
Volume 4, Number 96 http://isedj.org/4/96/ October 13, 2006

In this issue:

Using the Software Development Life Cycle as a Curriculum Design Tool
in the Development of a “Companion Course” for Beginning

Programmers

Ronald J. Harkins
Miami University

Hamilton, OH 45011 USA

Abstract: The software development lifecycle method has been used widely by software engineers to
produce reliable, efficient, and user-friendly software. The lifecycle process solves problems utilizing
technology in six distinct stepsProblem Specification, Problem Analysis, Solution Design, Solution
Implementation (coding), Solution Testing, and Solution Maintenance. Computer science educators,
likewise, have used the lifecycle methodology to promote logical, efficient problem solving, and
disciplined programming behaviors in their students. This same six step lifecycle process can be used
effectively in solving curricular problems encountered by computer science departments. Specifically,
this paper will detail how the lifecycle method was used in solving the problem of helping frustrated,
anxious, and unsuccessful students in the early weeks of a first course in computer programming by
developing a short, targeted, programming concepts “companion course” for these students. The
ensuing content and pedagogical details of this “companion course” will also be reported.

Keywords: CS0, pre-programming, concepts-first curriculum, course development models

Recommended Citation: Harkins (2006). Using the Software Development Life Cycle as a
Curriculum Design Tool in the Development of a “Companion Course” for Beginning
Programmers. Information Systems Education Journal, 4 (96). http://isedj.org/4/96/. ISSN:
1545-679X. (Also appears in The Proceedings of ISECON 2005: §2542. ISSN: 1542-7382.)

This issue is on the Internet at http://isedj.org/4/96/

ISEDJ 4 (96) Information Systems Education Journal 2

The Information Systems Education Journal (ISEDJ) is a peer-reviewed academic journal
published by the Education Special Interest Group (EDSIG) of the Association of Information
Technology Professionals (AITP, Chicago, Illinois). • ISSN: 1545-679X. • First issue: 8 Sep 2003.
• Title: Information Systems Education Journal. Variants: IS Education Journal; ISEDJ. • Phys-
ical format: online. • Publishing frequency: irregular; as each article is approved, it is published
immediately and constitutes a complete separate issue of the current volume. • Single issue price:
free. • Subscription address: subscribe@isedj.org. • Subscription price: free. • Electronic access:
http://isedj.org/ • Contact person: Don Colton (editor@isedj.org)

2006 AITP Education Special Interest Group Board of Directors

Stuart A. Varden
Pace University

EDSIG President 2004

Paul M. Leidig
Grand Valley State University
EDSIG President 2005-2006

Don Colton
Brigham Young Univ Hawaii

Vice President 2005-2006

Wendy Ceccucci
Quinnipiac Univ
Director 2006-07

Ronald I. Frank
Pace University

Secretary 2005-06

Kenneth A. Grant
Ryerson University
Director 2005-06

Albert L. Harris
Appalachian St

JISE Editor

Thomas N. Janicki
Univ NC Wilmington

Director 2006-07

Jens O. Liegle
Georgia State Univ
Member Svcs 2006

Patricia Sendall
Merrimack College

Director 2006

Marcos Sivitanides
Texas St San Marcos
Chair ISECON 2006

Robert B. Sweeney
U South Alabama
Treasurer 2004-06

Gary Ury
NW Missouri St
Director 2006-07

Information Systems Education Journal 2005-2006 Editorial and Review Board

Don Colton
Brigham Young Univ Hawaii

Editor

Thomas N. Janicki
Univ of North Carolina Wilmington

Associate Editor

Samuel Abraham
Siena Heights U

Tonda Bone
Tarleton State U

Alan T. Burns
DePaul University

Lucia Dettori
DePaul University

Kenneth A. Grant
Ryerson Univ

Robert Grenier
Saint Ambrose Univ

Owen P. Hall, Jr
Pepperdine Univ

Jason B. Huett
Univ W Georgia

James Lawler
Pace University

Terri L. Lenox
Westminster Coll

Jens O. Liegle
Georgia State U

Denise R. McGinnis
Mesa State College

Therese D. O’Neil
Indiana Univ PA

Alan R. Peslak
Penn State Univ

Jack P. Russell
Northwestern St U

Jason H. Sharp
Tarleton State U

Charles Woratschek
Robert Morris Univ

EDSIG activities include the publication of ISEDJ, the organization and execution of the annual
ISECON conference held each fall, the publication of the Journal of Information Systems Education
(JISE), and the designation and honoring of an IS Educator of the Year. • The Foundation for
Information Technology Education has been the key sponsor of ISECON over the years. • The
Association for Information Technology Professionals (AITP) provides the corporate umbrella under
which EDSIG operates.

c© Copyright 2006 EDSIG. In the spirit of academic freedom, permission is granted to make and
distribute unlimited copies of this issue in its PDF or printed form, so long as the entire document
is presented, and it is not modified in any substantial way.

c© 2006 EDSIG http://isedj.org/4/96/ October 13, 2006

ISEDJ 4 (96) Harkins 3

Using the Software Development Life Cycle

as a Curriculum Design Tool

in the Development of a “Companion Course”

for Beginning Programmers

Ronald J. Harkins

harkinrj@muohio.edu

Miami University, 1601 University Blvd
Hamilton, Ohio 45011 USA

513-785-3137

ABSTRACT

The software development lifecycle method has been used widely by software engineers to

produce reliable, efficient, and user-friendly software. The lifecycle process solves problems

utilizing technology in six distinct steps…Problem Specification, Problem Analysis, Solution De-

sign, Solution Implementation (coding), Solution Testing, and Solution Maintenance. Com-

puter science educators, likewise, have used the lifecycle methodology to promote logical, effi-

cient problem solving, and disciplined programming behaviors in their students. This same six

step lifecycle process can be used effectively in solving curricular problems encountered by

computer science departments. Specifically, this paper will detail how the lifecycle method

was used in solving the problem of helping frustrated, anxious, and unsuccessful students in

the early weeks of a first course in computer programming by developing a short, targeted,

programming concepts "companion course" for these students. The ensuing content and

pedagogical details of this "companion course" will also be reported.

Keywords: CS0, pre-programming, concepts-first curriculum, course development models

1. INTRODUCTION

Computer science educators have long found

the value in having students apply a meth-

odology in writing computer programs to

solve problems. The software development

lifecycle model is widely popular, both in

industry, as well as in the computer pro-

gramming classroom. This software devel-

opment lifecycle method involves six

phases: Problem Specification, Problem

Analysis, Solution Design, Solution Imple-

mentation (coding), Program Testing, and

Program Maintenance (Koffman, 2002; Wu,

2004). Using this methodology provides a

framework in which computer programming

students can write software without the

stress, time wasting, desperation, and dis-

satisfaction of experimental or "trial and er-

ror" programming (Beck, 2001). Some edu-

cators use a problem solving plan related to

the software development lifecycle that re-

quires programming students to develop lab

reports detailing activities for each step of

the plan (and lifecycle). These reports ac-

company each programming project, and

require the students to be more disciplined

in their problem solving efforts (Hyde,

1979).

Today's computer science educators need to

be dynamic curriculum developers to devise

new courses and curricula to meet the rap-

idly changing needs of both industry and

computer science students. Because the

window for this dynamic, responsive curricu-

lum development can be short, such devel-

opment might also be done in an experimen-

tal or "trial and error" style. Consequently,

this can result in longer development time,

additional curricular revisions, or an inap-

propriate redesign of the course. This can

c© 2006 EDSIG http://isedj.org/4/96/ October 13, 2006

ISEDJ 4 (96) Harkins 4

leave both students and faculty feeling frus-

trated, overwhelmed and dissatisfied with

the process and/or its results. Applying a

methodology to course/curriculum develop-

ment can make the process more efficient,

enjoyable and productive. This methodology

can involve setting objectives, choosing a

context, establishing a feedback process,

defining the course infrastructure, and defin-

ing the course components (Guzdial, 2005).

Likewise, the same software development

lifecycle method that is utilized in industry

and by computer programming students to

solve problems, can also be used as a

course/curriculum development model in

'solving' a curriculum problem or issue, and

developing a new course within the univer-

sity structure.

2. METHODOLOGY

This paper will detail how the software de-

velopment lifecycle method was used to

solve a curricular problem whose solution

involved the development of a "companion

course" for a "first course in computer pro-

gramming" at the university level. Each step

of the life cycle method (Problem Specifica-

tion, Analysis, Design, Implementation,

Testing, and Maintenance) in the develop-

ment of this new course will be discussed.

Problem Specification

Students enrolled in a "first course in com-

puter programming" at our university were

having difficulty very early in these courses,

regardless of the programming language

used in the course (Java, C++, Visual Ba-

sic). Because of significant course content,

and the required pace to cover all of the re-

quired course topics, students became anx-

ious, dissatisfied, and disinterested. Early

withdrawal from these courses became

commonplace. Furthermore, the passive na-

ture of some introductory programming

courses can also fail to motivate students,

turning them away from both the course, as

well as the computer science discipline

(Thomas, 2002). Indeed, "comfort level," as

evidenced by class participation, anxiety

while working on assignments, or perceived

difficulty completing assignments, was found

to be the best predictor of success in a com-

puter science course, followed by mathemat-

ics preparedness of the student (Wilson,

2001). The problem of students being un-

successful, unmotivated, and dissatisfied in

the early weeks of their first programming

course, and the corresponding enrollment

retention problem in these courses, required

both investigation and a curricular solution.

Problem Analysis

In analyzing the problem of student per-

formance, anxiety and the associated en-

rollment decrease in the first month of a

semester-long "first programming course" at

our university, a number of issues and fac-

tors were identified. Meetings and conversa-

tions with faculty teaching "first courses" in

computer programming (C++, Java, and

Visual BASIC) helped analyze the problem in

more detail. Students needed more instruc-

tion and practice in problem solving, and

associated algorithm development. More

mathematical practice was needed. Related

data typing and storage topics needed fur-

ther discussion. These, and other program-

ming-related concepts, such as program

translation/ execution, selection and repeti-

tion logic, and documentation guidelines,

were confusing and somewhat overwhelming

for students in their first programming

course. Furthermore, instructors of these

courses were frustrated in their inability to

address these issues significantly for fear of

not completing all the required topics in the

curriculum for these courses.

The curricular "solution" to this problem that

we proposed included the development of a

new, one-credit hour, "companion course" to

be taken concurrently with a student's first

programming course. This new "computer

programming concepts" course could also be

taken the semester immediately preceding

the students' "first programming course," if

their schedule prohibited concurrent enroll-

ment in both courses. This new course would

not be the "flowcharting course" of 30 years

ago that typically accompanied the first pro-

gramming course, but would focus on the

topics identified above, emphasizing prob-

lem solving and algorithm development

(Mitchell, 2001). Some institutions incorpo-

rate these topics into the first course in pro-

gramming (perhaps by adding a credit hour)

or restructuring a 3-credit introductory

"computer programming concepts" course as

2 hours of lecture/discussion and 1 hour of

online lab activity (McFarland, 2004). We,

however, chose to "factor out" the common

curricular problems found in each of the first

c© 2006 EDSIG http://isedj.org/4/96/ October 13, 2006

ISEDJ 4 (96) Harkins 5

courses in programming (C++, Java, and

Visual BASIC) into this new one-hour, 8-

week course that would overlap the first 8

weeks of the students' first programming

course. Individual computer programming

course instructors agreed that adding to the

already overwhelming curriculum of their

courses was not the preferred solution to

this problem. Additionally, exposing students

to essential programming-related concepts

before introducing them to the intricacies of

a high-level programming language can im-

prove the comfort level of the students (Du-

Hadway, 2002), and hopefully decrease their

anxiety and increase their satisfaction with

computer programming.

An important distinction must be made be-

tween this proposed stand-alone "companion

course" and the traditional CS0 course

taught at many universities (including ours).

CS0 courses were intended to provide an

overview of the computer science profession,

while focusing on programming and applica-

tions for both CS majors and non-majors

(Cook, 1997). At our university, the CS0

course is a 3-credit hour course in problem

solving with VisualBasic.NET. Students ma-

joring in computer science or business enroll

in CS1 with Java as their first language,

while engineering students use C++ in their

first programming course. Consequently,

this new one-credit hour "companion course"

would have to be "language independent"

(utilizing pseudocode throughout), since it

would be populated by students using either

Java, C++, or Visual Basic in their "first

computer programming" course. Thus, as a

stand-alone course, not language specific,

not covering the computer science profes-

sion, and without an online/hands-on com-

puter delivery infrastructure, this course

might resemble the "programming concepts"

component of a traditional CS0 course, but

the complete proposed "companion course"

would differ in many respects.

A similar CS0-related course, offered at an-

other university which was non-

programming language specific, covered the

concepts of functions, procedures, modular

program design, abstract data types, and an

introduction to object oriented design...all

without the "clutter" and "attention" of lan-

guage syntax (Dierbach, 2005). A study,

conducted at this university, found that a

"non-specific" programming language ap-

proach to their CS0-type course had the po-

tential to better prepare students than an

approach involving a preparatory course that

used a specific programming language. In a

related study, it was found that a program-

ming course used as a first exposure to

computer science resulted in a number of

overwhelmed, discouraged students, a low

rate of successful course completion, and

poor retention in successor courses to CS1

(Allan, 1997). This study also found that the

CS1 students who first enrolled in their CS0

course performed at a level of a "half-grade"

higher (3.2 vs. 2.6) when compared to their

counterparts who did not take their CS0

course prior to CS1. Finally, this study found

that CS1 students benefited more from a

CS0- type "problem solving course" than

from a previous, additional stand-alone pro-

gramming course.

Consequently, we decided to develop a

stand-alone, "companion course" for stu-

dents concurrently enrolled in a first course

in computer programming. This new course

would fill a knowledge and skill void (espe-

cially in problem solving, algorithm devel-

opment, and program design) that computer

programming students seemed to exhibit in

the early weeks of their first programming

course.

Solution Design

The third step in the software development

lifecycle is solution design. Here, it involved

designing the content and delivery compo-

nents for this "companion course" to be

taken by students concurrently with (or prior

to) their first computer programming course

at our university. The new course, entitled

"Fundamentals of Computer Program De-

sign" would be a language-independent

course emphasizing problem solving, algo-

rithm development and program design. A

set of 9 course objectives was developed,

and an accompanying course topic list was

written. Course topics included the stored

program concept, computer capabilities and

limitations, machine cycles, program transla-

tion with compilers and interpreters, vari-

ables, constants, data typing/conversion,

arithmetic/relational/logical operators, prob-

lem solving strategies, design tools (pseu-

docode, hierarchy charts, etc), program

style/documentation, logic associated with

sequence, selection, and repetition struc-

tures, object oriented vs. procedural para-

digms, event-driven environments, debug-

c© 2006 EDSIG http://isedj.org/4/96/ October 13, 2006

ISEDJ 4 (96) Harkins 6

ging strategies, and decoding program error

messages.

Although many of these topics are covered

in a first programming course, coverage may

be limited, inadequate, or seem "rushed" to

first-time programmers (especially in the

areas of problem solving strategies, design

tools, and algorithm development). Indeed,

algorithm development, programming style,

program debugging and documentation

techniques were reported among the ten

principles to be incorporated into an intro-

ductory programming course (Schneider,

1978). Others found problem solving and

computer science principles (data types, op-

erators, logic, algorithms, and control struc-

tures) to be invaluable to students in a CS0-

type "problem solving course" taken prior to

a CS1 course in computer programming

(Allan, 1997 ; Cook, 1996).

In the "Solution Design" stage, an Instruc-

tor's Guide was developed, to assist faculty

in teaching this course. This document in-

cluded pragmatic, pedagogical suggestions

for meeting each of the 9 objectives of the

course. Anticipated student questions and

problematic areas (with suggested resolu-

tions) were also addressed in this document.

A possible textbook (Venit, 2004), was iden-

tified for use in the course. However, since

this text was not a "perfect match" to our

course's objectives and topical content list,

an extensive student notepack was written,

consisting of a number of "incomplete"

pages (problems, algorithms, design tools,

etc.), that required the student to complete

them during the class session. A pre-

programming concepts problem solving

course offered by another university used

readings, demonstrations, and pencil/paper

exercises to successfully meet its course ob-

jectives, with positive student learning re-

sults (Allan, 1997). Five homework assign-

ments were also developed for our new

course. As with another similar course

(Goldman, 2004), these assignments con-

sisted of textbook readings and short written

exercises. Generic pseudocode (rather than

specific programming language syntax) was

used in all instructional and student materi-

als for our course because, as stated earlier,

students enrolling in this course would be

using any of a number of programming lan-

guages (C++, Java or Visual Basic) in their

complimentary "first computer program-

ming" course. Finally, a set of instructional

lecture slides (written in a way to invite stu-

dent questioning and discussion) were pre-

pared to reflect the course's objectives and

topical content list. The instructor's slides,

student notepacks, and assignments incor-

porated textbook references to encourage

students to read the textbook as the course

progressed.

Solution Implementation

"Fundamentals of Computer Program De-

sign" was offered to a very small number of

students during it's first semester. The small

number involved might have been a result of

inadequate publicity for the course, or stu-

dents questioning the value of the course in

improving their programming capabilities.

The 8-week, one-credit hour course was de-

livered by the course developer (and author

of this paper) in a traditional lec-

ture/discussion format. Student participation

was encouraged by a number of in-class ac-

tivities, problem solving exercises, and open

ended questioning by the instructor. Real life

situations, sometimes using pseudocode,

were used to explain programming concepts

and structures. For example, when discuss-

ing important looping concepts (entry, exit,

updating/testing conditions, infinite itera-

tions), situations such as "playing baseball

until it is dark" or "playing baseball while it

is light" were used, and extended into a dis-

cussion of maintaining baseball statistics for

a number of innings (to introduce counting

loops). This was similar to DuHadway's

(2002) example using the situation of "tak-

ing bites until your plate is empty or until

you are full" in discussing repetition struc-

tures in a pre-programming computer con-

cepts course. Other real-life examples were

used to make discussions of selection struc-

tures, problem solving, algorithm develop-

ment, and object oriented concepts more

meaningful and relevant to the students.

Two examinations and five written assign-

ments comprised the evaluation for the

course.

Solution Testing

The course was tested (evaluated) by the

instructor in multiple ways. An analysis of

the student evaluations for the course was

done. Meetings with instructors of the vari-

ous "first programming" courses were con-

ducted to discuss the performance of their

c© 2006 EDSIG http://isedj.org/4/96/ October 13, 2006

ISEDJ 4 (96) Harkins 7

students who had enrolled in the new "Fun-

damentals of Computer Program Design"

course. Self-reflection by the instructor of

this new course also contributed to this

course evaluation process. Because of the

very small enrollment in the "Fundamentals

of Computer Program Design" course, any

formal statistical analysis of student evalua-

tion data would be unreliable and question-

able. Although the pace of the class was

manageable, and class attendance was

good, final grades for the course were

mostly C's. This was due to a number of fac-

tors. Students seem to lack the commitment

and discipline, probably because they saw

this as only a one-credit hour course. Some

lacked the logical reasoning abilities so vital

to algorithm development and problem solv-

ing. Furthermore, some students submitted

incomplete assignments that reflected in-

adequate effort and time, even though stu-

dents were given a full week to complete

them. Nonetheless, students commented on

their course evaluations how the course had

helped them in their corresponding "first

computer programming" course, in which

they were also enrolled. Instructors of these

courses also confirmed these students'

comments, noting that they wished more of

their students had enrolled in "Fundamentals

of Computer Program Design." Finally,

some students questioned the textbook used

in the course, noting that it was only used

minimally in classroom activities, and its

content was somewhat incompatible with the

objectives of this course. All of the evalua-

tive feedback would prove invaluable in the

modification and maintenance efforts for this

new course.

Solution Maintenance

While the potential value of the "Fundamen-

tals of Computer Program Design" compan-

ion course in helping "first course" pro-

grammers in the early weeks of their pro-

gramming studies appeared to be evident,

some changes to this "solution" were identi-

fied to improve it for subsequent offerings.

To improve enrollment, each of the "first

courses in programming" (C++, Java, and

Visual Basic), had notes in the course

schedule, advising students to concurrently

enroll in the "Fundamentals of Computer

Program Design" companion course. Like-

wise, a note in the schedule for this new

"companion course" informed students that

"this course should be taken prior to, or con-

current with a first course in computer pro-

gramming in C++, Java, or Visual Basic."

Additionally, faculty in each section of the

"first courses" in computer programming

described the content and value of the new

"companion course" in their first class meet-

ing of the programming courses. As a result,

enrollment had improved, but not signifi-

cantly. Another modification that might in-

crease enrollment in this new course, will

occur during the 2005-06 academic year,

when this 8-week companion course will de-

lay it's start until 2 weeks into the regular

semester. This will allow students in the

programming courses, who experience diffi-

culty with the pace or content (especially the

early topics of algorithm development, prob-

lem solving, and design methods) in the first

few weeks, to enroll in the companion

course by its new "delayed" start date. To

encourage better, and more thoughtful as-

signment submissions in this companion

course, the instructor will discuss and ques-

tion students about the assignment in the

class meeting prior to the assignment due

date. Short quizzes might be used to help

both students and the instructor to identify

content problems in a more timely manner.

A different textbook (Messinger, 2005) will

be adopted, and better integrated into

course lectures, discussion, quizzes, and ex-

amination. More object oriented content

would be included in the course to meet the

needs of students concurrently enrolled in

"first courses" in Java and VisualBasic.Net.

Finally, and probably most important, we

will continue to monitor "early withdrawal"

rates in the first courses in computer pro-

gramming, and in particular, the perform-

ance of students in these courses who were

also enrolled in the "Fundamentals of Com-

puter Program Design" companion course.

3. CONCLUSION

The 6-step software development lifecycle

methodology is not only a valuable problem

solving procedure for software engineers,

but also a beneficial process to guide "cur-

ricular problem solving" in higher education.

The lifecycle method was used to solve the

problem of unsuccessful, unsatisfied stu-

dents (and their associated withdrawal pat-

terns) during the first few weeks of the stu-

dents' first course in computer program-

ming. The "solution" involved the develop-

c© 2006 EDSIG http://isedj.org/4/96/ October 13, 2006

ISEDJ 4 (96) Harkins 8

ment and delivery of a "companion course"

focused on important computer program-

ming concepts, problem solving and algo-

rithm development. These important topics,

covered insufficiently in a "first course" in

computer programming, were essential to

the students' performance, understanding,

and satisfaction in their computer program-

ming efforts. The software development life-

cycle paradigm provided a progressive tem-

plate for devising, implementing, and main-

taining a solution to the problem of early

withdrawal and undesirable student per-

formance during the early weeks of their

first course in programming. The lifecycle

approach to curriculum/course problem solv-

ing in higher education provides a program-

matic, thorough, and reflective technique for

curriculum development, especially in dy-

namic disciplines like computer science,

where new technologies present new chal-

lenges and new "curricular problems" that

need to be solved quickly and efficiently to

meet the ever-changing needs of today's

students and tomorrow's technological

workplace.

REFERENCES

Allan, V.H. and M.V. Kollesar (1997) "Teach-

ing Computer Science: A Problem Solv-

ing Approach That Works," ACM SIGCUE

Outlook, January. Vol. 25, pp. 2-9.

Buck, D. and D.J. Stucki (2001) "JkarelRo-

bot: A Case Study in Supporting Levels

of Cognitive Development in the Com-

puter Science Curriculum," Proceedings

of SIGCSE Symposium, pp. 16-20.

Cook, C.R. (1997) "CS0 : Computer Science

Orientation Course," Proceedings of

SIGCSE Symposium, March, Vol. 29, pp.

87-91.

Cook, C.R. (1996) "A Computer Science

Freshman Orientation Course," Proceed-

ings of SIGCSE Symposium, June, Vol.

28, pp. 49-55.

Dierbach, C., B. Taylor, H. Zhou , and I. Zi-

mand (2005) "Experiences With a CS0

Course Targeted For CS1 Success," Pro-

ceedings of SIGCSE Symposium, Febru-

ary, Vol. 37, pp. 317-320.

DuHadway, L., S. Clyde, and M. Recker

(2002) "A Concepts-First Approach for

an Introductory Computer Science

Course," Journal of Computing Sciences

in Colleges, December, Vol. 18, pp. 6-

16.

Goldman, K. (2004) "A Concepts-First Intro-

duction to Computer Science," Proceed-

ings of SIGCSE Symposium, March, Vol.

36, pp. 432-436.

Guzdial, M. and A. Forte (2005) "Design

Process for a Non-Majors Computing

Course," Proceedings of SIGCSE Sympo-

sium, February, Vol. 1, pp. 361-365.

Hyde, D., B. Gay, and D. Utter, (1979) "The

Integration of a Problem Solving Process

in the First Course," Proceedings of

SIGCSE Symposium, January, Vol. 11,

pp. 54-59.

Koffman, E. and U. Wolz, (2002) "Problem

Solving with Java," 2nd ed., Addison

Wesley, Boston, MA, pp. 21-24.

McFarland, R. (2004), "Development of a

CS0 Course at Western New Mexico Uni-

versity," Journal of Computing Sciences

in Colleges, October, Vol. 20, pp. 308-

313.

Messinger, L. (2005) "Logic and Design of

Computer Programs," Scott Jones, El

Granada, CA,.

Mitchell, W. (2001), "Another Look at CS0,"

Journal of Computing Sciences in Col-

leges, October, Vol. 17, pp. 194-205.

Schneider, G. (1978) "The Introductory Pro-

gramming Course in Computer Science—

Ten Principles," Proceedings of SIGCSE

Symposium, February, Vol 10., pp. 107-

114.

Thomas, L., M. Ratcliffe, J. Woodbury, and

E. Jarman, (2002) "Learning Styles and

Performance in the Introductory Pro-

gramming Sequence," Proceedings of

SIGCSE Symposium, February, pp. 33-

37.

Venit, S. (2004) "Concise Prelude to Pro-

gramming: Concepts and Design," 2nd

ed., Scott Jones, Los Angeles, CA.

Wilson, B.C., and S. Shrock (2001) "Con-

tributing to Success in an Introductory

Computer Science Course : A Study of

Twelve Factors," Proceedings of SIGCSE

Symposium, February, Vol. 33, pp. 184-

188.

Wu, C. (2004) "An Introduction to Object-

Oriented Programming with Java," 3rd

ed., McGraw Hill, New York, NY, pp. 25-

26.

c© 2006 EDSIG http://isedj.org/4/96/ October 13, 2006

