
Volume 4, Number 88 http://isedj.org/4/88/ October 3, 2006

In this issue:

Is There a Role for Open Source Software in Systems Analysis?

Michael P. Conlon Frank W. Hulick
Slippery Rock University of Pennsylvania Slippery Rock University of Pennsylvania

Slippery Rock, PA 16057 USA Slippery Rock, PA 16057 USA

Abstract: Open source software has enjoyed considerable success in recent years, as measured by
the growth both in its popularity and in the number and complexity of available programs. However,
there is little mention of open source software in today’s systems analysis textbooks. This paper
explores the role that open source software should play in systems analysis, and in the systems
analysis course.

Keywords: open source software, systems analysis, free software, FOSS, software development

Recommended Citation: Conlon and Hulick (2006). Is There a Role for Open Source Software
in Systems Analysis? Information Systems Education Journal, 4 (88). http://isedj.org/4/88/.
ISSN: 1545-679X. (Also appears in The Proceedings of ISECON 2005: §2562. ISSN: 1542-7382.)

This issue is on the Internet at http://isedj.org/4/88/

ISEDJ 4 (88) Information Systems Education Journal 2

The Information Systems Education Journal (ISEDJ) is a peer-reviewed academic journal
published by the Education Special Interest Group (EDSIG) of the Association of Information
Technology Professionals (AITP, Chicago, Illinois). • ISSN: 1545-679X. • First issue: 8 Sep 2003.
• Title: Information Systems Education Journal. Variants: IS Education Journal; ISEDJ. • Phys-
ical format: online. • Publishing frequency: irregular; as each article is approved, it is published
immediately and constitutes a complete separate issue of the current volume. • Single issue price:
free. • Subscription address: subscribe@isedj.org. • Subscription price: free. • Electronic access:
http://isedj.org/ • Contact person: Don Colton (editor@isedj.org)

2006 AITP Education Special Interest Group Board of Directors

Stuart A. Varden
Pace University

EDSIG President 2004

Paul M. Leidig
Grand Valley State University
EDSIG President 2005-2006

Don Colton
Brigham Young Univ Hawaii

Vice President 2005-2006

Wendy Ceccucci
Quinnipiac Univ
Director 2006-07

Ronald I. Frank
Pace University

Secretary 2005-06

Kenneth A. Grant
Ryerson University
Director 2005-06

Albert L. Harris
Appalachian St

JISE Editor

Thomas N. Janicki
Univ NC Wilmington

Director 2006-07

Jens O. Liegle
Georgia State Univ
Member Svcs 2006

Patricia Sendall
Merrimack College

Director 2006

Marcos Sivitanides
Texas St San Marcos
Chair ISECON 2006

Robert B. Sweeney
U South Alabama
Treasurer 2004-06

Gary Ury
NW Missouri St
Director 2006-07

Information Systems Education Journal 2005-2006 Editorial and Review Board

Don Colton
Brigham Young Univ Hawaii

Editor

Thomas N. Janicki
Univ of North Carolina Wilmington

Associate Editor

Samuel Abraham
Siena Heights U

Tonda Bone
Tarleton State U

Alan T. Burns
DePaul University

Lucia Dettori
DePaul University

Kenneth A. Grant
Ryerson Univ

Robert Grenier
Saint Ambrose Univ

Owen P. Hall, Jr
Pepperdine Univ

Jason B. Huett
Univ W Georgia

James Lawler
Pace University

Terri L. Lenox
Westminster Coll

Jens O. Liegle
Georgia State U

Denise R. McGinnis
Mesa State College

Therese D. O’Neil
Indiana Univ PA

Alan R. Peslak
Penn State Univ

Jack P. Russell
Northwestern St U

Jason H. Sharp
Tarleton State U

Charles Woratschek
Robert Morris Univ

EDSIG activities include the publication of ISEDJ, the organization and execution of the annual
ISECON conference held each fall, the publication of the Journal of Information Systems Education
(JISE), and the designation and honoring of an IS Educator of the Year. • The Foundation for
Information Technology Education has been the key sponsor of ISECON over the years. • The
Association for Information Technology Professionals (AITP) provides the corporate umbrella under
which EDSIG operates.

c© Copyright 2006 EDSIG. In the spirit of academic freedom, permission is granted to make and
distribute unlimited copies of this issue in its PDF or printed form, so long as the entire document
is presented, and it is not modified in any substantial way.

c© 2006 EDSIG http://isedj.org/4/88/ October 3, 2006

ISEDJ 4 (88) Conlon and Hulick 3

Is There a Role for Open Source Software

in Systems Analysis?

Michael P. Conlon

michael.conlon@sru.edu

Frank W. Hulick

frank.hulick@sru.edu

Computer Science Department
Slippery Rock University of Pennsylvania

Slippery Rock, Pennsylvania 16057 USA

Abstract

Open source software has enjoyed considerable success in recent years, as measured by the

growth both in its popularity and in the number and complexity of available programs. How-

ever, there is little mention of open source software in today's systems analysis textbooks.

This paper explores the role that open source software should play in systems analysis, and in

the systems analysis course.

Keywords: systems analysis, open source software, free software, software development

1. INTRODUCTION

Free/Open Source Software

In 1999, the term open source was first ap-

plied to what had been called free software.

Several participants in the free software

movement realized that the multiple denota-

tions of the word free were causing confu-

sion among potential users of free software.

In particular, free software was being un-

derutilized in the commercial arena because

of managers' belief that free software must

be valueless software, i.e., you get only

what you pay for. However, the word free

here refers to freedom, not price. Richard

Stallman, a founder of the free software

movement, defines free software in the form

of four freedoms (Free Software Foundation,

2005):

• The freedom to run a program, for any

purpose.

• The freedom to study how the program

works, and adapt it to your needs. Access

to source code is a precondition for this

criterion.

• The freedom to distribute copies.

• The freedom to improve the program and

release your improvements to the public,

so that the whole community benefits.

Access to the source code is a precondition

for this criterion as well.

Clearly, these freedoms are important to

commercial users as well as hobbyists and

academics. By emphasizing the availability

of source code, we sidestep the libre/gratis

confusion. Use of the phrase open source

software is not intended to de-emphasize

the importance of freedom, but rather to

eliminate the popular confusion.

Roots of Open Source Software

Open Source software is not new. It has its

roots in the user groups of the major com-

puter hardware vendors and in the computer

science laboratories of universities, where a

culture of sharing software has prospered.

It is important to realize that proprietary

software is, in fact, newer than open source

software, and that proprietary software ven-

dors actually needed to convince the pro-

c© 2006 EDSIG http://isedj.org/4/88/ October 3, 2006

ISEDJ 4 (88) Conlon and Hulick 4

grammer community that software sharing

should not be the norm. Bill Gates, in “An

Open Letter to Hobbyists,” protested that his

software was not to be shared (Gates,

1976). The success of the personal com-

puter revolution, and Microsoft's concomi-

tant rise, led to the general perception that

proprietary, closed source software should

be the norm. In the Unix community, de-

velopment and use of open source software

continued, but these efforts did not initially

attain wide recognition because of the failure

of the Unix vendors to penetrate the per-

sonal computer market.

The virtually complete lack of marketing and

advertising effort associated with open

source software permits a general ignorance

of the very existence of this segment of the

software world. Similarly, many who have

heard of open source software have the mis-

taken impression that its impact is negligi-

ble. In fact, there are many successful open

source programs. Foremost among these

are the programs that were running the

Internet before proprietary Internet software

was created. Among the more-significant

open-source programs are

• Routed, Bind, Sendmail, and Apache,

which provide Internet routing, name ser-

vice, e-mail transfer, and Web service

• Linux, OpenBSD, NetBSD, FreeBSD, and

FreeDOS operating systems

• The Gnu Compiler Collection (gcc) and the

Gnu utilities

• Samba, which provides file and printer

sharing services simulating a Windows

server

• MySQL and PostgreSQL database man-

agement systems

• OpenOffice.org office suite

• Mozilla and Firefox Web browsers

• The KDE and Gnome desktop environ-

ments, each of which provides a plethora

of application programs, from editors and

utilities to finance managers and multime-

dia applications.

Motivation for Including Open Source in

Systems Analysis Curricula

Since open source clearly represents a sig-

nificant segment of the software world, it

deserves consideration in systems analysis

courses and textbooks. One might ask why

it is not discussed there already.

This situation can be explained in that, his-

torically, open source software tended to be

systems software, not the usual domain of

systems analysis. However, as the systems

software has stabilized, open-source pro-

grammers are moving more and more into

application programming. As businesses

perceive advantages in open source devel-

opment, they will need more systems ana-

lysts who understand open source develop-

ment processes.

2. OPEN SOURCE IN THE SOFTWARE

DEVELOPMENT LIFE CYCLE

Build or Buy?

Often, systems analysis is performed in or-

der to specify software for acquisition rather

than for development. An advantage of off-

the-shelf software is reduced risk, since, be-

fore the firm commits to it, the software is

known to work. A disadvantage is that the

software may not be a good fit for the firm,

and the firm might need to make inconven-

ient changes to its business processes, and

perhaps write custom workaround software

to accommodate the acquired software to

the firm's legacy systems.

Open Source Reduces Risk

Perhaps the simplest way to include open

source into systems analysis is to consider

existing open source software as well as

proprietary software when making the

“build-or-buy” decision, which now becomes

the “build, buy, or download” decision. Ap-

propriate open source software gives us the

best of both building and buying. Risk is

reduced because the software is known to

work (and it can even be tested before any

commitment to it is made), and, because of

the availability of source code, the program

can be customized to the firm's specific

needs.

Risk is further reduced when open source

software is chosen, because open source

software is written to community standards.

There are no secret, proprietary file formats

or secret communication protocols in open

source software, since it is not to the advan-

tage of anyone writing open source software

to foster user lock-in. This means that the

c© 2006 EDSIG http://isedj.org/4/88/ October 3, 2006

ISEDJ 4 (88) Conlon and Hulick 5

firm's data will be accessible well into the

future. Even if standards change, open

standards are well-documented, so any

competent programmer can write a program

to convert data to any new format.

Additional risk reduction comes from the

very openness of the code. Since anyone

can see the code, there is little chance that a

security trapdoor can be introduced unde-

tected. Additionally, because the firm pos-

sesses the product's source code, there is no

danger of the product's discontinuance be-

cause of a vendor's merger, bankruptcy, or

change in marketing strategy. If the soft-

ware is useful to the firm, the firm can con-

tinue to use, maintain, and extend it.

Commercial Open Source Development

Another option for the firm is to build soft-

ware rather than to acquire it. Should open

source development be considered? Isn't it

folly for a company to give away the results

of its efforts? The answer depends on the

firm's business model.

A company that makes most of its money by

licensing software would be foolish to donate

its software to the open source world, unless

it is planning to change its business model.

Don't expect Microsoft Word, WordPerfect,

or Quicken to become open source anytime

soon.

However, most programmers and analysts

are not employed by companies that license

software. They are employed by companies

that use software (Raymond, 1999). There

are distinct advantages to such a company

in open-sourcing its software products.

Their small IT staff may be overworked, but

if their software is useful to other compa-

nies, those companies' programmers may

contribute to the software project. This ef-

fectively extends the company's develop-

ment staff without extending its payroll. The

resulting independent peer review of the

software can facilitate the development of

more-reliable, feature-rich software for less

cost.

There are even reasons for software-for-

licensing companies to consider going open

source. Often there is more money to be

made in supporting software users than in

selling software licenses. By open-sourcing

a product, a company might develop a larger

market, and the support business could be

lucrative. Red Hat Linux and MySQL are

products of such (profitable!) companies.

Open Source Methodology

Many open source projects are organized

with a single leader or a small leadership

committee (simplified to just leader hence-

forth). The leader decides whether to adopt

any proposed software change, the sole cri-

terion being the technical merit of the pro-

posed change. Since the code base of an

open source project is placed in a public re-

pository, such that anyone can download,

view, and modify the source code, anyone at

all can suggest any change whatsoever. So,

what constitutes technical merit?

In proprietary software development it is

expected that documents have been devel-

oped which specify the scope of the project,

its financial feasibility, and a schedule for its

completion. Code is developed in accor-

dance with the planning documents, so there

is no question about the code's merit. It

would be rather unusual for a programmer

involved in proprietary development to con-

tribute a feature outside the scope of the

plan. However, development projects have

been known to fail in spite of such planning.

Open source projects generally do not have

such planning documents, yet “bad” code

gets rejected and “good” code gets ac-

cepted. Ultimately, it is the team of devel-

opers on the project who determine what

constitutes “good” code. These developers

have self-selected themselves for the pro-

ject, so they embody a good deal of domain

expertise (Morton, 2004). If the leader says

certain code is bad, s/he can expect consid-

erable opposition from the team if they dis-

agree. A leader who disregards the opinions

of the team risks losing leadership. Open

source projects have acquired an excellent

record for quality, so the open-source qual-

ity-assurance process certainly works.

Among the advantages of open-source de-

velopment is its resistance to externally-

mandated scope creep, which is often cited

as one of the major causes of project fail-

ures. Because the people determining tech-

nical merit in open-source projects are de-

velopers and not managers, they tend to

accept changes based on the practicality and

usefulness of the changes, rather than on

criteria related to marketing, or to some-

c© 2006 EDSIG http://isedj.org/4/88/ October 3, 2006

ISEDJ 4 (88) Conlon and Hulick 6

one's status within the corporate hierarchy.

Sometimes, external developers may con-

tribute features outside the defined scope of

the project. Since they have taken it upon

themselves to design the new feature, it

represents no cost to the firm, and since it

comes from someone with genuine concern

for the project, it may well be that this new

feature belongs in the system in spite of its

omission from design documents.

One type of planning not found in successful

open source projects is schedule planning.

While deadlines exist, they are set by the

development team rather than managers,

and they are not set until it becomes appar-

ent to the leader that the current phase of

development is nearing completion. Since

no one ever really can tell how long some-

thing that has never been done before can

take, the real purpose of deadlines is to es-

tablish a limit on development time. A firm

that does open source development will

have to be content with not knowing very far

in advance when their project will be com-

pleted. In reality, it is never possible to

know the completion time in advance, but in

open source development there is no at-

tempt to pretend otherwise. When the de-

velopers set the deadlines, software is re-

leased when it is ready, with minimal bugs.

If someone really needs the software before

it's ready, they can always download it from

the code repository. Research even seems

to indicate that this lack of scheduling actu-

ally results in the fastest delivery of a work-

ing system (DeMarco and Lister, 1987).

None of this means that open source pro-

jects don't fail. Browsing through the open

source projects at sourceforge.org will reveal

many projects that are inactive. Projects

may become inactive for many reasons,

other than successful completion: The leader

lost interest and never attracted a commu-

nity of developers to take over; the project

wasn't carefully thought-out and never made

significant progress; the project was not fea-

sible; the project duplicates another suc-

cessful project. The good news is that

someone else attempted these failed pro-

jects, so your firm's resources were not

wasted in the process.

There is some question as to what problems

are appropriate for open source develop-

ment. Andrew Morton, one of the leaders of

the Linux project, has suggested that good

open source projects deal with problem do-

mains which are well-understood, such as

operating systems, compilers, Internet infra-

structure, databases, word processors, and

the like (Morton, 2004). Eric Raymond

(Raymond, 1999) agrees. When a firm at-

tempts a state-of-the-art software project, it

may not find a community of programmers

who understand the problem, thus bearing

much of the cost of development itself. It

would be difficult for such a firm to justify

donating such a project. One would need to

question whether, as the project progresses,

it will collect an external following to con-

tribute to further development, and whether

the benefits of such contributions would be

preferable to the income obtainable from

licensing the program.

Initiating Open Source Development

A firm should start its open source software

project in much the same way as if it were

not open source. Determination of business

requirements and the technical feasibility

study are as important as ever. Check for

related government or community docu-

ment-format or communication-protocol

standards. If such standards exist, confor-

mance with these standards must be speci-

fied.

From his experience in the fetchmail experi-

ment, Eric Raymond (1997) suggests that

the next step is for the firm to look for an

open-source project that approximates its

requirements. This eliminates some risk:

the starting code, however incomplete, still

works.

Assume, as happened with fetchmail, that

such a project exists, with some working

code, but that many or even most require-

ments are not met. By contributing im-

provements to this code, the firm’s pro-

grammers will start to get feedback from the

leader and other members of the team. As

more and more improvements are contrib-

uted, and if the contributions are construc-

tive, the firm’s programmers will become

trusted within the team. This will lead to

their being given write-access to the code

repository. One of them may even be asked

to take over leadership should the current

leader have lost interest in the project.

c© 2006 EDSIG http://isedj.org/4/88/ October 3, 2006

ISEDJ 4 (88) Conlon and Hulick 7

After some time the firm will come to one of

two conclusions: either this software is going

to solve the problem, or, as happened in the

fetchmail experiment, a complete re-write is

necessary. In the former case, the firm

needs only to proceed as it is already. In

the latter case, it has, in effect, refined the

problem, and is now prepared to re-write the

specifications and structural design. This is

not a failure: the firm has just avoided the

“This is what we asked for but this is not

what we need” problem. Brooks wrote,

“Plan to throw one away; you will, anyhow”

(Brooks, 1995).

If there seems to be no open-source pro-

gram that approximates the firm’s needs,

this is the point where development starts.

 Raymond insists that a project cannot begin

in bazaar style, i.e., with large numbers of

geographically dispersed, self selected team

members. On the other hand, a polished,

final product isn’t necessary, either, before

soliciting outside developers. What is

needed is a program which can “(a) run, and

(b) convince potential co-developers that it

can be evolved into something really neat in

the foreseeable future” (Raymond, 1997),

even if the firm must create that much itself.

Once again, Raymond's fetchmail project

serves as a model for development. As the

replacement system is designed and built,

the code should be posted on the Internet

for public access. Postings must occur regu-

larly; waiting until the code is perfect would

be a mistake. Of course, suitable disclaim-

ers about the stability of the code should be

posted, too. If the project is useful, devel-

opers from the old project will be attracted,

and new ones as well. These people will

help find bugs and contribute fixes and im-

provements, and the system will approach

stability rapidly. Raymond states, “Treating

your users as co-developers is your least-

hassle route to rapid code improvement and

effective debugging (Raymond, 1997).” Note

that this procedure has a lot in common with

Extreme Programming (Beck, 1999).

Thus, testing is integrated with develop-

ment: the openness of the code means that

people will try the code, well before it's

ready for final release. Bugs that would not

have been noticed become apparent to

someone in the mass of users trying out the

system. Linus' Law applies: “Given enough

eyeballs, all bugs are shallow” (Raymond,

1997). A major feature of open source de-

velopment is that it bypasses Brooks' Law,

multiplying the ability to find and fix bugs.

The pervasiveness of the Internet is the sin-

gle development which has catapulted open

source development to the fore. Program-

mers will be productively developing soft-

ware with team members who have never

met each other before. Most communication

within the design team in open source de-

velopment occurs over e-mail and, to a

much lesser extent, IRC (Internet Relay

Chat) (Morton, 2004). Unlike with proprie-

tary development, all of the design conver-

sations (and disagreements) are public. Ex-

pect that “dirty laundry” will be hanging out;

this is a requirement for a democratic proc-

ess. Mailing lists are archived, providing a

running record of design conversations and

decisions. If you are disturbed by the frank,

public discussions related to the system you

are developing, remember that proprietary

development has lots of dirty laundry, too,

but the public is rarely privy to the conver-

sations.

3. CHANGES TO THE SYSTEMS

ANALYSIS COURSE

The above discussion necessitates the fol-

lowing changes in systems analysis course

content:

• Add open source into the menu of options

in the (renamed) “build, buy, or download”

decision. Treat the open source option as

a low-risk option, explaining that the low

risk derives from the facts that the code is

known to run, the code can be modified to

meet a firm's specific needs, and that the

code will not be a captive of a vendor's in-

solvency, acquisition, or changes in mar-

ket strategy.

• Add download-and-modify as an option

intermediate to build and buy. This is an

option that was previously unavailable,

and it gives the firm significant flexibility.

Point out that the download option offers

the advantage of giving code customized

to the firm's needs without the need for

the firm to bear all of the development

costs itself.

• Discuss open source development as a

valid option when the decision is made to

c© 2006 EDSIG http://isedj.org/4/88/ October 3, 2006

ISEDJ 4 (88) Conlon and Hulick 8

develop custom software. Among the rea-

sons for developing new software under an

open-source regimen are the potential as-

sistance from outside developers, which

leads to rich functionality and minimal

bugs, and the distribution of development

costs across all the firms that take an in-

terest in the software.

• Point out the advantages of giving soft-

ware away to the community, as well as

the circumstances when proprietary devel-

opment makes better sense. These ad-

vantages include the software improve-

ments discussed in the preceding point,

and the potential income from selling sup-

port. Open-sourcing software may facili-

tate its wider distribution, thus giving the

firm greater potential for income from

support contracts. Indicate that keeping

the source code closed makes most sense

when the code embodies trade secrets or

when the firm expects to make significant

income from licensing the software.

• Emphasize the importance of the openness

of the process when open source devel-

opment is chosen, since outside contribu-

tors will not join a partially-closed process.

Discuss how open source development

trades control for outside assistance. Tell

students that an open process means pub-

lic discussions, and even arguments, about

design decisions. This is necessary to

achieve the best possible technical solu-

tion.

• Stress that release of open source soft-

ware must be both early and often, at

least in the early phases of development.

Regular, frequent releases encourage the

developer community, tempting them to

try out the latest version and return bug

reports and fixes, and serve as an incen-

tive for them to get involved.

• Point out that this outside assistance can

both help eliminate bugs and drive faster

development.

• Finally, point out that open-sourcing soft-

ware is not a panacea. A project that is

not well-thought-out and competently led

will fail, whether the development process

is open or closed.

4. CONCLUSION

Open source software has become an impor-

tant part of the software world. It makes

economic sense for many development pro-

jects. Systems analysts and designers need

to understand its economics and peculiar

development processes. It is incumbent

upon those who teach systems analysis and

design to educate future systems analysts

about open source development.

5. REFERENCES

Beck, Kent (1999) Extreme Programming

Explained: Embrace Change. Addison-

Wesley Professional, ISBN 0-201-61641-6.

Brooks, Frederick P. (1995) The Mythical

Man-Month: Essays on Software Engineer-

ing, 20th Anniversary Edition. Addison

Wesley, ISBN 0-201-83595-9.

Dafermos, George (2001) “Management &

Virtual Decentralised Networks: The Linux

Project”. Masters thesis, Durham Business

School.

DeMarco and Lister (1987) Peopleware: Pro-

ductive Projects and Teams. Dorset House,

1987, ISBN 0-932633-05-6.

Free Software Foundation (2005) “The Free

Software Definition.” Web document:

www.gnu.org/philosophy/free-sw.html.

Gates, William (1976) “An Open Letter to

Hobbyists.” MITS Computer Notes, Febru-

ary, 1976. Currently available on the

Worldwide Web at www.blinkenlights

.com/classiccmp/ gateswhine.html.

Glass, Robert L. (2003) “A Sociopolitical

Look at Open Source.” Communications of

the ACM, 46(11), November, 2003, pp.

21-23.

Mockus, Audris; Roy T. Fielding; and James

Herbsleb (2000) “A Case Study of Open

Source Software Development: the Apache

server.” Proceedings of the 22nd Interna-

tional Conference on Software Engineer-

ing, June 2000, Limerick, Ireland.

Mitsova, Helena and Markus Neteler (2004)

“GRASS as Open Source Free Software

GIS: Accomplishments and Perspectives.”

Transactions in GIS, 2004, 8(2), pp. 145-

154.

c© 2006 EDSIG http://isedj.org/4/88/ October 3, 2006

ISEDJ 4 (88) Conlon and Hulick 9

Morton, Andrew (2004) “Open Source Soft-

ware Development and the Software-using

Business World.” Transcript of a speech

given at SDForum, November 16, 2004.

Obtainable at www.groklaw.net/article

.php?story=20041122035814276&query

=Software-using+business+world

Open Source Initiative (2002) The Open

Source Definition. http://www.opensource

.org/docs/definition.php

Raymond, Eric (1997) The Cathedral and the

Bazaar. WWW document, www.catb.org/

~esr/writings/cathedralbazaar/cathedral-

bazaar

Raymond, Eric (1999) The Magic Cauldron.

WWW document, www.catb.org/~esr/

writings/cathedral-bazaar/magic-cauldron

c© 2006 EDSIG http://isedj.org/4/88/ October 3, 2006

