
Volume 7, Number 10 http://isedj.org/7/10/ March 20, 2009

In this issue:

MTSolution: A Visual and Interactive Tool for a Formal Languages and
Automata Course

Mariano Mart́ınez Rosana Barbuzza
Universidad Nacional Centro Pcia Buenos Aires Universidad Nacional Centro Pcia Buenos Aires

(7000) Tandil, Buenos Aires, Argentina (7000) Tandil, Buenos Aires, Argentina

Maŕıa Virginia Mauco Liliana Favre
Universidad Nacional Centro Pcia Buenos Aires Universidad Nacional Centro Pcia Buenos Aires

(7000) Tandil, Buenos Aires, Argentina (7000) Tandil, Buenos Aires, Argentina

Abstract: There is a need to introduce Information Systems students to advances in languages
and automata theory in the early stages of their formation. Visualization and interactivity allow
students to play an active role in the learning process, experimenting with the concepts to receive
feedback. For this purpose, we propose MTSolution, an educational, visual and interactive soft-
ware tool that allows teachers and students to experiment with different kinds of abstract models
(automata, grammars and regular expressions). With this tool, students can improve their under-
standing and self-evaluate their own skills designing and testing models. In particular, MTSolution
supports the concept of sub-machine providing a library of Turing machines that can be reused
in modular designs. MTSolution is based on a client-server architecture and it is implemented in
Microsoft Visual C++.NET.

Keywords: Software tool, Automata, Turing Machine, Grammars, Formal Languages

Recommended Citation: Mart́ınez, Barbuzza, Mauco, and Favre (2009). MTSolution: A Visual
and Interactive Tool for a Formal Languages and Automata Course. Information Systems
Education Journal, 7 (10). http://isedj.org/7/10/. ISSN: 1545-679X. (Preliminary version appears
in The Proceedings of ISECON 2007: §3722. ISSN: 1542-7382.)

This issue is on the Internet at http://isedj.org/7/10/



ISEDJ 7 (10) Information Systems Education Journal 2

The Information Systems Education Journal (ISEDJ) is a peer-reviewed academic journal
published by the Education Special Interest Group (EDSIG) of the Association of Information
Technology Professionals (AITP, Chicago, Illinois). • ISSN: 1545-679X. • First issue: 8 Sep 2003.
• Title: Information Systems Education Journal. Variants: IS Education Journal; ISEDJ. • Phys-
ical format: online. • Publishing frequency: irregular; as each article is approved, it is published
immediately and constitutes a complete separate issue of the current volume. • Single issue price:
free. • Subscription address: subscribe@isedj.org. • Subscription price: free. • Electronic access:
http://isedj.org/ • Contact person: Don Colton (editor@isedj.org)

2009 AITP Education Special Interest Group Board of Directors

Don Colton
Brigham Young Univ Hawaii
EDSIG President 2007-2008

Thomas N. Janicki
Univ NC Wilmington
EDSIG President 2009

Kenneth A. Grant
Ryerson University
Vice President 2009

Kathleen M. Kelm
Edgewood College

Treasurer 2009

Wendy Ceccucci
Quinnipiac Univ
Secretary 2009

Alan R. Peslak
Penn State

Membership 2009
CONISAR Chair 2009

Steve Reames
Angelo State Univ
Director 2008-2009

Michael A. Smith
High Point

Director 2009

George S. Nezlek
Grand Valley State
Director 2009-2010

Patricia Sendall
Merrimack College
Director 2009-2010

Li-Jen Shannon
Sam Houston State
Director 2009-2010

Albert L. Harris
Appalachian St

JISE Editor

Paul M. Leidig
Grand Valley State University

ISECON Chair 2009

Information Systems Education Journal Editors

Don Colton
Brigham Young University Hawaii

Editor

Thomas N. Janicki
Univ of North Carolina Wilmington

Associate Editor

Information Systems Education Journal 2007-2008 Editorial Review Board

Sharen Bakke, Cleveland St
Alan T. Burns, DePaul Univ
Wendy Ceccucci, Quinnipiac U
Janet Helwig, Dominican Univ
Scott Hunsinger, Appalachian
Kamal Kakish, Lawrence Tech
Sam Lee, Texas State Univ
Paul Leidig, Grand Valley St
Terri L. Lenox, Westminster

Anene L. Nnolim, Lawrence Tech
Alan R. Peslak, Penn State

Doncho Petkov, E Connecticut
James Pomykalski, Susquehanna

Steve Reames, Angelo State
Samuel Sambasivam, Azusa Pac
Bruce M. Saulnier, Quinnipiac
Patricia Sendall, Merrimack C

Li-Jen Shannon, Sam Houston St
Michael A. Smith, High Point U
Robert Sweeney, South Alabama

Stuart A. Varden, Pace Univ
Judith Vogel, Richard Stockton

Bruce A. White, Quinnipiac Univ
Belle S. Woodward, S Illinois U

Charles Woratschek, Robert Morris
Peter Y. Wu, Robert Morris Univ

EDSIG activities include the publication of ISEDJ and JISAR, the organization and execution of
the annual ISECON and CONISAR conferences held each fall, the publication of the Journal of
Information Systems Education (JISE), and the designation and honoring of an IS Educator of the
Year. • The Foundation for Information Technology Education has been the key sponsor of ISECON
over the years. • The Association for Information Technology Professionals (AITP) provides the
corporate umbrella under which EDSIG operates.

c© Copyright 2009 EDSIG. In the spirit of academic freedom, permission is granted to make and
distribute unlimited copies of this issue in its PDF or printed form, so long as the entire document
is presented, and it is not modified in any substantial way.

c© 2009 EDSIG http://isedj.org/7/10/ March 20, 2009



ISEDJ 7 (10) Mart́ınez, Barbuzza, Mauco, and Favre 3

MTSolution: A Visual and Interactive Tool for a 
Formal Languages and Automata Course 

Mariano Martínez 
mmartine@exa.unicen.edu.ar 

Rosana Barbuzza 
rbarbu@exa.unicen.edu.ar 

PLADEMA - ISISTAN 

María Virginia Mauco 
vmauco@exa.unicen.edu.ar 

INTIA 

Liliana Favre 
lfavre@exa.unicen.edu.ar 

CIC 

Departamento de Computación y Sistemas 
Facultad Cs. Exactas 

Universidad Nacional del Centro de la Pcia. de Buenos Aires 
(7000)  Tandil, Buenos Aires, Argentina 

Abstract 

There is a need to introduce Information Systems students to advances in languages and au-
tomata theory in the early stages of their formation. Visualization and interactivity allow stu-
dents to play an active role in the learning process, experimenting with the concepts to re-
ceive feedback. For this purpose, we propose MTSolution, an educational, visual and interac-
tive software tool that allows teachers and students to experiment with different kinds of ab-
stract models (automata, grammars and regular expressions).  With this tool, students can 
improve their understanding and self-evaluate their own skills designing and testing models. 
In particular, MTSolution supports the concept of sub-machine providing a library of Turing 
machines that can be reused in modular designs. MTSolution is based on a client-server archi-
tecture and it is implemented in Microsoft Visual C++.NET. 

Keywords: software tools, Automata, Turing Machine, grammars, formal languages 
 

1.  INTRODUCTION 

The emergence of new tools, techniques and 
paradigms forces a continuous re-evaluation 
of the topics covered and teaching-learning 
didactic strategies used in IS educational 
curricula (Armoni, 2006; Chesñevar, 2004). 
Modern IS students should understand the 
basis for IS modeling as well as the prag-

matical implications of impossibility and in-
tractability results. 

With the growth in volume of online data, for 
example in databases and on the Internet, 
the focus of research in information retrieval 
has shifted to new applications in information 
management and decision support that de-
mands asymptotically efficient algorithms. 
Activities such as Data Mining, Data Ware-

c© 2009 EDSIG http://isedj.org/7/10/ March 20, 2009



ISEDJ 7 (10) Mart́ınez, Barbuzza, Mauco, and Favre 4

housing, Latent Semantic Indexing, and On 
Line Processing create new directions for 
research in combinatorial algorithms, mod-
els, complexity and computability. In addi-
tion, modeling languages such as the Busi-
ness Process Modeling Notation (BPMN), the 
Unified Modeling Language (UML), and the 
Business Process Execution Language (BPEL) 
are based on concepts from automata the-
ory. Modeling behavior among components 
in UML requires designing interaction dia-
grams, state diagrams, or activity diagrams 
which are all based on automata theory. 
Other applications are related to modeling of 
concurrency and synchronization of proc-
esses, and cellular automata, among others. 

The Undergraduate Degree Program in Sys-
tems Engineering in our career has incorpo-
rated, since 1996, "Computer Science I" as 
an introductory course in the theory of for-
mal languages and automata (FLA) (Favre, 
2000). The main purpose of this course is to 
present an introduction to the study of com-
putational processes and to explore their 
scope in the context of an automata and 
grammar hierarchy, with a suitable approach 
for first-year undergraduate students. The 
intention is to provide insights on essential 
questions about the nature of computation: 
What is an algorithm? What can be com-
puted? When is a given algorithm intracta-
ble? 

At first, as happened with traditional FLA 
courses, we used lectures and pencil-paper 
problem solving approach to teach course 
contents. From our teaching experiences, we 
noticed that students were not as motivated 
and interested as in programming courses, 
though they could understand the concepts. 
Then, we considered the inclusion of a soft-
ware tool to experiment with FLA concepts, 
as interactivity and visualization are keys to 
motivate and improve understanding. Sev-
eral tools have been developed for experi-
menting with automata and grammars, and 
most of them are freely available via the 
Internet. However, almost all have been 
designed as tools for more advanced stu-
dents (Rodger, 2004) or to cover a subset of 
FLA concepts (Barwise, 2005; Grinder, 2003; 
Forlan Project, 2007; White, 2006). 

We then developed MTSolution, an educa-
tional, visual and interactive tool that can be 
used as an aid in learning the basic concepts 
of FLA theory and consolidating knowledge 

inside and outside classroom. This tool inte-
grates automata and grammars with an ap-
propriate approach for first-year under-
graduate students, who have a wide diversity 
of theoretical background and prior comput-
ing experience. 

In this paper, we describe the architecture 
and functionality of MTSolution. MTSolution 
design differs from previously mentioned 
tools in that it is based on a client-server 
architecture, thus allowing students to prac-
tice either on a single computer for home-
work assignments, or in a network environ-
ment for computer labs. MTSolution allows 
one to define and manipulate different kinds 
of abstract models such as automata, regular 
expressions and grammars. It may be used 
to design and simulate deterministic and 
non-deterministic versions of finite automata 
(FA), pushdown automata (PDA) and Turing 
machines (TM). MTSolution also supports the 
concept of sub-machine providing a library of 
TM that can be reused in modular designs, 
thus linking and emphasizing crucial con-
cepts of software reuse and modularity. 

MTSolution has been used along the course 
and it has proven to be a motivating link 
between theory and practice, covering most 
of FLA concepts. The tool is easy to download 
and install, and it is available in (Martínez, 
2007), in Spanish and English. This web site 
also contains a full description of the tool as 
well as step-by-step development of some 
examples. 

This paper is structured as follows. Section 2 
describes the architecture and components 
of MTSolution, exemplifying FA, PDA, TM, 
and grammars. In Section 3, we present the 
evaluation of the use of MTSolution in a FLA 
course. Finally, conclusions and future work 
are mentioned in Section 4. 

2.  MTSOLUTION 

MTSolution is an educational, visual and in-
teractive tool based on a client-server archi-
tecture that can be used as an aid in learning 
the basic concepts of FLA theory. Working in 
a didactic, visual, interactive, more intuitive 
and friendly environment users can design, 
debug and run different types of determinis-
tic and non deterministic finite state ma-
chines (FSM), recognizers or transducers, 
and experiment with grammars and regular 
expressions (RE). With MTSolution users can 

c© 2009 EDSIG http://isedj.org/7/10/ March 20, 2009



ISEDJ 7 (10) Mart́ınez, Barbuzza, Mauco, and Favre 5

create FA, PDA, and multi-tape composite TM 
and execute them on arbitrary input strings, 
in continuous or step-by-step mode, receiv-
ing immediate visual feedback. They can also 
work with RE, regular (RG), context-free 
(CFG) and context-sensitive (CSG) gram-
mars randomly showing strings they derive 
or deciding if a particular string may be de-
rived by the grammar or not. In addition, 
MTSolution assists users in the conversion of 
FA, RE and RG between each other. 

Architecture 

MTSolution is based on a client-server soft-
ware architecture. Clients and servers may 
be placed independently on computers in a 
network, possibly on different hardware and 
operating systems. Generally, clients rely on 
servers for resources or processing power (in 
our case, fast server and workstations or 
PC's for students). However, in MTSolution a 
single computer can be both a client and a 
server depending on the software configura-
tion. Thus, MTsolution can be used either to 
practice with a single computer for home-
work assignments or to assist in classrooms 
in a network environment. 

MTSolution server executes FSM and simu-
lates parsing and generation of strings as 
requested by clients, while clients interpret 
the results returned by the server. Basically, 
this model allows the separation of function-
alities for string recognition and user inter-
face, encouraging incremental and easier 
development and testing, and better main-
tainability of client and server modules. By 
providing a protocol of communication be-
tween client-server modules, it is possible to 
design FSM editors in different platforms, 
and languages, among others.  

Figure 1 describes the architecture of MTSo-
lution. MTServer is the application server; its 
main functions are the simulation of FSM 
execution and string parsing and generation. 
Before execution, MTServer transforms each 
FSM into a TM. MTEditor is the FSM editor 
and it allows creating, saving, and recovering 
recognizer or transducer FA, PDA and TM. It 
contains several special algorithms to work 
with regular languages (RL). In addition, to 
design transition diagrams for FA and PDA, 
we used the framework Unidraw (Vlissides, 
2007) which offers many facilities to create 
graphical editors. 

 

Figure 1 - MTSolution architecture 

Gramatika is the editor of grammars. It pro-
vides functions for editing, saving and recov-
ering definitions of RG, CFG, and CSG (ac-
cording to Chomsky hierarchy). It also has 
some special algorithms to transform RG into 
FA. Besides, it allows the random derivation 
of strings in the language of the grammar or 
the verification of membership of a string to 
the grammar language. 

AFTools is a Dynamic Linking Library (DLL) 
which contains common and reusable com-
ponents and functions for the different MTSo-
lution applications. 

Main features of MTSolution 

The following are some of the features that 
make MTSolution a helpful tool for teachers 
and students, especially for beginner CS 
students: 

Formal definition of abstract models: 
MTSolution encourages students to under-
stand the importance of formalism. For ex-
ample, when designing automata or gram-
mars the first step is the definition of the 
alphabets to be used. In addition, the tool 
automatically completes, updates and shows 
the formal definition of FA, PDA, and TM 
throughout their creation or modification 
process. It also shows error messages when 
it detects an invalid situation, e.g. when try-
ing to define two initial states for a FA or 
using the same symbol as terminal and non-
terminal in the definition of a grammar. 

Step-by step visualization of conversion 

algorithms: MTSolution shows the step-by-
step execution of the algorithms to transform 
FA into RE or RG, RE into FA, NDFA into DFA, 
DFA into DFA with minimal states, allowing in 
some cases user's intervention. For example, 

c© 2009 EDSIG http://isedj.org/7/10/ March 20, 2009



ISEDJ 7 (10) Mart́ınez, Barbuzza, Mauco, and Favre 6

when converting a FA into a RE the student 
may choose, in each step, the state to re-
move, thus helping students to check the 
result previously obtained using pencil and 
paper with the solution provided by the tool. 

Definition of Transducers: The inclusion of 
these kinds of machines that produce an 
output associated with an input, helps to 
show several concrete applications that can 
be modeled with FA, PDA and MT, thus moti-
vating students to learn and use abstract 
models. For example, using MTSolution stu-
dents may solve exercises such as substitut-
ing each occurrence of two or more blanks in 
a text file with a single blank, adding two 
binary-coded natural numbers, calculating 
the number of occurrences of a given string 
in a text file or modeling a vending machine 
which dispenses candy bars or drinks, among 
others.  

Composite parameterized multi-tape 

TM: The natural way to construct a complex 
TM is to start from simpler and more reus-
able ones, as happens when developing a 
complex program. MTSolution provides facili-
ties to compose TM. This way of designing 
TM allows us to emphasize the important and 
recurring concepts of abstraction, reusability 
and modular design introduced in program-
ming courses. 

Step-by step execution of machines: 
Recognizers and transducers FA, PDA and TM 
may be run at full speed or in a step-by-step 
mode. The last option allows users to step 
through transitions one at a time, highlight-
ing the current transition and showing the 
input string already scanned. In this way of 
execution, the instantaneous description of 
the machine is shown, giving users the pos-
sibility of following exhaustively the recogni-
tion process of a string. This helps users to 
better understand the machine behavior, 
thus detecting and correcting errors. 

Facilities for simulation and definition: 
Input strings to test machines or grammars 
may be provided interactively or may be 
loaded from a text file. Both possibilities are 
also available for definition of alphabets (in-
put, stack, tape). This allows one not only to 
reuse alphabet definitions but also to provide 
students a set of input strings to test cor-
rectness of machines and grammars. 

Informative error messages: When MTSo-
lution detects a mistake, it shows an appro-

priate error message connecting the theo-
retical concepts with the concrete problem in 
order to guide students in correcting the 
error. This is mainly important when stu-
dents are working on their own and do not 
have a real teacher to assist them. 

Random generation of strings: In contrast 
with traditional parsing, which given an input 
string and a grammar tries to decide if the 
string is in the language of the grammar or 
not, this functionality shows grammars as 
generative devices. Taking as input a gram-
mar and a length, MTSolution randomly gen-
erates strings, no longer than length, that 
belong to the language of the grammar. For 
each generated string, it shows the corre-
sponding derivation and the productions 
used. 

 

Figure 2 – File option in MTEditor menu 

MTEditor 

MTEditor, the automata editor, is basically 
composed by a main panel, a menu bar and 
toolbars that allow users to easily edit, save, 
recover and run FA, PDA and TM (Figure 2). 
Recognizer or transducer FA or PDA can be 
created on a simple canvas, by drawing 
states and transitions at chosen locations. 
Multi-tape and composite TM can be defined 
by giving the transition table. FA, PDA and 

c© 2009 EDSIG http://isedj.org/7/10/ March 20, 2009



ISEDJ 7 (10) Mart́ınez, Barbuzza, Mauco, and Favre 7

TM may be run with arbitrary input strings in 
order to answer if the string is accepted or 
not by them, in case of a recognizer one, or 
to return the corresponding output string, if 
executing a transducer. The automata de-
sign, editing and executing interface is mod-
ern, simple, intuitive, friendly, and easy to 
understand and use. 

MTEditor also contains algorithms to perform 
the following transformations: non determi-
nistic finite automata with ε-transitions 
(NDFA-ε) to non deterministic finite auto-
mata (NDFA), NDFA to deterministic finite 
automata (DFA), DFA to minimal state DFA, 
FA to RE or RG and RE to NDFA-ε.  

Next, we present three examples to illustrate 
FA/PDA design and execution, and composite 
TM definition and simulation. Later, we give 
some examples of the application of the al-
gorithms on FA provided by MTEditor. 

 

Figure 3 - Definition of transitions in PDA 

Finite and Pushdown Automata: To define 
a new FA/PDA the corresponding option from 
the main menu should be selected. First, 
input alphabet should be defined; in case of 
PDA definition, stack alphabet should be also 
specified. Next, states and transitions may 
be added by using a mouse to draw states 
on a scrollable area, clicking and connecting 
states with transitions, and right clicking on 
any component to obtain a context menu to 
modify its properties, such as state name, 
initial or final state, or transition label. Figure 
3 shows how to specify a transition in a PDA. 
The transition table is dynamically built by 
MTSolution and it is available by clicking the 

tabbed pane Table (Figures 10 and 11, Ap-
pendix). 

Once completed the FA/PDA definition, it 
may be executed on an arbitrary input 
string. Figure 10 shows a stepwise execution 
of the FA recognizing the language  
L = {x / x ∈ {a, b}∗ and (x contains sub-
string aa or x contains substring ba)}, given 
the string abaaa. Figure 11 shows a stepwise 
execution of the PDA recognizing, by final 
state, the language L = {anbn / n > 0}, given 
the string aaabbb. For both automata the 
input string may be provided interactively or 
loaded from a text file, and it should be en-
tered in the tabbed pane Tapes which, in 
these cases, allows the definition of only one 
tape, the input tape. MTEditor sends to 
MTServer a request of execution with the 
FA/PDA already defined and the given input 
string.  

For an accepted string, MTServer returns the 
sequence of transitions followed by the 
FA/PDA to recognize the string. Then, MTEdi-
tor uses this transition list to display, for 
example, a step-by-step execution; the cur-
rent transition is highlighted (in Edition and 
Execution panels) as the user goes forward, 
and the symbols of the string already 
scanned are shown in the Execution panel 
(Figures 10 and 11).  In case of PDA execu-
tion, the stack content is also shown.   

Composite Turing Machine: One of the 
main features of MTSolution is the possibility 
to design composite TM by combining sim-
pler ones. Each basic machine may be de-
fined as a parameterized multi-tape TM, with 
parameters passed by reference. We detail 
below the construction of a composite TM to 
add two unary-coded natural numbers (Fig-
ure 12, Appendix). The first number is lo-
cated in tape M, the second one in tape N, 
and the output number is left in tape M+N. 
We use three basic sub-machines. The first 
one (Init.MT) initializes the tape, writing the 
symbol X in a cell and leaving the read/write 
head in the next cell. The second TM, 
Copy.MT, copies the whole content of its first 
parameter tape to the second parameter 
tape. Finally, Back.MT rewinds the parameter 
tape until it finds the symbol X, and then it 
moves right. 

Sub-machines are invoked by the composite 
TM by using an alias name. Figure 4 shows 
how to associate each .MT file with the cor-

c© 2009 EDSIG http://isedj.org/7/10/ March 20, 2009



ISEDJ 7 (10) Mart́ınez, Barbuzza, Mauco, and Favre 8

responding alias. In this example, we use the 
name of each file as alias. 

 

Figure 4 - Definition of alias for TM 

These sub-machines may be used instead of 
a target state in the definition of the com-
posite TM (Figure 12). Each call is defined as 
the symbol "@" followed by the alias name, 
and the parameters. The first one is a return 
state which will be used to perform a return 
to the composite TM in case the sub-machine 
ends in its final state; the second one is also 
a return state but to be used in case the sub-
machine ends in a non final state. The third 
parameter is a list of tape names of the 
composite TM to be used by the sub-
machine. MTSolution includes an assistant to 
guide users in the definition of sub-machine 
calls. 

The composite TM (add.MT) in Figure 12 
proceeds as follows: it calls the sub-machine 
Init.MT to initialize M+N output tape. On 
return, if one of the numbers is greater than 
0, the composite TM goes to state e1, to be-
gin the addition of numbers; in other case, it 
goes to state e3 and finishes. In state e1, if 
number in M is greater than 0, it calls 
Copy.MT sub-machine to add M number to 
M+N tape; the same happens with N number 
if it is greater than 0. In both cases, the re-
turn state is the final state of the composite 
TM (e2). When both numbers are greater 
than 0, the composite TM first adds M num-
ber to M+N output tape, by calling Copy.MT, 
and on return it calls Copy.MT again in order 
to add N number to the M+N output tape. On 
return, it goes to the final state. 

Figure 12 contains the definition and one 
possible execution of the composite TM with 
input numbers 3 and 2 unary-coded, display-
ing the contents of each tape and the current 
position of the read/write head of each tape 
by highlighting the corresponding cell. 

Algorithms: As we had already mentioned, 
MTEditor contains some algorithms that can 
be executed on FA. The option Algorithms, in 
the main menu, gives the possibility of 
choosing the desired transformation to be 
applied to a FA (Figure 5). It is important to 
remark that for all transformations not only 
the final result is shown but also how it was 
obtained, as we explain below. The aim is to 
help students to follow and test their own 
results and the steps performed to get them. 

 

Figure 5 – Algorithms option in FA MTEditor 
menu 

 

Figure 6 – RG derivation from FA 

For a concrete FA only applicable options are 
enabled. For example, for the FA in Figure 10 
the option Deterministic will be disabled be-
cause the FA is already deterministic (Figure 
5). For this FA we can derive automatically a 
RG by choosing Grammar option in the 
Menu. Figure 6 describes all the components 
of the grammar derived, indicating how non 
terminal symbols where associated to FA 

c© 2009 EDSIG http://isedj.org/7/10/ March 20, 2009



ISEDJ 7 (10) Mart́ınez, Barbuzza, Mauco, and Favre 9

states in order to apply the derivation algo-
rithm for RG from FA defined in (Hopcroft, 
2000).  This grammar can be saved in a file 
to be opened and edited later with Gramati-
ka. For the same FA we can also choose to 
minimize it or to obtain a RE describing the 
same language it recognizes. 

 

Figure 7 –Information of minimization algo-
rithm for FA in Figure 10 

In case of minimization, the result for FA in 
Figure 10 is shown in Figure 13 (Appendix) 
while Figure 7 describes the partitions ob-
tained and useless states eliminated based 
on the FA minimization algorithm proposed 
in (Aho, 1986) (A state is useless if it does 
not reach a final state or if it is not reachable 
from the initial state). 

RE derivation is performed by using Thomp-
son´s algorithm (Aho, 1995) and it involves 
user participation.  Users have to choose the 
order in which they want to eliminate states 
until they get a FA with two states: the initial 
and a final one (it may be the case that only 
one state remains, this happens when the 
initial state is also a final one). The applica-
tion of the RE derivation algorithm applied to 
FA from Figure 10 is shown in Figure 14 (Ap-
pendix). 

Gramatika 

Gramatika is the editor of grammars and it 
provides functions for editing, saving and 
recovering definitions of left and right-linear 
RG, CFG, and CSG. During grammar edition, 
the application checks if every typed produc-
tion matches the appropriate production 
pattern for the grammar in construction, 
showing error messages in case of discrep-

ancy. Other functions give the possibility of 
verifying if a given string can be generated 
by the grammar or not, displaying when 
possible the corresponding derivation. Be-
sides, Gramatika may generate, in a random 
way, strings belonging to the language speci-
fied by the grammar which are no longer 
than a length given by the user. 

For RG, Gramatika automatically generates 
the corresponding NDFA, which may be re-
covered from MTEditor to be transformed 
into DFA or RE. 

 

Figure 8 - Derivation of 0100 

 

Figure 9 - Random generation of a string 

We show an example of the definition of a 
right-linear RG for the language:  

c© 2009 EDSIG http://isedj.org/7/10/ March 20, 2009



ISEDJ 7 (10) Mart́ınez, Barbuzza, Mauco, and Favre 10

L = { x / x ∈ {0, 1}∗ and (x contains sub-
string 00 or x contains substring 11)}, using 
Gramatika. The first step is the selection of 
New Right-linear Grammar from the main 
menu. Next, terminal and nonterminal sym-
bols should be defined, also indicating the 
Start Symbol. The last step is the specifica-
tion of the production set (Figure 15, Appen-
dix). 

With a grammar users can verify if an arbi-
trary string could be parsed or not (Figure 8) 
or randomly generate strings to test if the 
grammar only derives strings of the expected 
language (Figure 9). 

3.  EVALUATION 

MTSolution has been successfully class-
tested since last year. It has been used in 
lectures, to introduce for example automata 
design and execution, for homework assign-
ments, and in a computer lab with students 
and teachers working simultaneously on the 
same examples. In the last semester, we 
also used it as a grading tool. We carried out 
an experience with a small group of 20 stu-
dents randomly chosen, making them work 
with MTSolution to solve all the exercises 
involving FA, PDA, and CFG. Each student of 
this group had to use MTSolution in a lab to 
solve the exams given by the teachers to 
grade students understanding of FA, PDA, 
and CFG. For example, students were asked 
to design the automata to recognize lan-
guages like           L = { x / x ∈ {a, b}* and 
x ends in aabaa}, or    L = {e2j hj+1 am dk bp / 
p > m; m>0; k, j ≥ 0}. 

As the students could simulate their auto-
mata and grammar behavior using the tool, 
they could test them to correct errors in their 
designs more easily than the rest of the stu-
dents, which used paper and pencil. As a 
consequence, in the first group 90% of the 
students passed all the exams, while in the 
other only 60% of the students could suc-
ceed. Further evaluation of MTSolution is 
planned as it will be used in class and as a 
grading tool for the all the students. 

Students report positive experiences with its 
use (we have approximately 200 students 
per year). They found MTSolution easy to 
install and very intuitive to use, and so they 
were quite enthusiastic in working with the 
tool on practical exercises. Students also 
appreciated the assistance provided by 

MTSolution to correct mistakes when design-
ing automata or grammars. 

4.  CONCLUSIONS AND FUTURE 

WORK 

MTSolution is a didactic, interactive and easy 
to use educational tool integrated in an un-
dergraduate course in FLA Theory. This 
course is a good starting point to make stu-
dents aware of the basic notions of language 
processing and computational process limita-
tions in the early stages of their formation. 
These topics are addressed in a way that 
emphasizes the reuse of existing TM and the 
modular design. The principles underlying 
MTSolution are abstraction, formality, modu-
larity and reuse. 

MTSolution design is based on a client-server 
architecture. A small server engine interprets 
TM and grammars, returning a result to cli-
ent/s. This software architecture allowed us 
to follow an incremental implementation and 
testing. Besides, maintenance, updating, and 
addition of new components to the tool are 
easier to perform. 

MTSolution was implemented in Microsoft 
Visual C++.NET, thus improving run-time 
performance. 

MTSolution is useful as a classroom aid tool 
either to work in a network environment or 
in an isolated computer. 

Teachers and students considered the tool to 
be easy to teach and learn. In this way, FLA 
concepts remain in the center with the tool 
collaborating as an assistant. 

We continue evaluating, and extending 
MTSolution as an integrated educational tool, 
on the basis of our teaching experience and 
student suggestions. 

We plan to extend the tool to work with clo-
sure properties of regular and context-free 
languages. 

REFERENCES 

Aho, A., Sethi, R., and Ullman, J. (1986) 
Compilers: Principles, Techniques and 
Tools. Addison Wesley. 

Aho, A. and Ullman, J. (1995) Foundations of 
Computer Science, Computer Science 
Press. 

c© 2009 EDSIG http://isedj.org/7/10/ March 20, 2009



ISEDJ 7 (10) Mart́ınez, Barbuzza, Mauco, and Favre 11

Armoni, M., Rodger, S., Vardi, M., and Ver-
ma, R. (2006) “Automata Theory – Its 
Relevance to Computer Science Students 
and Course Contents”, 37th SIGCSE 
Technical Symposium on Computer Sci-
ence Education, pp.  197-198. 

Barwise, J. and Etchemendy, J. (2007) Logic 
Soft from CSLI, http://www-
csli.stanford.edu/hp/Logic-software.html 
(Accessed September 2007).  

Chesñevar, C., Gonzalez, M.P., and Maguit-
man, A. (2004) “Didactic Strategies for 
Promoting Significant Learning in Formal 
Languages and Automata Theory”, 9th 
Annual Conference on Innovation and 
Technology in Computer Science Educa-
tion, pp. 7-11. 

Favre, L, Mauco, M.V., and Barbuzza, R. 
(2000) “Introducing First-year Students 
to Theoretical Computer Science", Infor-
mation Systems Education Conference, 
ISECON 2000, Philadelphia, EE.UU.  

Grinder, M.T. (2003) “A Preliminary Empirical 
Evaluation of the Effectiveness of a Finite 
State Automaton Animator”, 34th SIGCSE 
Technical Symposium on Computer Sci-
ence Education, pp. 157-161. 

Hopcroft, J., Motwani, R., and Ullman, J. 
(2000) Introduction to Automata Theory, 
Languages, and Computation (2nd Edi-
tion). Addison Wesley. 

Martínez, Mariano (2007) MTSolution 
http://users.exa.unicen.edu.ar/$\sim$m
martine/ (Accessed September 2007).  

Rodger, S., Bressler, B., and Finey, T. (2004) 
Reading, S. “Turning Automata Theory in-
to a Hands-on Course”, 37th SIGCSE 
Technical Symposium on Computer Sci-
ence Education, pp. 379-383. 

The Forlan Project (2007),  
http://people.cis.ksu.edu/~stough/forlan/ 
(Accessed September 2007). 

Vlissides, J. Generalized Graphical Object 
Editing (2007)  

http://www.ivtools.org/ivtools/unidrawinfo.ht
ml. (Accessed September 2007). 

White, T., and Way, T. (2006) “jFAST: A Java 
Finite Automata Simulator”, 37th SIGCSE 
Technical Symposium on Computer Sci-
ence Education, pp. 384-388. 

 

c© 2009 EDSIG http://isedj.org/7/10/ March 20, 2009



ISEDJ 7 (10) Mart́ınez, Barbuzza, Mauco, and Favre 12

Appendix 

 

Figure 10 - Example of FA Execution 

 

Figure 11 - Example of PDA Execution 

c© 2009 EDSIG http://isedj.org/7/10/ March 20, 2009



ISEDJ 7 (10) Mart́ınez, Barbuzza, Mauco, and Favre 13

 

Figure 12 - Example of a composite TM 

 

 

Figure 13 – Minimum FA for FA in Figure 10 

c© 2009 EDSIG http://isedj.org/7/10/ March 20, 2009



ISEDJ 7 (10) Mart́ınez, Barbuzza, Mauco, and Favre 14

 

Figure 14 – Steps of RE derivation for FA in Figure 10 

 

 

Figure 15 – Definition of right-linear RG 

c© 2009 EDSIG http://isedj.org/7/10/ March 20, 2009


