
Volume 6, Number 60 http://isedj.org/6/60/ December 18, 2008

In this issue:

The Design and Implementation of a First Course in Computer
Programming for Computing Majors, Non-Majors and Industry

Professionals within a Liberal Education Framework

Ronald J. Harkins
Miami University

Hamilton, OH 45011 USA

Abstract: With declining interest and enrollments in computer programming courses, it has been
necessary to consolidate course offerings resulting in a particular class consisting of different learning
objectives for its representative student constituencies. This paper details the design and implemen-
tation of a first course in computer programming with a liberal education focus, but populated by
computing majors, non-majors, and working professionals. Careful attention must be given to the
liberal education theme and the proper instructional methodologies in order to meet the learning
objectives of these three distinct student groups within the same classroom. Additionally, pragmatic
teaching maxims will be provided to help ensure success in offering not only this programming course,
but also any liberal education computer information systems course populated by different student
groups with different associated course expectations.

Keywords: Computer Programming, Liberal Education in Technology, CS0, Non-majors, Pair
Programming, Active Learning

Recommended Citation: Harkins (2008). The Design and Implementation of a First Course in
Computer Programming for Computing Majors, Non-Majors and Industry Professionals within a
Liberal Education Framework. Information Systems Education Journal, 6 (60).
http://isedj.org/6/60/. ISSN: 1545-679X. (Preliminary version appears in The Proceedings of
ISECON 2007: §2524. ISSN: 1542-7382.)

This issue is on the Internet at http://isedj.org/6/60/

ISEDJ 6 (60) Information Systems Education Journal 2

The Information Systems Education Journal (ISEDJ) is a peer-reviewed academic journal
published by the Education Special Interest Group (EDSIG) of the Association of Information
Technology Professionals (AITP, Chicago, Illinois). • ISSN: 1545-679X. • First issue: 8 Sep 2003.
• Title: Information Systems Education Journal. Variants: IS Education Journal; ISEDJ. • Phys-
ical format: online. • Publishing frequency: irregular; as each article is approved, it is published
immediately and constitutes a complete separate issue of the current volume. • Single issue price:
free. • Subscription address: subscribe@isedj.org. • Subscription price: free. • Electronic access:
http://isedj.org/ • Contact person: Don Colton (editor@isedj.org)

2008 AITP Education Special Interest Group Board of Directors

Paul M. Leidig
Grand Valley State University
EDSIG President 2005-2006

Don Colton
Brigham Young Univ Hawaii
EDSIG President 2007-2008

Robert B. Sweeney
U South Alabama

Vice President 2007-2008

Wendy Ceccucci
Quinnipiac Univ

Member Svcs 2007-2008

Ronald I. Frank
Pace University

Director 2007-2008

Kenneth A. Grant
Ryerson University
Treasurer 2007-2008

Albert L. Harris
Appalachian St

JISE Editor

Thomas N. Janicki
Univ NC Wilmington
Director 2006-2009

Kevin Jetton
Texas St U San Marcos
Chair ISECON 2008

Kathleen M. Kelm
Edgewood College
Director 2007-2008

Alan R. Peslak
Penn State

Director 2007-2008

Steve Reames
Angelo State Univ
Director 2008-2009

Patricia Sendall
Merrimack College
Secretary 2007-2008

Information Systems Education Journal Editors

Don Colton
Brigham Young University Hawaii

Editor

Thomas N. Janicki
Univ of North Carolina Wilmington

Associate Editor

Information Systems Education Journal 2007-2008 Editorial Review Board

Sharen Bakke, Cleveland St
Alan T. Burns, DePaul Univ
Wendy Ceccucci, Quinnipiac U
Janet Helwig, Dominican Univ
Scott Hunsinger, Appalachian
Kamal Kakish, Lawrence Tech
Sam Lee, Texas State Univ
Paul Leidig, Grand Valley St
Terri L. Lenox, Westminster

Anene L. Nnolim, Lawrence Tech
Alan R. Peslak, Penn State

Doncho Petkov, E Connecticut
James Pomykalski, Susquehanna

Steve Reames, Angelo State
Samuel Sambasivam, Azusa Pac
Bruce M. Saulnier, Quinnipiac
Patricia Sendall, Merrimack C

Li-Jen Shannon, Sam Houston St
Michael A. Smith, High Point U
Robert Sweeney, South Alabama

Stuart A. Varden, Pace Univ
Judith Vogel, Richard Stockton

Bruce A. White, Quinnipiac Univ
Belle S. Woodward, S Illinois U

Charles Woratschek, Robert Morris
Peter Y. Wu, Robert Morris Univ

EDSIG activities include the publication of ISEDJ, the organization and execution of the annual
ISECON conference held each fall, the publication of the Journal of Information Systems Education
(JISE), and the designation and honoring of an IS Educator of the Year. • The Foundation for
Information Technology Education has been the key sponsor of ISECON over the years. • The
Association for Information Technology Professionals (AITP) provides the corporate umbrella under
which EDSIG operates.

c© Copyright 2008 EDSIG. In the spirit of academic freedom, permission is granted to make and
distribute unlimited copies of this issue in its PDF or printed form, so long as the entire document
is presented, and it is not modified in any substantial way.

c© 2008 EDSIG http://isedj.org/6/60/ December 18, 2008

ISEDJ 6 (60) Harkins 3

The Design and Implementation

of a First Course in Computer Programming

for Computing Majors, Non-Majors

and Industry Professionals

Within a Liberal Education Framework

Ronald J. Harkins
harkinrj@muohio.edu

Miami University
1601 University Blvd.

Hamilton, OH 45011
513-785-3137

Abstract

With declining interest and enrollments in computer programming courses, it has been neces-

sary to consolidate course offerings resulting in a particular class consisting of different learn-

ing objectives for its representative student constituencies. This paper details the design and

implementation of a first course in computer programming with a liberal education focus, but

populated by computing majors, non-majors, and working professionals. Careful attention

must be given to the liberal education theme and the proper instructional methodologies in

order to meet the learning objectives of these three distinct student groups within the same

classroom. Additionally, pragmatic teaching maxims will be provided to help ensure success in

offering not only this programming course, but also any liberal education computer informa-

tion systems course populated by different student groups with different associated course

expectations.

KEYWORDS: computer programming, liberal education in technology, CS0, non-majors, Pair

Programming, Active Learning

1. INTRODUCTION

Universities continue to struggle to address

declining enrollments in certain computing

and technical disciplines. Some colleges

continue to offer a wide variety of computing

courses to meet student needs, but with

very low enrollments in each. Indeed,

smaller computing classes taught in com-

puter classrooms in an active learning for-

mat have been shown to improve learning

and enrollment retention, as well as student

satisfaction (Boyer, 2007). However, for

many schools, offering a variety of such

small classes has become a financial burden.

Instead, they offer a smaller number of

classes, or even a single section of a particu-

lar course, hoping to maximize its enroll-

ment. Consequently, a particular course

section can be populated by students with

very different course expectations. Fur-

thermore, designing course materials and

teaching the course can present a challenge

to the instructor. The Computer Science and

Systems Analysis department at Miami Uni-

versity offers a course entitled “Introduction

to Computer Concepts and Programming”

(CSA 163). This first course in computer

programming with Visual BASIC is some-

times taken by computing majors who lack

algorithm development and programming

ability for the object-oriented programming

course in JAVA (CS1). Some working pro-

fessionals also enroll in the course to acquire

Visual BASIC programming skills. Finally,

most students enrolled in this course are

non-majors who take it to fulfill a liberal

c© 2008 EDSIG http://isedj.org/6/60/ December 18, 2008

ISEDJ 6 (60) Harkins 4

education requirement for their degree, un-

der the university’s Miami Plan for Liberal

Education.

2. MIAMI PLAN FOR LIBERAL

EDUCATION

The Miami Plan for Liberal Education, a sig-

nificant revision of an earlier liberal educa-

tion core requirement for graduates of Miami

University, was adopted in 1988. The Plan

requires students to take a number of

courses (usually 3 – 9 semester hours) in

each of five foundation course groups, fol-

lowed by a 3-course thematic sequence to

provide an in-depth study in an area outside

of the student’s major, and culminating with

a liberal education capstone experience.

CSA 163 is a Group V (Mathematics, Formal

Reasoning, Technology) foundation course of

the Plan. Non-majors, in particular, take

CSA 163 to meet this Miami Plan foundation

course requirement.

To have a course designated as a Miami Plan

course, a formal application must be submit-

ted by the department to the university’s

Liberal Education committee. The application

must clearly demonstrate how the course

will meet and incorporate defined liberal

education principles into the course. These

principles include critical thinking, under-

standing contexts, engaging with other

learners, and reflecting and acting. Some

might contend that a skills acquisition

course, such as a computer programming

course, is incompatible with such liberal

education principles. However, the CSA de-

partment was very attentive to these princi-

ples in the design of CSA 163 by focusing on

problem-solving and ensuring a natural inte-

gration of each of these principles into the

course, which strengthened the objectives

and outcomes of the resultant course. This

is especially important for computing majors

and/or working professionals who might en-

roll in the course not seeking any Miami Plan

liberal education requirement fulfillment, but

rather acquisition of problem solving / pro-

gramming skills in Visual BASIC.

3. APPLYING LIBERAL EDUCATION

PRINCIPLES TO A COMPUTER

PROGRAMMING COURSE

Infusing liberal education principles into a

skills acquisition course, such as computer

programming, can be especially advanta-

geous to non-majors. It can help dispel

misconceptions about the art and skill of

programming, and programmers as “geeks”

who work in isolation. Non-majors them-

selves provide diversity to the programming

course, and the liberal education principles

make it easier for them to understand the

broader context of computer programming

in helping individuals work with computers

to enrich their own professional lives as well

as the larger society that is becoming in-

creasingly technological (Allen, 1990; Ander-

son, 2003; Brady, 2004). The problem-

solving and logical reasoning skills utilized in

a first course in computer programming

transfer to end-user programming skills,

such as macro creation, spreadsheet for-

mula/function derivation, and dynamic web

applications…all important to non-majors.

Furthermore, social persuasion and self-

efficacy can increase for learners, especially

non-majors, in a computer programming

course by incorporating liberal education

principles into the course (Wiedenbeck,

2005).

3.1 CRITICAL THINKING PRINCIPLE

Problem solving strategies employed in a

traditional college mathematics course are

essentially the same in a first course in

computer programming. The primary differ-

ence is that the problem’s solution is imple-

mented on a machine using a computer lan-

guage to direct the solution. Thus, the logi-

cal reasoning and critical thinking skills

which are so vital to success in mathematics

are likewise crucial to success in computer

programming. Furthermore, courses that

emphasize the development of problem-

solving skills and logical reasoning support

the objectives of curricula grounded in lib-

eral education (Ellison, 1980). Clarity in

problem definition, accuracy of proposed

algorithms, and the relevance of both input

data and output information, require signifi-

cant critical thinking and analysis (Fagin,

2006). Norris and Jackson (1992) investi-

gated the effects of a BASIC programming

course on students’ critical thinking and

mental alertness and found significant im-

provement in students’ critical thinking skills

at the conclusion of the course.

Whereas critical thinking skills might be

more apparent for the computing major or

working professional in a first course in

computer programming, the non-major /

c© 2008 EDSIG http://isedj.org/6/60/ December 18, 2008

ISEDJ 6 (60) Harkins 5

liberal education student might struggle with

the critical and analytical thinking processes

in computer programming. Small group ex-

ercises and pair programming (to be dis-

cussed later in this paper) can assist non-

majors in improving their logical reasoning

and critical thinking skills. Furthermore,

connecting the problems to be solved to

non-majors’ areas of interest or anticipated

careers, can also help them focus their criti-

cal thinking in a relevant context (Allen,

1990). Layman and Williams (2007) found

that only 34% of programming projects in a

beginning programming course had any

practical or socially relevant context. Ad-

dressing socially relevant problems, some

with ethical considerations, can motivate

liberal education students to realize the im-

portance of critical thinking in the design of

efficient, practical, and reliable algorithms

and solutions to important societal problems

whose solution can be significantly improved

and tested using a computer (Bosse, 2000).

In a first course in computer programming,

debugging activities and inspection and ap-

praisal of alternative solutions and code for a

problem, especially in a group discussion,

are ideal mechanisms to focus on, and sub-

sequently improve students’ critical thinking

skills.

3.2 UNDERSTANDING CONTEXTS

PRINCIPLE

Students in a first course in computer pro-

gramming, such as CSA 163, also add to

their knowledge base about the conceptual

framework, achievements, and societal is-

sues in computer technology. This is ac-

complished by students reading a secondary

“computer concepts” textbook and associ-

ated newsprint and internet articles, and

participating in small-group discussions on

topics or issues drawn from these sources.

While computing majors and working profes-

sionals might already know a significant

amount of the technical hardware, software,

and systems related topics, this knowledge

is balanced by the non-major/liberal educa-

tion students’ perceptions and contributions

in the cultural and societal issues related to

technology.

3.3 ENGAGING WITH OTHER LEARNERS

PRINCIPLE

Students learn from one another. Working

with fellow students on problem solutions

using a computer proves invaluable to their

success, as well as their confidence and self-

esteem. Informal hierarchies in a computing

classroom, such as a “novice” group, a

“some background” group, or an “expert”

group can be blurred, or somewhat dissolved

by incorporating partnership/small-group

learning activities into a course. This also

tends to diffuse a defensive climate that can

occur when competitiveness, rather than

cooperation permeates computer learning

(Barker, 2002;Garvin, 2004). To this end,

pair programming is utilized in many com-

puting courses, including CSA 163, a first

course in problem solving and programming

with Visual BASIC. With pair programming,

two students share a single computer to

complete in-class programming lab activi-

ties. One student, designated as the “navi-

gator,” reads instructions, and reviews pro-

gram code and actions completed the other

partner, the “driver,” who uses the keyboard

and the mouse to interact with the shared

computer. These roles are periodically re-

versed throughout the laboratory activity to

allow each partner to experience each of

these roles. Both driver and navigator are

actively involved in reviewing their shared

work, debugging their program, and recom-

mending alternative, and hopefully more

efficient and accurate solutions to the prob-

lem under consideration. “Mixed” partner-

ships (i.e. computing major/non-

major/working professional) seem to work

best, with non-majors providing “user con-

siderations” to a solution, while computing

majors provide additional technical exper-

tise, when needed. However, it is important

to ensure that both members of the partner-

ship contribute to their mutual learning, and

dominant or dogmatic behavior (especially

by a computing major working with a less

technically secure non-major) does not ex-

ist. If allowed, this can not only add to the

frustration and feeling of inadequacy by the

non-major, but can also result in unfair

grading, with “weaker” students receiving

high scores for work that was primarily com-

pleted by the “stronger” student of the pair

(McDowell, 2006). Some educators employ

a pair programming derivative wherein the

roles of the navigator and the driver are not

as pronounced. Chong and Hurlbutt (2007)

conducted a pair programming study that

found the pairings to be more effective when

the driver and navigator roles were not so

distinct, but rather overlapping, with both

c© 2008 EDSIG http://isedj.org/6/60/ December 18, 2008

ISEDJ 6 (60) Harkins 6

partners taking on driver and navigator roles

concurrently.

The benefits to implementing pair program-

ming activities into a first course in com-

puter programming or any active learning

computer course are many, especially in a

class populated by different constituencies,

such as computing majors, non-majors, and

working professionals. The dialog between

partners in explaining a particular construct

or algorithm is sometimes more effective in

their learning than from a traditional text-

book or lecture. Problem solving and pro-

gramming become a joint venture, and a

more sociable, enjoyable, and satisfying ex-

perience (Preston, 2006).

Computing majors are somewhat empow-

ered in helping their partner, while also al-

lowing the major to discover new informa-

tion in response to their partner’s questions

or observations. Working professionals

bring “on the job” anecdotal commentary

and suggestions to the problem solving ac-

tivity being jointly developed. In fact, indus-

try professionals working in pairs have re-

ported higher job satisfaction than those

who work alone (Williams, 2000). Non-

majors also feel more comfortable discussing

a problem with a peer, than perhaps their

instructor (Preston, 2006). This is particu-

larly important, as comfort level in a com-

puter science class was found to be the best

predictor of success in an introductory com-

puter science course (Cantwell, 2001). An-

other study found that students who pro-

grammed in pairs in an introductory com-

puter programming course were more confi-

dent, had higher course completion and

passing rates, and were more likely to con-

tinue in some computer-related major of

study (Werner, 2004). Another pair pro-

gramming study conducted in 2004 at the

University of Auckland (NZ) found that a

higher percentage of paired students passed

a software design and construction course,

compared to students who worked alone on

their projects. The majority of students in

this study also expressed a desire to use

pair programming in their future computing

courses (Mendes, 2006). It has also been

shown that programs written in pairs were

completed in a shorter time, were of higher

quality, and received a higher grade than

those written alone (Benaya, 2007).

A pragmatic detriment to utilizing pair pro-

gramming in an active learning, computing

course occurs when the paired activities

cannot be completed within the designated

class period. Finding time to complete the

project jointly, due to incompatible work and

“after class” schedules can pose a significant

hardship for students, especially return-

ing/working students (VanDeGrift, 2004).

Additionally, if instead of completing the

work jointly outside of class, it is to be com-

pleted in class as a pair during the “next

class” meeting, problems can arise when a

member of a partnership fails to attend this

subsequent class session. To minimize

these scheduling problems, in light of the

countless benefits to pair programming cited

previously, CSA 163 utilizes pair program-

ming only in completing shorter (30 – 45

minutes), directive lab activities, leaving

more comprehensive programming assign-

ments to be completed individually outside

of class.

Doing this, also helps prevent one member

of the partnership from becoming too de-

pendent on the other partner in learning

how to problem solve and program in Visual

BASIC. This lack of independent thinking

and action can be a detriment in completing

current course exams independently, or

even later on in a computing career, when

certain actions, technical decisions, or solu-

tions must be derived on one’s own. On the

other hand, working with a partner can be

valuable to “team programming,” which oc-

curs widely in industry. In fact, a final team

programming project is recommended in

CSA 163, with enough “lead time” provided

for team members to arrange work sched-

ules accordingly. In most cases, the “team”

becomes simply the “pair” from the pair

programming course lab activities, with per-

haps one or two additional members, as the

social/working connection that was so help-

ful throughout the semester in pair pro-

gramming is continued and strengthened by

this final team programming project.

3.4 REFLECTING AND ACTING

PRINCIPLE

Thinking critically and understanding con-

texts for knowledge in an active learning

environment naturally lead to reflection and

informed action. Students in a first course

in computer programming, such as CSA 163,

have ample opportunities to reflect and act

c© 2008 EDSIG http://isedj.org/6/60/ December 18, 2008

ISEDJ 6 (60) Harkins 7

on problem solving methodologies, and the

subsequent implementation by their com-

puter program. Pair programming labora-

tory activities invite the students to alter

code and report on the impact of these

modifications. When testing programs, stu-

dents are encouraged to use data from vari-

ous data sets (e.g. integral, real, character,

or string) or from various data ranges (e.g.

above 500, between 100 and 500, and be-

low 100) and report on the accuracy and

relevance of the solution output. Students

are asked to provide data ranges for input

data that conform to “real life” and investi-

gate the accuracy of related output informa-

tion. In CSA 163, utilizing the Visual BASIC

IDE, students must be aware of user (cus-

tomer) requirements, and reflect on their

program’s usability accordingly. Working

programs must be user-friendly, and “forgiv-

ing” to users, when they err in interacting

with the program. In the pair programming

lab activities, one student assumes the role

of the “user/customer,” while the other acts

as the “programmer” in implementing

changes to the code or interface in response

to the user’s concerns and suggestions.

When real-life problems (e.g. population

growth in underdeveloped countries, mortal-

ity rates in Darfur, computer recycling and

distribution) are studied in the liberal educa-

tion CSA 163 course, students are asked to

reflect, in writing, on the output generated

by their computer program. Indeed, written

communication is a critical component of

any liberal arts curriculum. The architects of

a liberal arts curriculum who integrate it with

oral and written communication require-

ments receive high praise and support from

industry leaders who find their employees

deficient in vital communication skills

needed both within internal departments of

a company, as well as among units operat-

ing around the world. For educators, as well

as students, incorporating meaningful writ-

ing components into computing or technol-

ogy-driven courses can be a difficult and

time consuming, and sometimes perceived

as “forced” by students, with writing as-

sessment responsibilities and guidelines both

vague and undefined (Kaczmarczk, 2004).

All three representative student groups in a

typical CSA 163 class (computing majors,

non-majors, and working professionals)

might question the value and need of writing

activities woven throughout the course.

Curriculum developers and instructors in

technology courses must work hard to make

such writing requirements meaningful and

clearly connected to the technical content of

the course. Walker (1998) identifies some

activities in a computing course that could

have a writing component. These include

explaining why something happens in a pro-

gram, comparing two approaches or algo-

rithms, justifying one’s answer, or discussing

the purpose of a procedure or code block.

He further requires students to document

programs heavily and meaningfully, and re-

turns undocumented programs to students

ungraded. Dugan and Polanski (2006) pro-

vide advice to computing course instructors

wishing to incorporate writing activities into

their courses. This advice includes giving

writing assignments a real world context,

demonstrating the importance of writing in

computing-related courses, requiring revi-

sion of writing submissions by students, and

conducting peer reviews of writing assign-

ments. Ladd (2003) suggests reducing the

number of programming assignments signifi-

cantly, and instead, having two due dates

for each assignment. The first deadline is

for the initial submission, while the second

date is for the submission of a revised pro-

gram incorporating modifications suggested

by the instructor, as well as a one page nar-

rative detailing how these changes ad-

dressed the instructor’s initial evaluative

comments. Anewalt (2002) acknowledges

that integrating writing into a computing

course for the first time can be both intimi-

dating and challenging for the instructor.

She contends that the key to a successful

writing experience for students requires the

instructor to clearly connect such writing

with the course objectives, making expecta-

tions clear to the students, and to keep the

grading of the written components both con-

sistent and simple.

In CSA 163, short answer questions, such as

“Explain the differences among the numeric

data types for variables in Visual BASIC.” or

“What advantages do you see for event-

driven programming for both the program-

mer, and the end-user?” are included on

every examination. Furthermore, extensive

and meaningful documentation is required

for all submitted programs, as well as code

segments of the lab activities written by a

programming pair. In addition, two re-

search/opinion papers are included in CSA

c© 2008 EDSIG http://isedj.org/6/60/ December 18, 2008

ISEDJ 6 (60) Harkins 8

163, one of which involves taking a previ-

ously written program and having someone

with very little computing experience run it.

In this reflection paper, the CSA 163 student

writes a short summary report of the user’s

reactions, suggestions, and even frustrations

with the original program, and subsequent

action(s) taken by the CSA 163 student-

programmer to accommodate, or reject the

user’s comments, recommendations, or

complaints. For some students in CSA 163,

especially the computing majors, this is an

eye opening and somewhat humiliating ex-

perience, as they tend to be very protective,

even defensive, of their written code, and

rather unresponsive to criticism of it, espe-

cially from someone knowing little about

computers. On the other hand, the non-

majors enrolled in the same CSA 163 class

are more receptive to non-technical user’s

concerns, as they can better relate to some-

one without a high level of technical pro-

gramming background or ability. Working

professionals enrolled in the same CSA 163

class are accustomed to meeting customer

needs and requests in their daily work, so

making software user-friendly is both obvi-

ous and apparent to them. Written commu-

nication is an ideal and necessary tenet of

any liberal education technical course and an

excellent vehicle for utilizing the ‘reflecting

and acting’ liberal education principle of the

Miami Plan for Liberal Education in CSA 163.

Integrating the four principles of the Miami

Plan for Liberal Education (critical thinking,

understanding contexts, engaging with other

learners, and reflecting and acting) into CSA

163, a first course in problem solving and

computer programming, enriches the

course, and makes it a more satisfying and

meaningful experience for all three student

constituencies (computing majors, non-

majors, and working professionals) who

regularly enroll in this course. The liberal

education principled model described in this

paper can likewise be used in developing

and delivering similar computing and techni-

cal courses in information systems, informa-

tion technology, and business technology, as

well as other computing-related fields and

disciplines.

4. PEDAGOGICAL ADVICE

The author has taught this first course in

computer programming (CSA 163) every

semester since it was offered as a Liberal

Education foundation course at Miami Uni-

versity in 1988. In the early years, when

enrollments were high, several sections of

the course were offered, with “day” sections

primarily comprised of traditional age college

students fulfilling their Miami Plan Group V

liberal education requirement, or beginning a

major in computer science. Working profes-

sionals and non-traditional returning stu-

dents enrolled primarily in “evening” sec-

tions of the course. In general, teaching

methods and course materials could be de-

veloped in alignment with the learning styles

and cognitive behaviors of the types of stu-

dents in a particular section. Discovery

learning challenges can be woven into activi-

ties/lectures/demonstrations for computing

majors. Reflective activities (e.g. written

opinion positions, small group discussions)

are especially valued by the liberal education

students. Finally, busy, working profession-

als appreciate teaching/learning activities

with real-life impact that produce tangible,

useful results/skills that clearly connect to

their responsibilities in the workplace.

As the years passed and enrollments and

interest in computing courses and associated

careers declined, so too did the number of

sections of this first course in computer pro-

gramming. Consequently, fewer sections of

CSA 163 were offered and were populated

by all three types of students (liberal educa-

tion students, computing majors, and work-

ing professionals). Different instructional

techniques had to be used to meet the

needs of all three of these types of students,

and their corresponding learning styles in

the same classroom. While this was chal-

lenging, it was not impossible. Furthermore,

the resulting student diversity improved the

course by providing alternative viewpoints,

questions, and discussions from each of

these constituencies.

The author provides the following set of

pedagogical maxims to assist instructors in

offering a liberal education technology

course, such as CSA 163, or any “first

course” in computer science, computer tech-

nology, information systems, or business

technology to a class with varied interests,

needs, learning styles, and reasons for tak-

ing the course.

4.1 JUST DO IT

Incorporate online, active learning into every

class session. Try interrupting lectures and

c© 2008 EDSIG http://isedj.org/6/60/ December 18, 2008

ISEDJ 6 (60) Harkins 9

demonstrations with online active learning

opportunities for the students. Include both

practice/mastery and discovery learning in

these online activities to provide needed in-

formation, while encouraging intellectual

curiosity in the students.

4.2 MIX IT UP

Try to avoid class sessions that are exclu-

sively lecture or exclusively laboratory. Add-

ing variety to classroom activities will in-

crease student interest and participation.

Try to include lecture segments enhanced by

short laboratory activities and demonstra-

tions that solicit student feedback, modifica-

tion, debugging, or completion. Short quiz-

zes and group discussions can also be added

to the mix.

4.3 CAN I HELP YOU?

Try employing the pair programming para-

digm, described earlier in this paper. Stu-

dents “talk the talk” and can explain some

things better than you! “Mixed partner-

ships,” consisting of computing majors, non-

major liberal education students, and work-

ing professionals encourage different per-

spectives in their problem solving and com-

puting experiences. Become a “helicopter

instructor,” moving from pair to pair, acting

as a facilitator as you hover, especially when

noticing that little interaction is occurring

between the partners, or one member

seems to be doing all the work. Engaging

with other learners is an important compo-

nent and principle of liberal education.

4.4 PUT IT IN WRITING

Try to encourage written communication

throughout the course activities, and not

simply in one or two isolated writing pro-

jects. The latter might simply be dismissed

by the students as simply another course

requirement that must be tolerated and

completed for a grade. Connecting and in-

cluding short writing experiences into pair

programming lab activities, program / com-

puting assignments, quizzes, and examina-

tions will help reinforce the value and impor-

tance of written communication in computer

study, and subsequent computer-related

careers. It also allows them to employ the

Reflecting and Acting principle of liberal edu-

cation in these writing activities, especially

on opinion/reflection statements and papers.

If opting to include a significant research /

opinion paper, try to connect it to the educa-

tional objectives and needs of the students

in the class. Providing topical choices can

make writing activities meaningful for each

of the different student constituencies in the

course. For example, consider a persuasive

essay on ethical behavior involving technol-

ogy, for liberal arts students (Cliburn,

2006); investigating a programming feature

or topic not covered in the course, and

evaluating its usefulness, for computing ma-

jors; or summarizing and resolving a techni-

cal crisis at work, for working professional

students.

4.5 GET REAL

Try to incorporate contemporary, real-life

examples in lectures. lab activities and pro-

gramming/computing assignments. Ask

working professional students to provide a

real-life application of a class activity or pro-

gramming/computing assignment (e.g. in-

ventory management, distribution models,

promotion/reward mechanisms). Incorpo-

rate financial applications with business

practices that are characteristic of the day-

to-day life of a student. Connect a pro-

gramming construct (e.g. parameters of

functions) to application software they are

familiar with (e.g. EXCEL functions), or even

to real life activities, such as sports (e.g.

passing and receiving in football, to parame-

ter passing in programming). This can illus-

trate and employ the Understanding Context

principle of liberal education defined earlier

in this paper, especially in the abstract realm

of problem solving.

Furthermore, try to include problems that

involve social or ethical dimensions (e.g.

population growth, health appraisals, iden-

tity theft statistics, homelessness data, etc.)

in keeping with the Reflection and Action

principle of a solid liberal education course in

any discipline.

4.6 BUT DOES IT (ALWAYS) WORK?

Encouraging the development of robust and

reliable algorithms in problem solving can be

accomplished by requiring extensive testing

of solutions implemented by a computer

program or application. Extensive testing

also increases the confidence of the student-

programmers in the overall reliability and

accuracy of their work (Edwards, 2003).

Consider having one member of a partner-

ship in a pair programming activity try to

c© 2008 EDSIG http://isedj.org/6/60/ December 18, 2008

ISEDJ 6 (60) Harkins 10

“break” a program segment developed by

the “other member” of the pair using invalid

input data. Can the “break” be fixed at this

point in the course? Perhaps not. Can they

“discover” a solution, on their own? Are

program results accurate, possible and real-

istic when applied to everyday life? Answer-

ing these important questions requires the

students to apply both the critical thinking,

and the reflecting/acting principles of liberal

education

Finally, consider the “test first” programming

strategy popularized by extreme program-

ming (Edwards, 2003), which would be es-

pecially interesting to computing majors in

the course.

4.7 HOW’S IT GOING?

Try to evaluate student progress frequently

and provide quick turnaround time and

meaningful feedback on evaluative meas-

ures. Maintaining a web-based dynamic

grade book that informs students of their

current average for any given day or week

of the semester or quarter can be useful,

informative, and motivating for students.

Incorporate variety in evaluation (e.g. writ-

ten assignments, online programming as-

signments, hourly tests, short quizzes, lab

activities, position/research papers, etc.).

Also, try to provide formative evaluation op-

portunities such as short online topical prac-

tice tests. Some evaluation can be particu-

larly focused toward a particular constitu-

ency in the class. For example, liberal arts

students might appreciate a question on the

intended customer, the inherent value, or

the user-friendliness of a particular pro-

gram; whereas a computing major might be

motivated by an open-ended discovery

learning challenge, such as “Do you think it

is possible for your program to…?” Consider

peer review of program assignments by

electronically delivering a student’s program

to individual workstation monitors or a wall-

mounted classroom projection screen solicit-

ing both commendations and constructive

criticism from the students. Try to review a

different student’s work each time this peer

review process is conducted. Peer review

can also be conducted in a more personal

and informal manner between partners in a

pair programming activity, but this usually

occurs naturally, without any instructor ini-

tiation.

4.8 BE THERE

Finally, plan to provide reasons for students

to attend class, other than simply giving

points for attendance. This can result in pas-

sive, even bored, attendees. Incorporate an

“event” (e.g. quiz, demonstration, video clip,

lab activity, etc.) into every class meeting so

students see a real value and purpose of

attending every class session of your com-

puting course. When posting lecture notes

on the web, consider making them inten-

tionally incomplete (i.e. more like an outline)

that will be completed by them in class.

Posting complete, detailed lecture notes, on

the other hand, without providing additional

in-class activities, might encourage students

to skip the class, finding something more

important and meaningful in their busy lives

to attend to. Finally, remember that stu-

dents in a computing class are “active learn-

ers,” so try to identify some kind of online

activity to include in every class session.

5. CONCLUSION

Teaching a first course in computer pro-

gramming or in any computing/information

systems area in a liberal education frame-

work can be a challenge, especially if the

students in the same classroom have differ-

ent needs or objectives for enrolling in the

course, such as liberal education students,

beginning computer science/technology ma-

jors, or working professionals seeking to ac-

quire technical skills for their current job. A

recent panel of computer science educators

(Walker, 2003) held that a computer science

curriculum in a liberal arts environment

should contain a firm foundation in technical

computer science, a commitment to problem

solving, integration of the social impact and

ethical issues related to computing, and de-

velopment or oral and written communica-

tion skills, among others.

The relevancy of this list can be extended

beyond computer science to any computing

field (e.g. information systems, computer

technology, business technology) delivered

and studied in a liberal education environ-

ment. Some might think that skills acquisi-

tion courses, such as a first course in com-

puter programming, and a liberal education

courses, grounded in observation, reflection,

and communication, are mutually exclusive.

This isn’t necessarily true. A technology-

driven course, while focused on problem

c© 2008 EDSIG http://isedj.org/6/60/ December 18, 2008

ISEDJ 6 (60) Harkins 11

solving and skill acquisition, can nonetheless

be structured to incorporate the critical

thinking, understanding contexts, engaging

with other learners, and the reflection/action

principles described in this paper to produce

a course rich in both liberal education and

skill acquisition. This mix of technical skills

and liberal education principles is very ap-

propriate for today’s students and tomor-

row’s careers in an increasingly technical

and culturally diverse society.

6. REFERENCES

Allen, J., H. Porter, T. Nanney, and, K. Aber-

nethy, (1990) “Reexamining the Introduc-

tory Computer Science Course in Lib-

eral Arts Institutions”. Proceedings of the

21st SIGCSE Technical Symposium on

Computer Science Education, pp. 100 –

104.

Anderson, P., J. Bennedsen, , S. Brandorff, ,

M. Caspersen, and J. Mosegaard (2003)

“Teaching Programming to Liberal Arts

Students: A Narrative Media Approach,”

Proceedings of the 8th Annual Conference

on Innovation and Technology in Com-

puter Science, pp. 109 – 113.

Anewalt, K., (2002) “Experiences Teaching

Writing in a Computer Science Course for

the First Time,” Journal of Computing Sci-

ences in Colleges, Vol. 18, pp. 346 – 355.

Barker, L., K. Garvin-Doxas, and, M. Jackson

,(2002) “Defensive Climate in the Com-

puter Science Classroom”. Proceedings of

the 33rd SIGCSE Technical Symposium on

Computer Science Education, pp. 43 – 47.

Benaya, T., and E. Zur, (2007) “Collabora-

tive Programming projects in an Advanced

CS Course”, Journal of Computing Sci-

ences in Colleges, Vol. 22, pp. 126 – 135.

Bosse, M., and N. Nandakumar (2000)

“Real-World Problem-Solving, Pedagogy,

and Efficient Programming Algorithms in

Computer Education”, ACM SIGCSE Bulle-

tin, Vol. 32, pp. 66 – 69.

Boyer, K., R. Dwight, and C. Miller (2007)

“A Case for Smaller Class Size with Inte-

grated Lab for Introductory Computer Sci-

ence”, Proceedings of the 38th SIGCSE

Technical Symposium on Computer Sci-

ence Education, pp. 341 – 345.

Brady, A., P. Cutter, and K. Schultz (2004)

“Benefits of a CS0 Course in Liberal Arts

Colleges”, Journal of Computing Sciences

in Colleges, Vol. 20, pp. 90 – 97.

Cantwell, B., and S. Shrock (2001) “Con-

tributing to Success in an Introductory

Computer Science Course: A Study of

Twelve Factors”, Proceedings of the 32nd

SIGCSE Technical Symposium on Com-

puter Science Education, pp. 184 – 188.

Cliburn, C., (2006) “CS0 Course for the Lib-

eral Arts”, Proceedings of the 37th SIGCSE

Technical Symposium on Computer Sci-

ence Education, pp. 77 – 81.

Chong, J., and T. Hurlbutt (2007) “The So-

cial Dynamics of Pair Programming”, Pro-

ceedings of the 29th International Confer-

ence on Software Engineering”, pp. 354 –

363.

Dugan, R., and V. Polanski (2006) “Writing

for Computer Science: A Taxonomy of

Writing Tasks and General Advice”, Journal

of Computing Sciences in Colleges, Vol.

21, pp. 191 – 203.

Edwards, S. (2003) “Improving Student

Performance by Evaluating How Well Stu-

dents Test Their Own Programs”, Journal

on Educational Resources in Computing,

Vol. 3, pp. 1 – 24.

Ellison, R., (1980) “A Programming Se-

quence for the Liberal Arts College”, Pro-

ceedings of the 11th SIGCSE Technical

Symposium on Computer Science Educa-

tion, pp. 161 – 164.

Fagin, B., J. Harper, and L. , Baird (2006)

“Critical Thinking and Computer Science:

Implicit and Explicit Connections”, Journal

for Computing Sciences in Colleges, Vol.

21, pp. 171-177.

Garvin, K., and L. Barker (2004) “Commu-

nication in Computer Science Classrooms:

Understanding Defensive Climates as a

Means of Creating Supportive Behaviors”,

Journal on Educational Resources in Com-

puting, Vol. 4, pp. 1 – 18.

Kaczmarczk, L., G. Kruse, and, D. Lopez

(2004) “Incorporating Writing into the CS

Curriculum”, Proceedings of the 35th

SIGCSE Technical Symposium on Com-

puter Science Education, pp. 179 – 180.

c© 2008 EDSIG http://isedj.org/6/60/ December 18, 2008

ISEDJ 6 (60) Harkins 12

Ladd, B. (2003) “It’s All Writing: Experience

Using Rewriting to Learn in Introductory

Computer Science”, Journal of Computing

Sciences in Colleges, Vol. 18, pp. 57 – 64.

Layman, L., L. Williams, and K. Slaten

(2007) “Note to Self: Make Assignments

Meaningful,” Proceedings of the 38th

SIGCSE Technical Symposium on Com-

puter Science Education, pp. 459 – 463.

McDowell, C., , L. Werner, and H. Bullock

(2006) “Pair Programming Improves Stu-

dent Retention, Confidence, and Program

Quality”, Communications of the ACM, Vol.

49, pp. 90 – 95.

Mendes, E., L. Al-Fakhri, and A. Luxton-

Reilly (2006) “A Replicated Experiment of

Pair Programming in a 2nd Year Software

Development and Design Computer Sci-

ence Course”, Proceedings of the 11th An-

nual SIGCSE Conference on Innovation

and Technology in Computer Science Edu-

cation, pp. 108 – 112.

Norris, C., and, L. Jackson (1992) “The Ef-

fect of Computer Science Instruction on

Critical Thinking Skills and Mental Alert-

ness,” Journal of Research on Computing

in Education, Vol. 24, p. 329.

Preston, D. (2006) “Adapting Pair Pro-

gramming Pedagogy for Use in Computer

Literacy Courses”, Journal of Computing

Sciences in Colleges, Vol. 21, pp. 84 – 93.

VanDeGrift, T. (2004) “Coupling Pair Pro-

gramming and Writing: Learning About

Students’ Perceptions and Processes,” Pro-

ceedings of the 35th SIGCSE Technical

Symposium on Computer Science Educa-

tion, pp. 2– 6.

Walker, H., M Jipping, and D., Baldwin

(2003) “The Computer Science Major

Within a Liberal Arts Environment”, Journal

of Computing Sciences in Colleges, Vol.

19, pp. 99 – 101.

Walker, H. (1998) “Writing within the Com-

puter Science Curriculum,” ACM SIGCSE

Bulletin, Vol. 30, pp.24–25.

Werner, L., B. Hanks, and C. McDowell

(2004) “Pair programming Helps Female

Computer Science Students,” ACM Journal

of Educational Resources in Computing,

Vol. 4, pp. 1 – 8.

Wiedenbeck, S. (2005) “Factors Affecting

the Success of Non-Majors in Learning to

Program,”Proceedings of the 2005 Interna-

tional Workshop on Computing Education

Research, pp. 13 – 24.

Williams, L., R. Kessler,and, W. Cunningham

(2000) “Strengthening the Case for Pair

Programming,”IEEE Software.

c© 2008 EDSIG http://isedj.org/6/60/ December 18, 2008

