
Volume 5, Number 19 http://isedj.org/5/19/ June 5, 2007

In this issue:

Inserting Requirements Traceability into the Capstone Sequence

Robert F. Roggio
University of North Florida
Jacksonville, FL 32224 USA

Abstract: Computing programs typically have a capstone course or sequence wherein students
customarily marshal their academic skills and specify, design and develop a modern, often web-
based, application. The process guiding this development may be a light-weight methodology or a
heavy-weight methodology – or somewhere in between; the development may be implemented using
a traditional, procedural approach or an object-oriented approach. But in any event, stakeholder
needs must ultimately be mapped into a requirements specification that supports follow-on design
and implementation. This paper provides the motivation, mechanism, and empirical data showing
how the infusion of requirements traceability into a capstone sequence is low in cost, high in value,
and easy to implement.

Keywords: capstone software development; requirements traceability

Recommended Citation: Roggio (2007). Inserting Requirements Traceability into the Capstone
Sequence. Information Systems Education Journal, 5 (19). http://isedj.org/5/19/. ISSN:
1545-679X. (Also appears in The Proceedings of ISECON 2006: §2152. ISSN: 1542-7382.)

This issue is on the Internet at http://isedj.org/5/19/

ISEDJ 5 (19) Information Systems Education Journal 2

The Information Systems Education Journal (ISEDJ) is a peer-reviewed academic journal
published by the Education Special Interest Group (EDSIG) of the Association of Information
Technology Professionals (AITP, Chicago, Illinois). • ISSN: 1545-679X. • First issue: 8 Sep 2003.
• Title: Information Systems Education Journal. Variants: IS Education Journal; ISEDJ. • Phys-
ical format: online. • Publishing frequency: irregular; as each article is approved, it is published
immediately and constitutes a complete separate issue of the current volume. • Single issue price:
free. • Subscription address: subscribe@isedj.org. • Subscription price: free. • Electronic access:
http://isedj.org/ • Contact person: Don Colton (editor@isedj.org)

2006 AITP Education Special Interest Group Board of Directors

Stuart A. Varden
Pace University

EDSIG President 2004

Paul M. Leidig
Grand Valley State University
EDSIG President 2005-2006

Don Colton
Brigham Young Univ Hawaii

Vice President 2005-2006

Wendy Ceccucci
Quinnipiac Univ
Director 2006-07

Ronald I. Frank
Pace University

Secretary 2005-06

Kenneth A. Grant
Ryerson University
Director 2005-06

Albert L. Harris
Appalachian St

JISE Editor

Thomas N. Janicki
Univ NC Wilmington

Director 2006-07

Jens O. Liegle
Georgia State Univ
Member Svcs 2006

Patricia Sendall
Merrimack College

Director 2006

Marcos Sivitanides
Texas St San Marcos
Chair ISECON 2006

Robert B. Sweeney
U South Alabama
Treasurer 2004-06

Gary Ury
NW Missouri St
Director 2006-07

Information Systems Education Journal 2005-2006 Editorial and Review Board

Don Colton
Brigham Young Univ Hawaii

Editor

Thomas N. Janicki
Univ of North Carolina Wilmington

Associate Editor

This paper is part of the group that was selected for inclusion in the journal based on preliminary
ratings in the top 30% of papers submitted, and a second review placing it in the top 15% by persons
unconnected with the conference or the journal, and whose names are withheld to preserve their
anonymity.

EDSIG activities include the publication of ISEDJ, the organization and execution of the annual
ISECON conference held each fall, the publication of the Journal of Information Systems Education
(JISE), and the designation and honoring of an IS Educator of the Year. • The Foundation for
Information Technology Education has been the key sponsor of ISECON over the years. • The
Association for Information Technology Professionals (AITP) provides the corporate umbrella under
which EDSIG operates.

c© Copyright 2007 EDSIG. In the spirit of academic freedom, permission is granted to make and
distribute unlimited copies of this issue in its PDF or printed form, so long as the entire document
is presented, and it is not modified in any substantial way.

c© 2007 EDSIG http://isedj.org/5/19/ June 5, 2007

ISEDJ 5 (19) Roggio 3

Inserting Requirements Traceability into the

Capstone Sequence

Robert F. Roggio

Department of Computer and Information Sciences
University of North Florida

Jacksonville, FL 32224

broggio@unf.edu

ABSTRACT

Computing programs typically have a capstone course or sequence wherein students custom-

arily marshal their academic skills and specify, design, and develop a modern, often web-

based, application. The process guiding this development may be a light-weight methodology

or a heavy-weight methodology – or somewhere in between; the development may be imple-

mented using a traditional, procedural approach or an object-oriented approach. But in any

event, stakeholder needs must ultimately be mapped into a requirements specification that

supports follow-on design and implementation. This paper provides the motivation, mecha-

nism, and empirical data showing how the infusion of requirements traceability into a capstone

sequence is low in cost, high in value, and easy to implement.

Keywords: capstone software development; requirements traceability

1. INTRODUCTION

Most computer science (CS) and computer

information sciences (CIS) programs require

one or more courses in software develop-

ment. Within computer science programs,

the courses are normally entitled software

engineering or software design practicum or

other such designator, whereas within CIS

programs, software development is often

called Systems Analysis followed by Systems

Design and Implementation or perhaps it is

called Senior Project 1 and 2. It seems that

in CIS programs the sequence is often a

two-course undertaking. Often considered

the capstone sequence, instructional ap-

proaches are many and varied. Regardless

of the program or the sequence within which

the software project is required, there will be

some methodology to guide the develop-

ment. Typically, the development will have

milestones or deliverables that typically stu-

dent teams must submit for presentation

and/or grading. While the approach to the

software development process may differ

from program to program, one thing re-

mains constant. Customers have require-

ments, and it is ultimately satisfying those

requirements that the application must ac-

commodate.

Of all the reasons attributed to project fail-

ure, industry consensus centers on the man-

agement of requirements: their accurate

capture and modeling, embracing changes to

requirements as a fundamental part of a de-

velopment process, and ensuring that the

deployed application does, in fact, satisfy the

customer requirements. But in order to be

certain that the requirements are satisfied,

requirements must undergo tracing; that is,

the life of a requirement needs to be traced

from its initial form to its ultimate validation

in the deployed application.

Great expenditures of time and effort have

been made in the name of requirements

traceability. In truth, requirements trace-

ability is a controversial subject. From the

engineering perspective, it is highly desir-

able, and tracing requirements assures all

customers that the application is indeed ad-

dressing the proper needs; it assures project

managers that the developers are address-

ing the right problems and developing the

right application; it assists managers in

c© 2007 EDSIG http://isedj.org/5/19/ June 5, 2007

ISEDJ 5 (19) Roggio 4

knowing that the time and energies are di-

rected toward satisfying specific needs; and,

as change might occur, it assists in aligning

the delivered system with current needs, not

ones elicited in the past.

From a business perspective, however, the

need to trace requirements is often viewed

quite differently. From a cost benefit per-

spective, one must be certain that the costs

to trace requirements do result in benefits.

Further, tracing requirements can be an ex-

haustive and expensive undertaking. The

benefits must be carefully weighed against

the risks of undertaking little, if any, tracing.

Clearly, when someone is busy tracing re-

quirements, his/her efforts could be involved

in specific design or implementation matters.

So the business community faces the com-

plex, multi-faceted issue and must decide if

requirements traceability is really worth the

effort. At a minimum, requirements trace-

ability must be low in cost, high in value,

and easy to implement (Ambler, 1999).

It is interesting to note that as part of con-

tractual arrangements, some companies are

required to produce artifacts attesting to

requirements traceability. But evidence has

disclosed that oftentimes these artifacts

amount to little more than square filling and

are frequently accomplished with some apa-

thy – primarily to avoid potential litigation

that could arise from a failed delivery.

Before traceability can be infused into a cap-

stone sequence, it is essential that a concep-

tual framework is established.

2. TRACEABILITY

Traceability may be defined a number of

ways, but in the context of requirements

traceability it may be defined as “the ability

to describe and follow the life of a require-

ment, in both a forward and backward direc-

tion (i.e., from its origins, through its devel-

opment and specification, to its subsequent

deployment and use, and through periods of

ongoing refinement and iteration in any of

these phrases; Turbit). So, given this defini-

tion, it seems that one might be able to re-

phrase the definition into something simpler:

a requirement is simply “something that a

computer application must do for its users.

It is a specific function, feature, quality, or

principle that the system must provide in

order for it to merit its existence” (Kulak,

2004).

What Does This Mean?

Traceability involves tracking the life of a

requirement from its initial inception via a

stakeholder through to the ultimate imple-

mentation of the application. Traceability

requires that developers are able to trace a

feature of the application back to its initial

source(s). Further, one should be able to

trace the requirement both forward and

backward and at all places in between the

initial capture and its ultimate deployment.

It is important to note also that in the spirit

of implementing a real traceability discipline

or activity, the traceability activity should

take place throughout the entire system life

cycle to include maintenance. As empha-

sized in Leffingwell (2002) in their definition

of requirements traceability, “to its subse-

quent deployment and use, and through all

periods of on-going refinement and iteration

in any of these phases."

A Requirements Pecking Order

Dean Leffingwell and Dan Widrig (2002) in

their article entitled, “The Role of Require-

ments Traceability in Software Develop-

ment,” discuss in great detail the develop-

ment and tracing of requirements artifacts.

In applications where requirements trace-

ability is deemed necessary, they suggest a

pecking order: Needs � Features � Use-

Cases.

Needs: Leffingwell and Widrig claim that

those different kinds of projects produce dif-

ferent kinds of requirements artifacts.

These artifacts can be organized and man-

aged in a number of ways. But require-

ments typically originate as statements of

needs by a number of stakeholders. These

needs are reflected in requirements artifacts

and are often quite high level and abstract;

these artifacts may also often include text or

other information relating to the reason for

the need. Further, the needs are not always

totally solvable by an automated system.

While needs may include features that are

amenable to automated solution, they may

also include statements of organizational

procedure, reasons, goals, or even emotion.

Example: “We need to do a better job by

providing ….” Nevertheless, needs are ex-

c© 2007 EDSIG http://isedj.org/5/19/ June 5, 2007

ISEDJ 5 (19) Roggio 5

pressed by those who are often ‘paying the

bill’ for development.

Features: As it turns out, needs, which are a

requirements artifact, are filtered into Fea-

tures, and it is these Features, another re-

quirements artifact, that are amenable to

computer-based solutions. Features also

usually represent requirements in a little

more detail. This ‘refinement’ of needs to

features results in our functional require-

ments. Unfortunately, these are still often

captured in a format that is text-based and

characterized by statements such as, “The

system shall ….” “The system must produce

….” No illegal data shall be stored.” And

this horribly boring list continues. Feature

descriptions may also be accompanied by

mock up screen shots, flowcharts, decision

tables, formulas and sample computations,

and other mechanisms to communicate re-

quirements. Further, these requirements

may be both functional (something the sys-

tem clearly produces, such as a report, table

of data, sounding of an alarm) as well as

non-functional (“The system must be exten-

sible, portable, secure, maintainable, scal-

able, etc.” such as “the system must inter-

face with our legacy Billing System”).

Use-Cases: Many modern methodologies are

now advocating the use of the use-case to

capture stories of end-user interactions with

the system such that these constitute func-

tional requirements. The development of

use-cases is a behavioral approach that con-

sists of both static modeling (classes, ob-

jects, etc.) as well as dynamic modeling (se-

quence and communications diagrams).

Use-Cases (functional requirements) and

Supplementary Specifications (non-

functional requirements) constitute what is

often called the Software Requirements

Specification (SRS).

The use-case specifications can be used to

drive the Design Model and the Implementa-

tion Model to ultimate deployment. The use-

case specifications also support the devel-

opment of a prototype, can be used to drive

the development of test scenarios, and are

used as the basis of iteration planning during

Construction as well as a host of other re-

lated development activities. Most practitio-

ners would agree that the use-case specifi-

cation constitutes a requirements artifact

that all stakeholders can understand from

their individual or role perspectives.

3. PRACTICAL REQUIREMENTS

TRACEABILITY FOR CAPSTONE

COURSES

There are many tools available to support

requirements traceability (Gotel). Many of

these are quite specialized and require com-

plex environments. A number are quite

costly. For safety-critical systems, life-

dependency systems and hosts of other ap-

plications whose reliability must be abso-

lutely certain, it is difficult to understand

how such applications might be developed

without significant traceability mechanisms

in place as an integral component of their

development environment. It appears,

however, that for smaller systems (smaller

is arbitrarily defined by number of use cases

fewer than twenty), a simple traceability

matrix approach may be used.

Volunteers in Medicine (VIM)

The matrix traceability approach was used

for the Volunteers in Medicine

(http://www.vim-jax.org) Project under-

taken by two groups of software develop-

ment students at The University of North

Florida from August 2005 through April

2006. The teams were formed and charged

to specify, design, and implement a new

medical information system for VIM, an or-

ganization in Jacksonville that provides pro

bono medical services to the working unin-

sured. Almost everyone associated with the

VIM is a volunteer (there are four paid em-

ployees). They have doctors, nurses, nurse

practitioners, and others who give freely and

generously of their time. Much of their

funding is from philanthropy and state or

government grants based on usage statistics

based on office visits, patient needs, ap-

pointments, laboratory equipment needs,

etc. The VIM application system was devel-

oped to manage all volunteer information,

patient information, and provider informa-

tion by providing a very user-friendly, non-

intimidating, learnable interface designed to

support various VIM needs.

Needs: Using the approach of identifying and

capturing Needs expressed by a variety of

stakeholders (business manger, volunteer

coordinators, and office workers), a matrix

of needs was produced by the development

teams. Interviewing the individual stake-

holders and documenting these real needs

resulted in the matrix shown in Figure 1 (see

c© 2007 EDSIG http://isedj.org/5/19/ June 5, 2007

ISEDJ 5 (19) Roggio 6

Appendix). These eight broad needs

seemed to reflect the most significant VIM

priorities.

Features: As most ‘needs’ are enunciated,

they often contain content that does not di-

rectly translate into features that can be ac-

commodated by a computer application.

Yet, the real needs that must be accommo-

dated by an application are “embedded” in

these statements. So, subsequent to build-

ing a Needs Matrix, needs were carefully

analyzed and mapped into features amena-

ble to automated solution. The Features

represent the true functional requirements,

albeit abstract. The mapping was developed

starting with each need and gleaning the

specific features. To be certain that each

need mapped to features and that each fea-

ture was traceable to a specific need, both

forward and backward traceability matrices

were developed as shown in Figure 2 and

Figure 3.

Developing these traceability matrices was

an extremely beneficial exercise for the stu-

dents in so many ways. First of all, after

stakeholder acceptance of these Features, it

assured the teams that their efforts were

directed to satisfying a discrete, finite num-

ber of features all bought-into by the stake-

holders. It also helped to assure students

that time expended in accommodating these

features was directed at real needs and not

frills or “nice-to-haves.” Development of

these matrices also assured the stakeholders

that the development teams had indeed cap-

tured, documented, and understood the re-

quired features. From a project manage-

ment perspective, the matrices provided a

mechanism to track project progress and

plan iterations, and the many details

therein, such as individual team member

responsibilities.

Use-Cases: Features, captured in a variety

of formats, are universally-accepted re-

quirements artifacts and have been so for

many years. Typically, however, they often

represent long lists of “correct” (we hope)

yet boring requirement details. As an alter-

native requirement artifact, the use-case

provides stories of user-interactions with an

application, thus communicating require-

ments in a mode much more understandable

to both customers and developers alike. An

index of use-cases developed for the VIM

project is provided in Figure 4.

Using the approach advocated by Leffingwell

and Widrig (2002), features were mapped

into Feature to Use-Case Traceability Matrix

and Use-Case to Feature Backward Trace-

ability Matrix (Figures 5 and 6). Here again,

it was an imperative to ensure all features

were indeed captured in some use-case, and

that each use-case traced back to one or

more features. Since the mapping is essen-

tially from one requirements artifact to an-

other, care had to be taken so that no re-

quirements were lost or diluted.

Beyond Requirements Artifacts

The VIM project continued using the trace-

ability matrix approach to ensuring all re-

quirements were captured and traceable

back to features and needs. But the ap-

proach was also continued forward into the

development of an Analysis Model, where

each use-case was mapped into a series of

analysis classes: boundary, control, and en-

tity classes. This approach showed the

structural relationship among the analysis

classes working together to provide required

relationships. Interaction diagrams (se-

quence diagrams) using analysis classes

were developed to see the behavioral rela-

tionships.

Tracing the use-cases into use-case realiza-

tions is considerably beyond the scope of

this paper, but there are a number of excel-

lent papers that address these and related

issues from a number of practical perspec-

tives. While some provide an approach to

tracing requirements into design such as by

using collaborations of features (e.g., Lef-

fingwell, 2002), others imply that this ap-

proach may be intractable. Regardless,

more sophisticated tool support would be

needed whatever approach is taken.

Traceability matrices can be readily devel-

oped to trace the different use-case scenar-

ios to specific test cases. The interested

reader is referred to Leffingwell (2002).

4. CONCLUSIONS: TRACEABILITY IN

CAPSTONE COURSES – THE GOOD, THE

BAD, AND THE UGLY

There is no doubt that the efforts under-

taken by students in tracing requirements

through a series of requirements artifacts

were very definitely worthwhile. Each deliv-

erable (there were eleven deliverables

c© 2007 EDSIG http://isedj.org/5/19/ June 5, 2007

ISEDJ 5 (19) Roggio 7

spread over two semesters) had a traceabil-

ity component. The cost was minimal in that

no specific commercially available tools were

used. Further, because the application de-

veloped was small in the number of use-

cases, the matrix approach to requirements

traceability was a viable approach.

Once analysis classes were developed (not

shown in this paper but shown in Roggio

(2006), continuing the traceability approach

using matrices into design did, in fact, be-

come terribly cumbersome, even for this

small application. To develop use-case re-

alizations for each scenario in each use-case

required the development of a number of

design classes. Further, the user interface

and the control functions became complex.

While one of the teams did attempt to de-

velop a traceability map from use-cases to

design classes, the number of design classes

was very large in number. As valuable as

the traceability matrix approach was for the

specification and analysis of the application,

using the traceability matrix approach into

design was abandoned and not readdressed

further. While this change in strategy was

justifiable for design, departing from the

traceability matrix approach this was a mis-

take, as none of us had the foresight to see

its value in tracing use-case scenarios to

specific test cases. Use of traceability matri-

ces in testing would have benefited this ef-

fort by providing evidence that all scenarios

underwent some degree of coverage testing.

Hind sight is always 20-20 it seems.

It is important to have everyone “on board”

if the team is to undertake viable require-

ments traceability. The importance of re-

quirements traceability was clearly articu-

lated from the beginning of the project. In

discussions addressing the best practices of

software engineering, the management of

requirements and the failure to embrace

changing requirements receive top billing.

The advantages of an iterative development

process, the notion of time-boxed iterations,

and several other development fundamen-

tals were stressed prior to even embarking

on the project. Not impaired by experience,

the students did not question the cost effec-

tiveness of the traceability exercises and

readily saw the value as they realized that

the costs were little and the benefits were

great. The average total time spent on

traceability, as estimated by the teams, was

about twenty hours over two semesters.

The strategy was clear: traceability was in-

tegral to the process, and the understanding

of its importance was shared equally by all

team members.

Despite many advances in the area of re-

quirements traceability, failure to trace re-

quirements remains a serious problem to-

day. Many feel that infusing a traceability

culture into the organization helps to mature

the organization with the concomitant im-

provement in productivity. Tracing the life

of a requirement may be an onerous under-

taking for some applications, and there is no

single solution to this noble goal. According

to Scott Ambler (1999), traceability is diffi-

cult, but a mature approach to requirements

traceability may be the difference between

organizations that are successful at develop-

ing software and those that are not.

5. REFERENCES

Ambler, Scott, (1999) “Tracing Your Design,”

April, www.sdmagazine.com/documents.

Gotel, Orlena C. Z. and Anthony C.W.

Finkelstein, “An Analysis of the Require-

ments Traceability Problem” oczg; acwf

@doc.ic.ac.uk.

Kulak, Daryl and Eamonn Guiney, Use Cases

– Requirements in Context, Addison-

Wesley, Second Edition, 2004. ISBN 0-

321-15498-3.

Leffingwell, Dean, Don Widrig, (2002) “The

Role of Requirements Traceability in Soft-

ware Development,”

http://www.therationaledge.com/content/s

ep_02/m_requirementsTraceability_dl.jsp.

Roggio, Robert F., (2006) “Front End Re-

quirements Traceability for Small Sys-

tems,” Pacific Northwest Software Quality

Conference (accepted).

Turbit, Neville, “Requirements Traceability,”

The Project Perfect White Paper Collection,

http://www.projectperfect.com.au

c© 2007 EDSIG http://isedj.org/5/19/ June 5, 2007

ISEDJ 5 (19) Roggio 8

APPENDIX

ID NEED

N1 Record Repository

N2 Scheduling

N3 Tracking and Report

N4 Remote Access

N5 Provider Access to Patient Records

N6 Mass Communication

N7 Central Control for Setting Up Authorized Access

N8 Protection Against Unauthorized Access

Figure 1. Needs List

ID NEED FORWARD TRACEABILITY

N1 Record Repository F1, F2, F5, F32

N2 Scheduling F6, F7, F9, F11, F12, F13, F31

N3
Tracking and Report

F14, F15, F16, F17, F18, F20,

F22, F32

N4 Remote Access F23

N5 Provider Access to Patient Records F24, F25

N6 Mass Communication F26

N7 Central Control for Setting Up Authorized Access F33

N8 Protection Against Unauthorized Access F29, F30

Figure 2. Forward Traceability Matrix: Needs to Features (F = ‘Feature’)

c© 2007 EDSIG http://isedj.org/5/19/ June 5, 2007

ISEDJ 5 (19) Roggio 9

ID FEATURE
BACKWARD

TRACEABILITY

F1
The system will allow the user to add, delete, and update patient

records
N1

F2
The system will allow the user to add, delete, and update volun-

teer records
N1

F5
The system shall enable approval of personal profile changes by

the business administrator of volunteer coordinator
N1

F6
The system shall enable the insertion and deletion of volunteers

into the schedule
N2

F7
The system shall enable the insertion of deletion of providers into

the schedule
N2

F9
The system shall enable the insertion of patient qualifying and ex-

amination appointments into the work schedule
N2

F11
From the schedule, the user will be able to access information

about a particular appointment. This in
N2

F12
The system shall allow the rescheduling of appointments missed

by a patient
N2

… ... …

F29
The system shall authenticate users for certain parts of the appli-

cation based on user ID
N8

F30
The system shall not allow users to access system resources until

the user has "clocked" in.
N8

F31
The system shall enable the insertion of patient qualifying ap-

pointments into the work schedule
N2

F32 Maintain chronic medical conditions treatment. N1, N3

F33

The system will allow an authorized user system administration

capabilities such as creating and deleting users and reset forgotten

user passwords.

N7

Figure 3. Backward Traceability Matrix: Features to Needs

c© 2007 EDSIG http://isedj.org/5/19/ June 5, 2007

ISEDJ 5 (19) Roggio 10

USE CASE NO: TITLE

UC-01 Schedule Patients

UC-02 Schedule Volunteers

UC-03 Schedule Qualification Consultation

UC-04 Maintain Patient Records

UC-05 Maintain Volunteer Records

UC-06 Research Statistics

UC-07 Send Group Email

UC-08 Authorize User

UC-09 Perform Administrative Tasks

Figure 4. Use-Case Index – VIM Project

ID FEATURE
FORWARD

TRACEABILITY

F1
The system will allow the user to add, delete, and update pa-

tient records
UC-04

F2
The system will allow the user to add, delete, and update volun-

teer records
UC-05

F5
The system shall enable approval of personal profile changes by

the business administrator of volunteer coordinator
UC-04, UC-05

F6
The system shall enable the insertion or deletion of volunteers

into the schedule
UC-02

F7
The system shall enable the insertion or deletion or providers

into the schedule
UC-02

F9
The system shall enable the insertion of patient examination

appointments into the work schedule
UC-01

… … …

F30
The system shall not allow users to access system resources

until the user has "clocked" in.
UC-08

F31
The system shall enable the insertion of patient qualifying ap-

pointments into the work schedule
UC-03

F32 Maintain chronic medical conditions treatment. UC-04

Figure 5. Traceability Matrix: Feature to Use-Case – VIM Project

c© 2007 EDSIG http://isedj.org/5/19/ June 5, 2007

ISEDJ 5 (19) Roggio 11

ID USE CASE
BACKWARD

TRACEABILITY

UC-01
This use case is started by the Clinical Director or a Volun-

teer and it allows them to schedule patient appointments.
F9, F11, F12

UC-02
This use case is started by the Clinical Director or Volunteer

Coordinator to schedule volunteer work hours.
F6, F7

UC-03
This use case is started by the Clinical Director or a Volun-

teer to schedule a qualification consultation appointment.
F31

UC-04

This use case is started by either, the Office Coordinator,

Volunteer Coordinator or a Volunteer to create, update, and

delete patient records.

F1, F5, F24, F25,

F32

UC-05
This use case is started by the Volunteer Coordinator and it

allows her to edit volunteer records.
F2, F5

UC-06
This use case is triggered by the Business Administrator to

look up, compile and print out organizational statistics.

F13, F14, F15, F16,

F17, F18, F19, F20

UC-07

This use case is started by the Business Administrator and

it allows him to mass email all the volunteers in the data-

base.

F26

UC-08

This use case is started by any user of the system and it

allows them to gain access on site or remotely, and check

authentication.

F29, F30

UC-09

This use case is started by the Business Administrator and

it allows him to create and delete users, and to reset user

passwords.

F33

Figure 6. Traceability Matrix: Use-Case to Feature – VIM Project

c© 2007 EDSIG http://isedj.org/5/19/ June 5, 2007

