
Volume 5, Number 28 http://isedj.org/5/28/ September 12, 2007

In this issue:

Teaching Scalability Issues in Large Scale Database Application
Development

Russell Anderson Musa Jafar
West Texas A&M University West Texas A&M University

Canyon, TX 79018 USA Canyon, TX 79018 USA

Amjad A. Abdullat
West Texas A&M University

Canyon, TX 79018 USA

Abstract: Many information systems degree programs include a course in database application
development. These courses typically require the students to design and develop a complete database
application. In doing so, the instructor will frequently discuss performance and scalability issues
of the applications. However, giving the students a valid, hands-on performance and scalability
experience is difficult. The problems of doing so usually originate with the small size of the test
database and from testing the whole application with too few concurrent users- frequently one.
Although this can be partially overcome by requiring students to programmatically construct larger
test databases; it still does not address the performance and scalability problems that arise when
hundreds or even thousands of users are concurrently executing transactions against the system.
At the Department of Computer Information Systems of West Texas A&M University, we have
implemented a hardware/software solution that allows students to assess most performance and
scalability characteristics of their database applications. The solution allows students to execute from
two to thousands of concurrent and varied transactions against the database. While doing this they
can monitor and gather performance statistics such as minimum, maximum, and mean transaction
response time, and failure rates due to locking or other DBMS/OS configuration problems. In the
paper we describe in detail the methodology and the hardware/software solution platform that we
use to implement the performance tests. We also present the results of our first round of use in a
classroom setting the learning experiences of the students and the issues encountered.

Keywords: database performance, scalability, web applications, testing

Recommended Citation: Anderson, Jafar, and Abdullat (2007). Teaching Scalability Issues in
Large Scale Database Application Development. Information Systems Education Journal, 5 (28).
http://isedj.org/5/28/. ISSN: 1545-679X. (Also appears in The Proceedings of ISECON 2006:
§2124. ISSN: 1542-7382.)

This issue is on the Internet at http://isedj.org/5/28/

ISEDJ 5 (28) Information Systems Education Journal 2

The Information Systems Education Journal (ISEDJ) is a peer-reviewed academic journal
published by the Education Special Interest Group (EDSIG) of the Association of Information
Technology Professionals (AITP, Chicago, Illinois). • ISSN: 1545-679X. • First issue: 8 Sep 2003.
• Title: Information Systems Education Journal. Variants: IS Education Journal; ISEDJ. • Phys-
ical format: online. • Publishing frequency: irregular; as each article is approved, it is published
immediately and constitutes a complete separate issue of the current volume. • Single issue price:
free. • Subscription address: subscribe@isedj.org. • Subscription price: free. • Electronic access:
http://isedj.org/ • Contact person: Don Colton (editor@isedj.org)

2007 AITP Education Special Interest Group Board of Directors

Paul M. Leidig
Grand Valley State Univ
Past President 2005-2006

Don Colton
Brigham Young Univ Hawaii

EDSIG President 2007

Robert B. Sweeney
Univ South Alabama
Vice President 2007

Patricia Sendall
Merrimack College

Secretary 2007

Kenneth A. Grant
Ryerson University

Treasurer 2007

Wendy Ceccucci
Quinnipiac University
Member Services 2007

Thomas N. Janicki
Univ NC Wilmington
Director 2006-2007

Gary Ury
NW Missouri St

Director 2006-2007

Albert L. Harris
Appalachian State Univ

JISE Editor

Valerie J. Harvey
Robert Morris Univ
Chair ISECON 2007

Ronald I. Frank
Pace University

Director 2007-2008

Kathleen M. Kelm
Edgewood College
Director 2007-2008

Alan R. Peslak
Penn State

Director 2007-2008

Information Systems Education Journal 2006-2007 Editorial and Review Board

Don Colton
Brigham Young Univ Hawaii

Editor

Thomas N. Janicki
Univ of North Carolina Wilmington

Associate Editor

Samuel Abraham
Siena Heights Univ

Janet Helwig
Dominican Univ

D. Scott Hunsinger
Appalachian State Univ

Terri L. Lenox
Westminster College

Doncho Petkov
Eastern Connecticut St U

Steve Reames
Angelo State Univ

Michael Alan Smith
High Point University

Belle S. Woodward
Southern Illinois Univ

Charles Woratschek
Robert Morris Univ

Peter Y. Wu
Robert Morris Univ

EDSIG activities include the publication of ISEDJ, the organization and execution of the annual
ISECON conference held each fall, the publication of the Journal of Information Systems Education
(JISE), and the designation and honoring of an IS Educator of the Year. • The Foundation for
Information Technology Education has been the key sponsor of ISECON over the years. • The
Association for Information Technology Professionals (AITP) provides the corporate umbrella under
which EDSIG operates.

c© Copyright 2007 EDSIG. In the spirit of academic freedom, permission is granted to make and
distribute unlimited copies of this issue in its PDF or printed form, so long as the entire document
is presented, and it is not modified in any substantial way.

c© 2007 EDSIG http://isedj.org/5/28/ September 12, 2007

ISEDJ 5 (28) Anderson, Jafar, and Abdullat 3

Teaching Scalability Issues in

Large Scale Database Application Development

Russell Anderson
randerson@mail.wtamu.edu

Musa Jafar
mjafar@mail.wtamu.edu

Amjad Abdullat

aabdullat@mail.wtamu.edu

CIS Department, West Texas A&M University

Canyon, TX 79018

ABSTRACT

Many information systems degree programs include a course in database application develop-
ment. The course typically requires students to design and build a complete database applica-
tion. Instructors usually discuss database performance and scalability. However, giving stu-
dents in-depth, hands-on performance and scalability experience is difficult. Problems often

originate due to small size test databases and from testing a whole application with too few
concurrent users. This can be partially overcome by requiring students to programmatically
populate a large test database; it still does not address performance and scalability problems
that arise when hundreds or even thousands of users concurrently execute transactions
against the application. At the Computer Information Systems Department of West Texas
A&M University, we implemented a hardware/software solution platform that allows students
to assess most performance and scalability characteristics of a database application. The plat-

form permits students to execute thousands of concurrent transactions against the application.
Thus, students can monitor and gather performance statistics such as minimum, maximum,
and mean transaction response time, and failure rates due to locking or configuration prob-
lems. This paper describes in detail the methodology and the solution platform we used, pre-
sents the results of our first round of use in a classroom setting, the students’ learning experi-
ences and issues encountered.

Keywords: database performance, scalability, web applications, testing

1. INTRODUCTION

At the CIS Department of West Texas A&M
University, we have two courses in the data-
base management series. The first intro-
duces the students to database manage-
ment. It covers relational database man-

agement vocabulary and theory, data mod-
eling including E-R diagramming, data nor-
malization, and a heavy dose of SQL. In the
second course, the emphasis is on applica-
tion development in a web-based enterprise

environment where the browser is the front
end, an application server in the middle and
the database management system is em-
ployed as the primary mechanism for data
storage and retrieval as the back end.
(Chen, 2004) addresses the challenges in

teaching a database course in general and
(YAP, 2004) layout the challenges involved
in deploying scalable Database-driven Web
Architecture and the various architectural
components of such an application, although
the authors did lay down the architectural

c© 2007 EDSIG http://isedj.org/5/28/ September 12, 2007

ISEDJ 5 (28) Anderson, Jafar, and Abdullat 4

components, they did not provide mecha-
nisms for testing the performance and scal-
ability of the applications. In this course we
discuss application scalability and perform-

ance tuning. However until recently, we
have not been able to give students a realis-
tic, hands-on experience; allowing them to
accurately assess the performance and scal-
ability characteristics of their applications.
This is was due to the effort involved in set-
ting up a “neutral“ test environment that is

sustainable across semesters and the
amount of scripting and configuration effort
involved that is usually beyond the scope of
the course (TPC BENCHMARK™ C).

Although many academicians did address
the challenges and present strategies for

teaching such a course sequence, we have
not seen any where in the literature where
the hands-on performance and scalability
issue have been directly addresses (Yap,
20004; Abuhejleh, 20002; Lenox, 2004;
Wagner, 2003; Chen, 2004).

This paper presents a methodology that we

have developed at the CIS Department of
WTAMU. It allows students to conduct, and
then evaluate results of realistic, high-load
application performance tests. Our specific
objectives are:

• allow students to gain insight into how
their database applications will perform

under realistic load conditions;

• help students to better understand the
factors affecting performance, scalability
and DBMS configuration in developing
database applications; and

• develop an environment that is sustain-

able and reusable across semesters with
virtually zero scripting effort and mini-
mal configuration and setup effort.

In the paper that follows, we first review the
issues encountered in teaching performance
and scalability assessment in a classroom
setting. This is followed by a description of

the methodology we have developed to en-
able such testing. The paper concludes with
a presentation of the results achieved when
the methodology was employed in our data-
base applications course.

2. ASSESSMENT ISSUES

In the past, attempts by students to assess

application performance and scalability is-

sues were hindered by the following prob-
lems: First, the size of the database is small
(small row count or small number of integ-
rity constraints). It was typical to have stu-

dents design a data model which in terms of
the schema complexity was similar to that
encountered in a real-world corporate envi-
ronment. However, typical tables in corpo-
rate databases range in size from tens of
thousands of rows to millions of rows;
whereas students may manually enter up to

one hundred rows total then begin testing.
(Wagner 2003) provides a good resource
and pointers to scientific databases that are
large enough and are suitable for using in a
database system course.

Second, in the corporate environment, the

number of concurrent users of an application
may range from the tens up to the tens of
thousands. Large user populations are es-
pecially common in web based applications
where the responsibility for data entry has
been extended to the customer or business
partner. In a classroom test environment,

the student/developer himself may be the
only user, or in the best case, a student pro-
ject team of five to six members may per-
form some concurrency testing. In this lat-
ter case students may, using their knowl-
edge of the code, test specific potential
problems with a coordinated attack on a

predetermined unit of data in the database,
hitting a predetermined function point in the
application. Such an approach may validate
already identified potential concurrency
problems or bottlenecks, but obviously fails
to help students identify additional potential

problem locations.

Before developing our current performance
assessment methodology, the process we
used for assessment was mostly manual.
Students first developed the logic for each
required transaction in their application.
Each query/update against the database

found in that logic was then evaluated. This
manual assessment was based on the idea
that the major determinant of query re-
sponse time is the number of physical disk
I/O’s. If we can predict the number of
physical I/O’s that are required to resolve a
query, then we can predict response time.

To accomplish this we had the students de-
velop a sample set of queries that retrieved
and modified data in a set of tables of vary-
ing sizes – with and without indexes. As
those queries executed, they recorded the

c© 2007 EDSIG http://isedj.org/5/28/ September 12, 2007

ISEDJ 5 (28) Anderson, Jafar, and Abdullat 5

disk I/O’s and execution times, then used
these results to develop simple functions to
predict disk I/O’s given the query type, and
the size and structure of the tables involved.

These functions could then be applied to the
previously identified queries, yielding re-
sponse time estimates.

As a second step, students were required to
evaluate the logic of each transaction – ask-
ing the question: “Can the process be re-
coded or the database restructured in a way

that will yield better response time?” Stu-
dents used the “Explain Plan” feature of the
Oracle DBMS that takes as input an SQL
query then returns as output, the optimized
steps that the DBMS will go through to exe-
cute the query. The output of “Explain Plan”

can then be used to help identify inefficien-
cies in the transaction logic and indirectly
point to possible changes in the logic and/or
the database structure that would improve
performance.

The above described processes have both
advantages and shortcomings. The most

important advantage is that it forces the
student to think about what is going on in-
side the DBMS. It is no longer a magical
black box. For example, students quickly
realize that adding an index to improve data
retrieval performance will adversely affect
update performance on the indexed column.

It also gives the student an appreciation for
what the query optimizer is doing. For ex-
ample, a student may look at the output of
an “Explain Plan” and decides to change the
query from a “nested select” to a “join” that
retrieves the same result set. However,

when they compare the first and second
plans, they find that the optimizer has gen-
erated the exact same execution sequence.
Changing the structure of the query has
done nothing to improve expected response
time.

The process has four major short-comings.

First, it is difficult to factor in the effects of
data caching. A query that takes 10 seconds
to execute the first time, may take less than
a second when immediately re-executed. In
the real world, it is difficult to predict what
data will likely be cached and what will not.
Thus, in the I/O analysis, we take the pes-

simistic approach and have the students
clear the cache before each query execution.

The second short-coming is that the process
ignores the issues of concurrent access. It

does not take into account the expected
number of users and the performance ef-
fects that they will have on the DBMS. It
also does not consider the potential prob-

lems that data locking may cause when con-
current users attempt to access and update
the same data.

A third short-coming is that it does not take
into consideration operating system and
DBMS configuration options. Good database
administrators earn their keep by success-

fully tweaking configuration settings. In our
courses we certainly don’t expect to make
competent database administrators out of
our students, but we would like to give them
some exposure to the settings that are
available and the potential effects that these

settings can have on DBMS performance.

A final short-coming (in an academic envi-
ronment) it is hard to deploy hardware,
software architecture, terminals, network
equipment and configuration that are “iden-
tical” which is a TPC requirement (TPC
Benchmark C, 2005) for a realistic perform-

ance testing and scalability environment.

3. METHODOLOGY OVERVIEW

In this section we describe the methodology
that we have developed to overcome the
performance assessment problems described
in the previous section. Students in our
second database course (Database Applica-

tions) are assigned semester long applica-
tion development projects that employ the
methodology. The steps of the methodology
are:

1. Create a data model for the proposed
system by constructing an Entity-

Relationship diagram, then converting
the diagram to a relational database
schema.

2. Implement the data model, and then
populate the database.

3. Code the application.

4. Iterate until satisfactory results are

achieved.

a. Conduct performance and scalability
tests of the application.

b. Evaluate results.

c. Modify the application logic and the
database configuration.

c© 2007 EDSIG http://isedj.org/5/28/ September 12, 2007

ISEDJ 5 (28) Anderson, Jafar, and Abdullat 6

4. IMPLEMENTATION DETAILS

The application chosen for implementation in
the course was a record keeping system for
a small animal veterinary clinic. Specific

sub-systems included: patient (animal) and
client visit tracking, sales from inventory,
payment processing, inventory manage-
ment, and purchasing.

To get realistic results in the performance
tests a database is needed that is compara-
ble in size and structure to typical databases

implemented in a corporate environment.
Given that the project is of sufficient com-
plexity, a well constructed Entity-
Relationship diagram will guarantee that the
resulting database schema will be useful for
performance testing. A diagram of the clinic

schema used is presented in Figure 1. The
database schema was generated using IBM-
Rational Architect from IBM. It consisted of
twelve tables – five master tables (client,
animal, service, vendor, and inventory) and
seven containing transaction (detail) data.
Also, five of the transaction tables had multi-

attribute primary keys. These represented
connections in many-to-many relationships
between master and transaction entities.
Although in terms of table count, this would
not be considered representative of typical
corporate databases, in terms of navigation
complexity and size of the database, it is

sufficient.

To populate a database of sufficient size,
students were required to write a JAVA ap-
plication that filled the database with ran-
domly generated content. Issues in coding
the application included:

• Even though the data was randomly
generated, it still needed to conform to
domain restrictions of the columns.

• All referential integrity constraints must
be maintained. For example, detail rows
for a sales order must only contain rows
for items that are found in the products

table and sold to a customer found in
the customers table.

• All other data constraints must not be
violated. For example, the date of a
payment check for an invoice must not
predate the invoice itself.

The data must be typical and reasonable.

For example, orders may contain from one
to ten line items; no total order amount will

exceed $10,000; and a customer will not
place multiple orders on the same day or
maybe even in the same week.

The JAVA applications that students wrote to

populate the database were required to han-
dle all of the above. Once coded, databases
of any desired size could be generated sim-
ply by changing a few constants inside the
application.

The architecture chosen for application de-
velopment was web-based (Forms, JAVA

servlets and Java server pages (JSP)). JSP
documents consist of a blend of html, defin-
ing the browser presentation, and JAVA
code, executing the application logic on the
server when an HTTP request is made. It is
the JAVA code executing on the server that

interacts with the DBMS enabling dynamic
content and implementing the transaction
processing requirements of the application.
The interface between the web application
server and the DBMS is accomplished in
JAVA via the JDBC API.

Once the application code has been com-

pleted, the next step is to conduct the per-
formance and scalability tests. This testing
process and its components are the main
focus of this paper.

The system used for testing is a combination
of specialized hardware and software (see
Figure 2). The main components of the sys-

tem are:

• One Avalanche-220EE load testing appli-
ance from Spirent Communication
(Spirent, 2003). Its purpose is to gen-
erate large quantities of realistic network
traffic simulating concurrent clients from

multiple subnets in the hardware. The
appliance is at the center of our test
methodology, it simulates thousands of
web clients from multiple sub networks
through hardware and configuration.

• One Dell Power Edge-800 server running
the Windows 2003 server operating sys-

tem with one 1GB network card. This
machine executed the Oracle 10g Data-
base Management System implementing
the student project database.

• One Dell Power Edge-800 server running
the Windows 2003 server operating sys-
tem with one 1GB network card. It exe-

cuted the Tomcat application server

c© 2007 EDSIG http://isedj.org/5/28/ September 12, 2007

ISEDJ 5 (28) Anderson, Jafar, and Abdullat 7

where the JSP applications were imple-
mented.

In addition, two high speed Dell switches
were included in the configuration. One was

used for the test load traffic, and the second
was used for server administration traffic.
This second switch allowed the test load
network traffic to be isolated from the test
administration traffic.

Four transactions within the clinic application
where chosen for the performance test. See

Table 1 for purpose and the number of ta-
bles accessed by each transaction.

To conduct the actual performance tests, we
used the Avalanche appliance to randomly
select and submit transactions to the web
application server which in turn made re-

quests to the database server. The data
submitted by the processes came from pre-
viously generated transaction files which
were accessed independent of the perform-
ance analysis network by the Avalanche ap-
pliance.

In setting up a test run, Avalanche allows

the investigator to specify load settings ei-
ther in terms of transactions per second or
number of concurrent users. (When specifi-
cation is by number of concurrent users,
once the maximum number of concurrent
users is reached, Avalanche does not start
the next transaction until a transaction cur-

rently in the mix completes.) For the per-
formance tests, we chose to specify the
number of transactions per second (tps).
Each student’s application was tested at 5,
then 25, and finally 50 transactions per sec-
ond.

The duration of each test was 80 seconds: a
15 second ramp-up time to reach the peak
tps rate, a 60 second span at peak rate, and
then a 5 second ramp-down. Thus each
student received the results from three 80
second test runs: 5, 25 and 50 tps. After
each test run, the database was restored to

its original state.

5. TEST RESULTS

Avalanche generates two reports in spread-
sheet format for each test run. The first is a
summary of performance during the test
run. A list of statistics included in this report
is found in Table 2. In their analysis, stu-

dents were told to focus on average, mini-

mum, and maximum page response times,
and transaction success rates at each of the
specified transaction per second rates.

The second spreadsheet report contains

measurements of the progress of the test
run sampled at four second intervals. The
measurements reported are listed in Table 3.
As with the summary report, students were
directed to focus on average, minimum, and
maximum page response times and transac-
tion success rates. When problems oc-

curred, such as HTTP errors or significant
increases in response time, the progress re-
port allowed students to determine when
during the run the problem occurred and
which transactions were having the problem.

A third output dataset that students were

given to inspect was the TCP log captured by
Ethereal. Hereafter referred to as the pcap
log. It contained packet contents for all
network traffic to and from the Avalanche
appliance (Avalanche and through configura-
tions allow for the capture of the pcap file).
Its usefulness is described later in the paper.

6. STUDENT EXPERIENCE

As previously stated, the first two objectives
of our database performance assessment
system were to help students gain an appre-
ciation of how their applications would per-
form in a large “real world” environment and
to help them identify possible design and

software configuration changes that could be
made to improve performance. In this sec-
tion, we summarize the experiences of stu-
dents relative to these objectives.

Finding 1: DBMS configuration prob-

lems: For many students, the first step in

analysis of the data was to look at the aver-
age response times for each of the four
transactions. A plot of typical results is
shown in Figure 3.

Two conclusions may be drawn from the
plot. First, at 5 tps, the response time is
acceptable for all transactions (well under 1

second). At 25 tps, one of the transactions
(animal visit history) jumps to 20 seconds.
Second, it is obvious from the plot that the
results are misleading. In going from 5 tps
to 25 tps, the response time increases as
expected; but in going to 50 tps, the re-
sponse time decreases. Students recogniz-

ing this inconsistency were told to look at
more of the data. A plot of transaction suc-

c© 2007 EDSIG http://isedj.org/5/28/ September 12, 2007

ISEDJ 5 (28) Anderson, Jafar, and Abdullat 8

cess rates explains this (see Figure 4). The
response time was actually decreasing, be-
cause many of the submitted transactions
were actually failing and returning almost

immediately. For example, at 50 tps, only
24% of the transactions to record an animal
visit were succeeding. For more information
on the failures, students were told to search
the pcap logs. In doing so, they found that
two different messages were frequently con-
tained within the server response (Oracle

Corporation, 2003) and (Berners-Lee, 1999)
document the various ORA- and HTTP er-
rors and their diagnosis:

ORA-00018: maximum number of sessions

exceeded,

and

HTTP 500: Internal Server error.

In seeing the first, students immediately
recognized that the default configuration for
the DBMS was not adequate. It was set at
one hundred maximum sessions, which was
quickly reached. The second error message
told students that the web server was not

able to keep up with all requests. However,
since this was a course in database man-
agement, not web server administration,
they were told not to attempt to solve this
problem, just to recognize its existence.

Finding 2: Coding considerations and

the DBMS optimizer: As students com-

pared average response times on transac-
tions, they found large differences between
student implementations. For example, in
retrieving an animal history one student’s
average response time was about 500 ms,
while another student’s was about 7000 ms.

When they compared code, they found the
reason for that difference. To retrieve an
animal’s history required reading from five
different tables. The first student had re-
trieved the desired data with two different
queries, each specifying multi-table joins.
The second had programmatically retrieved

the same data by reading one row from the
Visit table then searching the ServicesRen-
dered table for the current visit number, and
finally reading service descriptions from the
Services table. There were two lessons
learned here. First, reduce as much as pos-
sible requests from the application server

(JSP page) to the database server. Second,
specify for the DBMS everything you want

(via multi-table queries), then allow the
optimizer to choose the best way to retrieve
that data.

Finding 3: Deadlock Does Happen: In the

search of the pcap log, students also en-
countered an occasional Oracle message see
(Oracle Corporation, 2003) for more expla-
nations of the error:

ORA-00060: deadlock detected while wait-

ing for resource.

In class lectures, we had discussed the pos-

sibility of deadlock and the need to include
in the code the ability to detect and properly
respond to a deadlock situation. Most stu-
dents considered the possibility of deadlock
so remote that they did not take the time to
properly handle it in their code. Seeing the

above error in the log file brought them back
to reality. Deadlocks do occur. It must be
detected and handled.

Finding 4: The Value of Indexes: After
analyzing results of their test runs, students
were asked to modify their applications, try-
ing to improve performance in processes

that had slow response times. A common
solution was to create an index on foreign
key columns. In most cases performance
did not improve. To help students under-
stand why, students were taught how to use
the Oracle “Explain Plan” feature, which re-
ports the data access sequence and access

methodology that the DBMS will follow in
order to execute a given query. In doing so
they found that the DBMS sequentially read
through the detail table first, and then used
foreign key values in that table to retrieve
rows in the master tables using primary key

indexes. Since, primary key columns were
automatically indexed; the creation of in-
dexes on foreign key columns provided no
benefit.

Finding 5: Response Time is Very Much

Affected by Lock Waits: After reconfigur-
ing the DBMS to support sufficient session

and open cursor requirements, students still
observed dramatic response time deteriora-
tion when going from 5 to 25 then 50 tps.
To help them understand what was happen-
ing, we had them open and watch the visual
Oracle performance monitor where they
could see a live graph at run-time showing

the number of current locks and the number
of sessions currently waiting on locks to be
released. Although we did not provide out-

c© 2007 EDSIG http://isedj.org/5/28/ September 12, 2007

ISEDJ 5 (28) Anderson, Jafar, and Abdullat 9

put logs or other data that directly linked
DBMS status to web server performance,
students were able to use what they had
visually seen on the monitor to go back and

examine the spreadsheet output which re-
ported transaction performance at four sec-
ond intervals throughout the test run. In
doing so they found a correlation between
times of high transaction response time and
the visually observed high lock wait counts.

7. ACKNOWLEDGEMENTS

All the tests were performed at the Software
and Network Security Testing Lab
(SoNSTLab) of the CIS department at
WTAMU. Spirent Communication donated
the appliance testing equipment (Avalanche
and Reflector). Oracle 10g and IBM Rational

are part of the Oracle and IBM Academic
Initiative with the CIS Department at West
Texas A&M University.

8. SUMMARY

By employing a network performance test
appliance in conjunction with a web based
java Servlet and JSP application, we were

able to successfully provide students with a
“real world” test environment of their data-
base applications. They were able to evalu-
ate their application performance under real-
istic user loads far better than would be pos-
sible by sitting down a group of students in a
lab and have them concurrently execute

transactions. The testing environment al-
lowed students to:

• assess which transactions had potential
response time problems,

• quickly locate problems in the DBMS
configuration parameters,

• discover alternative approaches to appli-
cation code that improved response
time,

• recognize the need in their applications
for better error detection and handling,

• see the affects of a locking scheme on
response time, and

• more fully appreciate the fact that prob-
lems such as deadlock do occur and also
need to be addressed in the code.

This was our first attempt using the network
performance test appliance in a classroom
setting. Changes we plan to make in the

performance testing phase of future offer-
ings of our database applications course in-
clude:
• generation of DBMS status and perform-

ance logs that will allow the students to
directly link the performance measures
of the DBMS with response time meas-
ures of the web application server
rather than the visual link previously
employed;

• having students experiment with differ-

ent locking schemes to evaluate their af-
fects on response time and deadlock fre-
quency; and

• scheduling time in the course for more
redesign/code iterations. In the original
trial students only had time for two it-

erations.

9. REFERENCES

Abuhejleh, Ahmad “A Second Course in da-
tabase Management Systems: A Rationale
and a Proposed Course Outline” Proceed-
ings of ISECON’2002.

Berners-Lee, T. et al (1999) “Hypertext

Transfer Protocol HTTP/1.1” RFC2616,
http://www.w3.org/.

Chen, Catherine and Charles Ray (2004)
“The Systematic Approach in Teaching Da-
tabase Applications: Is there Transfer
When Solving Realistic Business Prob-
lems?” Information Technology, Learning

and Performance Journal, Vol. 22 No. 1,
Spring 2004.

Lenox, L. Terri and Charles R. Woratschek
(2004) “The Pros and Cons of Using a
Comprehensive Final Project in a Database
Management Systems Course: Marvin’s

Magnificent Magazine Publishing House”,
Proceeding of ISECON’04.

Oracle Corporation (2003) “Oracle® Data-
base Error Messages, 10g Release 1
(10.1), Part Number B10744-01”.

Spirent Communication (2003) “Avalanche
Analyzer User Guide”

http://www.spirent.com/.

Spirent Communication (2003) “Avalanche-
220EE User and Administrator guides”
http://www.spirent.com.

TPC BENCHMARK™ C (2005) Standard
Specification Revision 5.6”
http://www.tpc.org.

c© 2007 EDSIG http://isedj.org/5/28/ September 12, 2007

ISEDJ 5 (28) Anderson, Jafar, and Abdullat 10

Wagner, J. Paul, Elizabeth Shoop and John
V. Carlis (2003) “Using Scientific Data to
Teach a Database Systems Course” ACM
SIGSE’2003 February 19-23, pp. 224-228.

Yap. Y. Alexander and Claudia, Loebbecke
(2004) “A System for Teaching MIS and
MBA Students to Deploy a Scalable Data-
base-driven Web Architecture for B2C E-

Commerce.” Proceedings of ISECON’2004.

10. APPENDIX: FIGURES AND TABLES

Figure 1. Vet Database Schema

c© 2007 EDSIG http://isedj.org/5/28/ September 12, 2007

ISEDJ 5 (28) Anderson, Jafar, and Abdullat 11

Figure 2. Hardware Configuration of Test Environment

c© 2007 EDSIG http://isedj.org/5/28/ September 12, 2007

ISEDJ 5 (28) Anderson, Jafar, and Abdullat 12

Transaction Response Time

0

5000

10000

15000

20000

25000

0 10 20 30 40 50 60

TPS

A
v
g
 R
e
s
p
 T
im
e
 (
m
s
)

Payment

History

AnimalData

Visit

Figure 3. Transaction Response Time (ms)

Transaction Success Rate

0%

20%

40%

60%

80%

100%

120%

0 10 20 30 40 50 60

TPS

P
e
rc
e
n
t
S
u
c
c
e
s
s
fu
l

Payment

History

AnimalData

Visit

Figure 4. Transaction Success Rate (ms)

c© 2007 EDSIG http://isedj.org/5/28/ September 12, 2007

ISEDJ 5 (28) Anderson, Jafar, and Abdullat 13

Purpose # Tables Read # Tables Modified

Retrieve client/animal data 2 0

Retrieve animal history 5 0

Record Visit 4 6

Record Payment 2 2

Table 1. Test Transaction

Total Attempted Transactions Total Successful Transactions

Total Unsuccessful Transactions Total Aborted Transactions

Attempted Transactions/Sec Successful Transactions/Sec

Unsuccessful Transactions/Sec Aborted Transactions/Sec

Total Attempted TCP Connections Total Established TCP Connections

Min Time To TCP SYN/ACK Max Time To TCP SYN/ACK

Avg. Time To TCP SYN/ACK Min Round Trip Time

Max Round Trip Time Avg. Round Trip Time

Avg. Retransmit Timeout Min Time To First Data Byte

Max Time To First Data Byte Avg. Time To First Data Byte

Min Est. Server Response Time Max Est. Server Response Time

Avg. Est. Server Response Time Min URL Response Time

Max URL Response Time Avg. URL Response Time

Min Page Response Time Max Page Response Time

Avg. Page Response Time

Table 2. Available Test Summary Results (time in ms)

Total Attempted Transactions Total Successful Transactions

Total Unsuccessful Transactions Total Aborted Transactions

Attempted Transactions/Sec Successful Transactions/Sec

Unsuccessful Transactions/Sec Aborted Transactions/Sec

Total Attempted TCP Connections Total Established TCP Connections

Min Time To TCP SYN/ACK Max Time To TCP SYN/ACK

Avg. Time To TCP SYN/ACK Min Round Trip Time

Max Round Trip Time Avg. Round Trip Time

Avg. Retransmit Timeout Min Time To First Data Byte

Max Time To First Data Byte Avg. Time To First Data Byte

Min Est. Server Response Time Max Est. Server Response Time

Avg. Est. Server Response Time Min URL Response Time

Max URL Response Time Avg. URL Response Time

Min Page Response Time Max Page Response Time

Avg. Page Response Time

Table 3. Available Test Summary Results (time in ms)

c© 2007 EDSIG http://isedj.org/5/28/ September 12, 2007

ISEDJ 5 (28) Anderson, Jafar, and Abdullat 14

 Table 4. Available Test Run-Time Results (time in ms)

Seconds Elapsed Desired Load (Transactions/sec)

Current Load (Transactions/sec) Cumulative Attempted Transactions

Cumulative Successful Transactions Cumulative Unsuccessful Transactions

Cumulative Aborted Transactions Attempted Transactions/Second

Successful Transactions/Second Unsuccessful Transactions/Second

Aborted Transactions/Second Incoming Traffic (Kbps)

Outgoing Traffic (Kbps) Incoming Packets (Packets/sec)

Outgoing Packets (Packets/sec) Current Attempted TCP Connections

Attempted TCP Connection Rate Current Established TCP Connections

Established TCP Connection Rate Min Time to TCP SYN/ACK

Max Time to TCP SYN/ACK Current Time to TCP SYN/ACK

Min Round Trip Time Max Round Trip Time

Current Round Trip Time Current Retransmit Time Out

Min Est. Server Process Time Max Est Server Process Time

Current Est. Server Process Time Min Time to TCP First Byte

Max Time to TCP First Byte Current Time to TCP First Byte

Min Response Time Per URL Max Response Time Per URL

Current Response Time Per URL Min Response Time Per Page

Max Response Time Per Page Current Response Time Per Page

c© 2007 EDSIG http://isedj.org/5/28/ September 12, 2007

