a 
COBOL, Windows, and web application 
client.  Modifications of the legacy program, 
other than changes to enable interfacing for 

the web service, are outside the scope of 
this study. 

 

Figure 1.  System Overview 

2. THE LEGACY PROGRAM 

Some modifications must be made to the 
legacy program in order to interface properly 
within the web service.  A linkage section 
must be added to communicate between the 
legacy program and the proxy class within 
the web service.  The Procedure Division 

statement must be modified to reference the 
linage section.  The Stop Run statement is 
replaced with an Exit Program statement.  At 
the beginning of the program values being 
sent to the legacy program must be moved 
from the linkage section.  At the end of the 

program logic, values being passed from the 
legacy program are placed into the linkage 
section. 

Linkage Section. 
01 lnk-FileName Pic X(80). 

01 lnk-addCount Pic 9(6). 

01 lnk-chgCount Pic 9(6). 

01 lnk-delCount Pic 9(6). 

01 lnk-txtMessage Pic x(50). 

 

Procedure Division using lnk-FileName 

 lnk-addcount 

 lnk-chgCount 

 lnk-delCount 

 lnk-txtMessage. 

Figure 2. Legacy Program 

3. DEVELOPMENT ENVIRONMENT 

The following tools were used in this project: 
Microsoft Visual Studio .NET 2003, ASP.NET, 
IIS, and Micro Focus Net Express®. Net Ex-

press was used to develop the web service 
containing the legacy COBOL program and 

c© 2009 EDSIG http://isedj.org/7/28/ April 16, 2009



ISEDJ 7 (28) VanLengen and Haney 5

also to generate the COBOL client. The lega-
cy COBOL code can be found in the refer-
ence for Haney (2005). 

Creating the Web Service Using 

Micro Focus Net Express 

The first step is to create a Net Express 
project with the legacy COBOL program, 
cblUpdate.cbl. Once the project is created, 
an interface is created using the Service In-

terface to map the legacy COBOL as a web 
service using the current project and speci-
fying the name of the COBOL source file 
(cblUpdate.cbl). Using the Default Mapping 
option of the Interface Mapper map the CO-
BOL data types from the legacy COBOL pro-

gram into XML. Figure 3 shows that the In-
terface Mapper generates an input and an 
output for each of the data fields from the 
COBOL program. The COBOL data fields are 
shown on the left side of the dialog and the 
operation CBLUPDATE along with the “Inter-
face Fields” on the right side of the dialog. 

 

Figure 3. Interface Mapper 

From the Interface Mapper it is possible to 

modify the default mappings. Operations can 
be added, changed, or deleted along with 
interface fields, Reusable Mappings, and 
Preset COBOL Values. 

In this example, the name of the transaction 
file is sent to the web service and it returns 

to the client the counts of records added, 
changed, and deleted along with a message. 
The “Input” fields for addcount, chgcount, 
and delcount and the “Output” field for file-
name are deleted. Once editing of the inter-
face is completed the service is ready for 
deployment. 

The web service is deployed using the Micro 
Focus enterprise server. The first step is to 
configure and start the Enterprise Server 
Administration tool. Figure 4 illustrates that 

the server administration tool runs in a web 
browser so that the administration functions 
can be performed from any location of an 
enterprise. 

 

Figure 4. Enterprise Server Administration 
Tool 

In this example the default configuration 
named ESDEMO is used. In Figure 4, under 
current status, started is indicated directly 
above the Details button. If the server is not 
currently running the button will be labeled 

Start instead of Details. By clicking on the 
“Start” button the server is started and the 
browser will appear similar to that shown 
above. 

Next, the deployment settings of the service 
are set.  This is accomplished using Net Ex-

press Service Interfaces and selecting the 
mapping file that is generated when per-
forming the mapping, CobolServer.mpr.  
During this process the enterprise server 
(ESDEMO) is selected, and the enterprise 
server run-time environment is enabled.  
The application files needed for deployment 

are identified, along with two other files that 
are generated as part of the mapping, 
cblUpdate.idy and cblUpdate.int. cblUp-
date.int is the executable file and cblUp-
date.idy is required for debugging. 

The web service is now ready for deploy-
ment by making sure the service, Cobol-

Server.mpr, is selected and then clicking 
Service > Deploy. Several files are created 
during this process. CobolService.wsdl is an 
important file when creating clients.  This 
file, which provides for interaction with the 
web service, is what defines the web service. 

The top part of the file is shown in the ap-
pendix (Figure 6. CobolService.WSDL file). 
Notice the definitions of CBLUPDATEInput 
and CBLUPDATEOutput. These are created 
based on the interface mapping. The WSDL 

c© 2009 EDSIG http://isedj.org/7/28/ April 16, 2009



ISEDJ 7 (28) VanLengen and Haney 6

is the file that is used when the client is 
created. 

 

Figure 5. Deployment Settings 

Figure 6: see appendix 

4. THE COBOL CLIENT 

The next step creates the COBOL client. 
Again using Net Express, a simple COBOL 

client is created to interact with the web 
service. Net Express allows the generation of 
a client directly from the mapping or from 
the WSDL file. Either way it generates the 
same files. In this example the WSDL file is 
used. 

 

Figure 7. Create COBOL Client 

A wizard window opens where the WSDL file 
is selected from the web service deploy-
ment. Net Express generates a simple client 
interface program and executes it as shown 
below. 

 

Figure 8. Client generated using Net Express 
and executed with theMicro Focus Enterprise 

Server 

5. THE WINDOWS CLIENT 

WRITTEN IN C# 

Next, using Visual Studio .NET, ASP.NET, 
and IIS a Windows client written in C# is 

created.  Also a web browser based client 
written in C# can be written. The IIS admin-
istration tool is used to create a virtual di-
rectory for the web server pointing to the 
physical directory where the .wsdl file for the 
web service was located. In this way the 
.wsdl file can be located from within Visual 

Studio .NET. 

 

Figure 9. Visual Studio Dialog 
with the Windows UI 

Using Visual Studio .NET a new project 
named COBOLWSClient is created as a Visu-
al C# Windows application. The user inter-
face allows the user to click a button to dis-

play the basic Windows file dialog to select 
the transaction file. Once the transaction file 
is selected the “Update” button to call the 
legacy web service is clicked.  This calls the 
web service and passes the name of the 
transaction file to the web service. After the 

c© 2009 EDSIG http://isedj.org/7/28/ April 16, 2009



ISEDJ 7 (28) VanLengen and Haney 7

update is competed, counts for records add-
ed, changed, and deleted along with a com-
pletion message are returned from the web 
service to the client program. 

Before completing the code, to call the web 
service, a web reference must be added. 
This is accomplished by right-clicking on the 
project name in the Solution explorer, and 
then clicking on the Add Web Reference op-
tion. This brings up the following dialog 
showing the available web services. In this 

example, the Web Services on the Local Ma-
chine is selected. 

 

Figure 10. Add Web Reference Dialog 

From the list of services presented the web 
service is selected, which brings up the fol-

lowing dialog. Notice the URL is for the .wsdl 
file. The web service is added into the 
project by clicking on the Add Reference 
button. 

 

Figure 11.  Add Web Reference Showing the 
Web Service 

With the web reference included in the Visu-
al Studio .NET project the IntelliSense fea-

ture of Visual Studio .NET provides access to 
the properties, methods, and data parame-
ters of the web service class, to assist in 
writing the code. Figure 12 illustrates the 

code that executes when the user clicks on 
the Update button. cblUpdateServ is the 
name of the Web service and CBLUPDATE is 
the method called. The file name is passed 
from the client to the web service and the 
client receives back the counts for added, 
changed, and deleted along with an update 

message. 

 

Figure 12.  C# Client Code 

To execute and test the Windows C# client, 
the Enterprise Server must be running. If 
the server is not running it can be started as 
shown under the COBOL client example 

shown previously. 

 

Figure 13.  Results from Execution of the 

Windows Client 

c© 2009 EDSIG http://isedj.org/7/28/ April 16, 2009



ISEDJ 7 (28) VanLengen and Haney 8

6. THE WEB CLIENT 

WRITTEN IN C# 

For developing a client for a web application 
a new Visual C# project is created using the 
ASP.NET Web Application Template.  In this 
example the project is named Web-
ClientCBLUpdate.  In this example the de-
fault WebForm1.aspx page is used for the 
client. Normally this page would be renamed 

or removed and a new page added with a 
more meaningful name. A user interface is 
created that is similar to the Windows inter-
face presented previously. Modifications 
must be made for the selection of the trans-
action file since the file commands for Win-

dows are different from those used in the 
web environment. A web reference is added 
the same way as for the Windows client. The 
C# code that is executed when the “Update” 
button is clicked is basically the same as 
that used for the Windows client. 

 

Figure 14.  Visual Studio showing the Web  
Application Client 

 

Figure 15.  Verification that the Enterprise 
Server is running. 

As in the case of the Windows Client, prior to 

executing and testing the web client, it must 
be verified that the Micro Focus Enterprise 
Server is running. 

The web project is built and the web applica-
tion is then viewed in a web browser. This is 
accomplished by clicking on the “Browse” 
button to locate the file.  This process uti-

lized the file dialog box. 

 

Figure 16.  File Dialog for selecting the 

transaction file 

Once the file is selected and the “Open” but-
ton is selected the window shown in Figure 
17 appears. 

 

Figure 17.  Web Browser Interface showing 
the Update Interface 

Clicking on the “Update” button executes the 

Client program and produces the following 
results in the web browser. 

This example has demonstrated the process 
of creating a web service written in COBOL 
for the .NET environment.  The functionality 
of the legacy COBOL program, within the 

web service, updates an Indexed Sequential 
master file.  The consumer of the web ser-
vice is a client written in COBOL, and repli-
cated in both a Windows and a web applica-
tion.  Modification of the functionality of the 
legacy program is not addressed in this 
study. 

c© 2009 EDSIG http://isedj.org/7/28/ April 16, 2009



ISEDJ 7 (28) VanLengen and Haney 9

 

Figure 18.  Web Browser Interface showing 
the Results 

7. CONCLUSION 

By creating web services, organizations will 
be able to extend the life of their COBOL 
software investment while providing a con-
temporary interface for the legacy software. 
The “exposed” web services will then be 
available to be “consumed” by various appli-

cation clients. 

The billions of lines of COBOL code that exist 
in these legacy programs, primarily in finan-
cial institutions, will remain for some time.  
However, the retirement of COBOL pro-
grammers will generate a skill vacuum of 
legacy COBOL programmers.  This study has 

addressed this concern in one area, that of 
placing legacy COBOL programs into web 
services.  The ongoing maintenance is 
another concern that this study did not ad-
dress specifically.  However, the placement 
of legacy programs into web services has an 
implied reference to the need for current 

functionality of the legacy programs. 

The combination of skills to maintain legacy 
programs, develop web services from     
COBOL programs, and develop Client pro-
grams to use the web services is necessary.  
This study has focused on one aspect of the 

overall skill package.   A focus on the devel-
opment of building web services and the 
client programs that reference them can be 
part of the curriculum.  This can be accom-
plished by either a required or elective 
course that also provides some exposure to 
the COBOL code that exists in the legacy 

programs. 

8. REFERENCES 

Coyle, F. P. (2001) “Breathing Life into Leg-
acy,” September/October 2001, retrieved 

April 25, 2006, 
http://www.cobolportal.com/resources/ar
ticles/20010910_001.asp?bhcp=1. 

Evelyn, R. (2002) “COBOL’s Revenge: When 
Programs Outlive the Programmers,” re-
trieved May 19, 2006, 
http://www.devx.com/devx/editorial/163

57. 

Haney, J. D. (2005) “Running Legacy COBOL 
Programs by Proxy with COBOL.NET.”  
Information Systems Education Journal.  
Volume 4, Number 28.  July 2006.  
ISSN: 1545-679x.  

http://isedj.org/4/28/index.html 

Kanter, H. A. & Muscarello, T. J. (2005) 
“Reuse versus Rewrite: An Empirical 
Study of Alternative Software Develop-
ment Methods for Web-enabling Mission-
critical COBOL/CICS Legacy Applications,” 
retrieved May 30, 2006, 

http://www.adtools.com/info/whitepaper/
Reuse-vs-Rewrite_final.pdf. 

Micro Focus (2003) “MICRO FOCUS NET EX-
PRESS® GETTING STARTED,” Issue 1, 
October 2003. 

Micro Focus (2001) “Web Services and Micro 
Focus COBOL," retrieved April 25, 2006, 

http://www.microfocus.com/files/whitepa
pers/webservices2.pdf. 

Mitchell, R. L. (2006a) “Rebuilding the lega-
cy – modernizing mainframe code,” re-
trieved April 25, 2006, 
http://www.computerworld.com/action/ar

ticle.do?command=viewArticleBasic&artic
leId=110717. 

Mitchell, R. L. (2006b) “The Cobol brain 
drain,” retrieved April 25, 2006, 
http://www.computerworld.com/software
top-
ics/software/story/0,10801,110716,00.ht

ml?source=NLT_APP&nid=110716. 

 

c© 2009 EDSIG http://isedj.org/7/28/ April 16, 2009



ISEDJ 7 (28) VanLengen and Haney 10

APPENDIX: FIGURE 6. COBOLSERVICE.WSDL FILE 
 

- <!--  

 Micro Focus NetExpress 4.0 auto-generated WSDL document 

  -->  
- <types> 
  <schema elementFormDefault="qualified" targetNames-
pace="http://tempuri.org/cblUpdateServ" 
xmlns="http://www.w3.org/2001/XMLSchema" xmlns:SOAP-
ENC="http://schemas.xmlsoap.org/soap/encoding/" 
xmlns:tns="http://tempuri.org/cblUpdateServ" />  
  </types> 
- <message name="CBLUPDATEInput"> 
  <part name="lnk_filename_in" type="xs:string" />  
  </message> 
- <message name="CBLUPDATEOutput"> 
  <part name="lnk_addcount_out" type="xs:int" />  
  <part name="lnk_chgcount_out" type="xs:int" />  
  <part name="lnk_delcount_out" type="xs:int" />  
  <part name="lnk_txtmessage_out" type="xs:string" />  
  </message> 
- <portType name="cblUpdateServ"> 
- <operation name="CBLUPDATE"> 
  <input message="tns:CBLUPDATEInput" />  
  <output message="tns:CBLUPDATEOutput" />  
  </operation> 
  </portType> 
- <binding name="cblUpdateServ" type="tns:cblUpdateServ"> 
  <soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http" />  
- <operation name="CBLUPDATE"> 
  <soap:operation soapAction="" />  
    <portType name="CobolService"> 

      <operation name="CBLUPDATE"> 

        <input message="tns:CBLUPDATEInput"/> 

        <output message="tns:CBLUPDATEOutput"/> 

      </operation> 

    </portType> 

    <binding name="CobolService" type="tns:CobolService"> 

      <soap:binding style="rpc" trans-

port="http://schemas.xmlsoap.org/soap/http"/> 

      <operation name="CBLUPDATE"> 

        <soap:operation soapAction=""/> 

        <input> 

          <soap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" 

namespace="http://tempuri.org/CobolService" use="encoded"/> 

        </input> 

        <output> 

          <soap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" 

namespace="http://tempuri.org/CobolService" use="encoded"/> 

        </output> 

      </operation> 

    </binding> 

    <service name="CobolService"> 

      <port binding="tns:CobolService" name="CobolService"> 

        <soap:address location="http://localhost:9003"/> 

      </port> 

    </service> 

  </definitions> 

c© 2009 EDSIG http://isedj.org/7/28/ April 16, 2009


