
Volume 4, Number 7 http://isedj.org/4/7/ February 13, 2006

In this issue:

FD-EXPLORER: A Pedagogical and Design Tool for Functional
Dependency Exploration

Julian M. Scher Canghui Qiu
New Jersey Institute of Technology New Jersey Institute of Technology

Newark, New Jersey 07102 USA Newark, New Jersey 07102 USA

Abstract: Functional dependencies are merely a type of relationship between attributes in a re-
lation, or, alternatively, may be viewed as constraints on attributes, but their importance in the
optimal design of databases is enormous. Normalization of a database, and the decomposition of
relations, are totally dependent upon the database designer being able to identify functional de-
pendencies, and manipulate them. Curricula in CS, IS and IT will almost always include a course
in database design, with functional dependencies being a key topic in such a course. FD-Explorer
is a new tool we have developed which enables both the student of database design, as well as
professional database developers, to define a known set of functional dependencies on a relation,
deduce new sets of functional dependencies, compute closures of individual attributes and the set
of functional dependencies, and identify superkeys. This software tool, which we ultimately intend
to make freely available for students in database design classes in institutions of higher learning,
will provide the user with significant insight into the underlying explicit and implicit relationships
between attributes, contribute to the optimal design of database structures in applications, and
enhance the user’s understanding of the fundamental principles of functional dependencies.

Keywords: functional dependencies, database design, Armstrong’s axioms, normalization, at-
tributes, closure

Recommended Citation: Scher and Qiu (2006). FD-EXPLORER: A Pedagogical and Design
Tool for Functional Dependency Exploration. Information Systems Education Journal, 4 (7).
http://isedj.org/4/7/. ISSN: 1545-679X. (Also appears in The Proceedings of ISECON 2004:
§4123. ISSN: 1542-7382.)

This issue is on the Internet at http://isedj.org/4/7/

ISEDJ 4 (7) Information Systems Education Journal 2

The Information Systems Education Journal (ISEDJ) is a peer-reviewed academic journal
published by the Education Special Interest Group (EDSIG) of the Association of Information
Technology Professionals (AITP, Chicago, Illinois). • ISSN: 1545-679X. • First issue: 8 Sep 2003.
• Title: Information Systems Education Journal. Variants: IS Education Journal; ISEDJ. • Phys-
ical format: online. • Publishing frequency: irregular; as each article is approved, it is published
immediately and constitutes a complete separate issue of the current volume. • Single issue price:
free. • Subscription address: subscribe@isedj.org. • Subscription price: free. • Electronic access:
http://isedj.org/ • Contact person: Don Colton (editor@isedj.org)

2005 AITP Education Special Interest Group Board of Directors

Stuart A. Varden
Pace University
Past President

Paul M. Leidig
Grand Valley St Univ
2005 EDSIG President

Don Colton
BYU Hawaii

Vice President

Ronald I. Frank
Pace University
Secretary, 2005

Kenneth A. Grant
Ryerson University
Dir 2002-2003, 2005

Albert L. Harris
Appalachian St Univ

JISE Editor

Jeffrey Hsu
Fairleigh Dickinson
Director, 2004-2005

Dena Johnson
Tarleton State Univ
Membership, 2005

Jens O. Liegle
Georgia State Univ
Director, 2003-2005

Marcos Sivitanides
Texas St San Marcos
Director, 2004-2005

Robert B. Sweeney
U of South Alabama
Treasurer, 2004-2005

Margaret Thomas
Ohio University
Director, 2005

Information Systems Education Journal Editorial and Review Board

Don Colton
Brigham Young University Hawaii

Editor

Thomas N. Janicki
University of North Carolina Wilmington

Associate Editor

Amjad A. Abdullat
West Texas A&M U

Samuel Abraham
Siena Heights U

Robert C. Beatty
N Illinois Univ

Neelima Bhatnagar
U Pitt Johnstown

Tonda Bone
Tarleton State U

Alan T. Burns
DePaul University

Lucia Dettori
DePaul University

Ronald I. Frank
Pace University

Kenneth A. Grant
Ryerson Univ

Robert Grenier
Augustana College

Owen P. Hall, Jr
Pepperdine Univ

Mark (Buzz) Hensel
U Texas Arlington

James Lawler
Pace University

Jens O. Liegle
Georgia State U

Terri L. Lenox
Westminster Coll

Denise R. McGinnis
Mesa State College

Peter N. Meso
Georgia St Univ

Therese D. O’Neil
Indiana Univ PA

Alan R. Peslak
Penn State Univ

Robert B. Sweeney
U of South Alabama

William J. Tastle
Ithaca College

Margaret Thomas
Ohio University

Jennifer Thomas
Pace University

Stuart A. Varden
Pace University

Charles Woratschek
Robert Morris Univ

EDSIG activities include the publication of ISEDJ, the organization and execution of the annual
ISECON conference held each fall, the publication of the Journal of Information Systems Education
(JISE), and the designation and honoring of an IS Educator of the Year. • The Foundation for
Information Technology Education has been the key sponsor of ISECON over the years. • The
Association for Information Technology Professionals (AITP) provides the corporate umbrella under
which EDSIG operates.

c© Copyright 2006 EDSIG. In the spirit of academic freedom, permission is granted to make and
distribute unlimited copies of this issue in its PDF or printed form, so long as the entire document
is presented, and it is not modified in any substantial way.

c© 2006 EDSIG http://isedj.org/4/7/ February 13, 2006

ISEDJ 4 (7) Scher and Qiu 3

FD-EXPLORER: A Pedagogical and Design Tool for

Functional Dependency Exploration

Julian M. Scher

Department of Information Systems

College of Computing Sciences

New Jersey Institute of Technology

Newark, New Jersey 07102 USA

Scher@adm.njit.edu

and

Canghui Qiu

Department of Electrical and Computer Engineering

Newark College of Engineering

New Jersey Institute of Technology

Newark, New Jersey 07102 USA

Cq2@njit.edu

Abstract

Functional dependencies are merely a type of relationship between attributes in a relation, or,

alternatively, may be viewed as constraints on attributes, but their importance in the optimal design of

databases is enormous. Normalization of a database, and the decomposition of relations, are totally

dependent upon the database designer being able to identify functional dependencies, and manipulate them.

Curricula in CS, IS and IT will almost always include a course in database design, with functional

dependencies being a key topic in such a course. FD-Explorer is a new tool we have developed which

enables both the student of database design, as well as professional database developers, to define a known

set of functional dependencies on a relation, deduce new sets of functional dependencies, compute closures

of individual attributes and the set of functional dependencies, and identify superkeys. This software tool,

which we ultimately intend to make freely available for students in database design classes in institutions of

higher learning, will provide the user with significant insight into the underlying explicit and implicit

relationships between attributes, contribute to the optimal design of database structures in applications, and

enhance the user’s understanding of the fundamental principles of functional dependencies.

KEYWORDS: Functional dependencies, database design, Armstrong’s axioms, normalization, attributes,

closure.

1. DATABASE DESIGN IN THE IS CURRIULA

The capability for an Information Systems professional

to understand, apply, and design database applications

has been a key component in the various IS curricula

recommendations issued by ACM and other professional

organizations. For instance, in "IS2002 - Model

Curriculum and Guidelines for Undergraduate Degree

Programs in Information Systems," jointly developed by

ACM, AIS and AITP, a course in database design is one

of ten required courses recommended for all students

majoring in Information Systems (Gorgone et. al,

2002).. The bulk of database design course material for

IS2002 is focused in the recommended course IS2002.8

(Physical Design and Implementation with DBMS), but

also appears in IS2002.7 (Analysis and Logical Design).

Furthermore, in the formal accreditation standards

established by the Computing Accreditation

Commission for Information Systems curricula,

c© 2006 EDSIG http://isedj.org/4/7/ February 13, 2006

ISEDJ 4 (7) Scher and Qiu 4

Database Management is one of six areas required to be

in the core of every fully accredited Information

Systems curriculum (Computing Accreditation

Commission, 2004).

The Year 2001 Model Curricula for Computing (CC-

2001), created by a Joint IEEE Computer Society/ACM

Task Force to update the 1991 curricula

recommendations of the group, released the

Strawman_Report in March, 2000, detailing the

recommendations of this group. Information

Management (IM) is identified as one of the thirteen

‘knowledge areas’ for computing disciplines, and IM4,

Relational Database Design (functional dependencies,

normalization, etc.) is identified as one of the eight

components of the Information Management core. A

previous discussion of the role of Database Design in the

Computing curricula may also be found in (Mohtashami

and Scher, 2000), which also details the relevance of

Bloom’s Cognitive Domain Taxonomy in teaching

database design concepts.

Database Design is thus seen to be a key knowledge area

for the Information Systems professional, and it could be

said that the “heart” of optimal database design is

normalization, and that the “heart” of normalization is

functional dependencies. In the database design life

cycle, the design team will initially create a high level

logical model for a relational database by using an

Extended ER model, an IDEFIX data model, a semantic

object data model, or a UML style data model (Kroenke,

2004). Subsequently, the data model will be transformed

into a relational design. During the conceptual design

process, functional dependencies and keys will be

identified. The relational design process requires that the

database designer scrutinize each relation, and working

with the enterprise for which the database application is

being developed, identify the functional dependencies,

particularly those which do not involve the primary key

as a determinant. Once the functional dependencies have

been established, the normalization process may

proceed, and the database designer will seek to structure

the relations into the possible highest normal form (e.g.,

Domain Key Normal Form).

2. PROPERTIES OF FUNCTIONAL

DEPENDENCIES

A formal definition of a functional dependency states

that if R is a relation schema, and A and B are non-

empty sets of attributes in R, then B is functionally

dependent on A iff each value of A in R has associated

with it exactly one value of B in R, and the formal

notation would be A� B, where A is referred to as the

determinant, and the attributes on the RHS are referred

to as the dependent. A� B is formally read as “A

functionally determines B.” Functional dependencies

can also be viewed as integrity constraints, which every

instance of the database must obey.

In identifying functional dependencies between

attributes in a relation, it is crucial that we distinguish

clearly between the values held by an attributes at a

specific point in time, and the set of all possible values

that an attribute may hold at different times. Thus, a

functional dependency is a property of a relational

schema rather than a property of a particular instance of

the schema. (Connolly and Begg, 2002).

In surveying users to obtain the necessary information

for a database, (Pratt and Adamski, 2002) recommend a

design methodology based upon a survey form, which

helps to identify entities, attributes, relationships, and

functional dependencies. It is acknowledged that users

probably will not understand what a functional

dependency is, and it is critical, then, that appropriate

questions are asked in the survey to help one identify

functional dependencies. Appropriate questions would

be very specific, such as “If you know a particular

employee number, can you establish other information,

such as the name?” If this fact is ascertained, then one

can state that the department number is functionally

dependent on the employee number. An additional

question would be “Do you know the number of the

department to which the employee is assigned?” If this

is ascertained for all employees, one can then state that

the department number is functionally dependent on the

employee number. On the other hand, if a given

employee can be assigned to more than one department,

one could then infer that the department number would

not be functionally dependent on the employee number.

The process of determining functional dependencies is

not merely a task for the database designer, but must

clearly involve key personnel in the enterprise, who

have an intimate understanding of the relationships

between the attributes that are being used in a particular

relation within the relational database design.

Given a client environment, the task of identifying valid

functional dependencies could present a formidable task

for both the student of database design, as well as the

professional. Many of the difficulties associated with

this process are discussed in the foundational work by

(Kent, 1978) and have much in common with

identifying user requirements for a database and in

various aspects of model-building. We declare

functional dependencies based upon the meaning of

attributes, but there is a risk that some meanings could

be subjective in nature. Kent focuses on the

philosophical issues on how we perceive reality and this

applies to all aspects of data modeling (which include

identifying functional dependencies), and the difficulties

in getting from reality to a data structure through a

human language. The needed information is often "too

amorphous, too ambiguous, too subjective, too slippery

and elusive, to ever be pinned down precisely..." (Kent,

1978). A functional dependency is a structural

relationship, and as (Kent, 1978) points out "Structure is

process slowed down."

c© 2006 EDSIG http://isedj.org/4/7/ February 13, 2006

ISEDJ 4 (7) Scher and Qiu 5

A key philosophical consideration in identifying

functional dependencies is the issue of there being a

single objective view of the social organization for a

client in our database approach. And yet the belief in the

existence of such a viewpoint is often implicit in

database design, including functional dependency

identification. In practice, the viewpoint from which a

"corporate database" is constructed is often the

viewpoint of its Information Systems people. This

viewpoint has its own history, its own process of

development. It is not merely a snap-shot of the

company information structure, it is in actuality the

product of a social process.

In the ideal, the database designer should be able to

identify every legitimate functional dependency;

however, in reality, the properties of functional

dependencies enable us to make inferences of new

functional dependencies from existing ones, which, in a

sense, simplify the task of the database designer. The

software tool we have developed, FD-Explorer,

simplifies this task even further, by guiding the user

through this inference process, and automating the

logical computation that enable the inference of new

functional dependencies from existing ones.

The software tool we have designed and implemented,

FD-Explorer, invokes several of the well-known

properties of functional dependencies, which we shall

review.

The classic axioms regarding functional dependencies

are due to Armstrong (Armstrong, 1974). Armstrong’s

Inference Axioms tell us that if A, B and C are subsets

of attributes of a relation R, then the following axioms

will hold:

Reflexivity Rule: If B is a subset of A,

then A ----> B (this implies that A -� A will

always hold, and functional dependencies of

this type are known as trivial functional

dependencies)Augmentation Rule: If A ---->

B,

 then AC ----> BC

Transitivity Rule: If A ----> B and B ----> C,

then A ----> C

 The following rules can be derived from Armstrong’s

Axioms:

Union Rule: If A ----> B and A ----> C, then

A ----> BC

Decomposition rule:If A ----> BC, then

 A ----> B and A ----> C

Pseudotransitivity rule: If A ----> B and

 CB ----> D , then AC ----> D

We would like to be able to explore all of the functional

dependencies implied by a specific set of functional

dependencies, and this motivates us to define the closure

of a functional dependency set. If we let F represent the

set of specified functional dependencies for some

relation R, then we will define F+ to be the closure of F,

consisting of all functional dependencies that may be

derived from the FD’s in F. By repeatedly and

exhaustively applying Armstrong’s Axioms (and the

Derived Rules), one may obtain all of the functional

dependencies in F+. Database designers and database

students have been manually doing this procedure to

obtain the closure of the attribute set, but with the advent

of our FD-Explorer software, the closure will be

determined by the program after the user has provided

the original set of functional dependencies.

Database designers are often interested in obtaining the

set of attributes of a relation R that are functionally

determined by a particular attribute A. This is referred to

as the closure of A, denoted by A+. A crucial use of the

closure of an attribute for database designers is the

identification of superkeys. (A superkey is a set of

attributes that functionally determines all of the

attributes in a relation.) So, if the database designer

computes the closure of an attribute, and this closure of

is the relation itself, then that attribute is a superkey of

the relation R.

One method for obtaining the closure of an attribute A is

to compute all of F+ and then identify only those

functional dependencies in F+ which have A as the

determinant, and for such functional dependencies, the

union of the set of dependents will yield the closure A+.

However, a better algorithm appeals to the very

definition of functional dependency, and is presented in

numerous database design texts (see (Ricardo, 2004)) as

follows:

Closure Algorithm for Attribute Set A

Result A;

While (result changes)

 For each functional dependency B�C

 If B is contained in Result

 then Result -Result U C;

EndWhile;

A+  Result;

We also note that this algorithm to obtain the closure of

an attribute has an alternative usage, and that is to help

up determine whether a specific functional dependency

is present in R. That is, if we have attribute sets A and

B, and need to determine whether A functionally

determines B, we merely compute the closure of A and

observe if it includes B.

3. FD-EXPLORER FUNCTIONALITY

Our System Data Flow Diagram is as follows:

c© 2006 EDSIG http://isedj.org/4/7/ February 13, 2006

ISEDJ 4 (7) Scher and Qiu 6

*OFD-Cover (Optimized Functional Dependencies

Cover): After applying Armstrong Axioms to the user

added functional dependencies, the set of new functional

dependencies that we obtain is called the Optimized

Functional Dependencies Cover.

*CK-Cover (Candidate Key Cover): The sets of

combinations of attributes that can be uniquely used to

identify a database record without any extraneous data.

*PK-Cover (Primary Key Cover): Choose from CK.

FD-Explorer provides the user interface to guide the

user through the following steps:

� Creation of new attributes (via the New Attributes

Input screen)

� Definition of functional dependencies using the

created attributes (via the New FDs Building

screen)

� Viewing of existing functional dependencies (via

the Original FDs screen)

� Viewing the final report (via the Optimized FDs

screen)

New Attributes Input screen: Figure 1.1 below is

the initial screen provided by FD-Explorer to the user

for entering the attributes associated with a relation. The

attributes need to all be specified prior to establishing

the functional dependency relationships between these

attributes.

The Attributes table in the right panel provides the user

with a full view of existing attributes (refer to Figure 1.1

below). The user can delete any attribute by first

clicking on the attribute, and then clicking on the

“Delete” button. Users can create new attributes by

typing into the “Attribute Input” textbox in the left

panel. FD-Explorer provides extensive error checking

and will alert the user to all input errors, such as null

values, and duplicate values.

Figure 1.1

New FD Building screen: If the user clicks

on the “Define FD” button under the Attributes section

on the extreme left panel, FD-Explorer brings the user to

the New FD Building screen of Figure 1.2.

Figure 1.2

c© 2006 EDSIG http://isedj.org/4/7/ February 13, 2006

ISEDJ 4 (7) Scher and Qiu 7

FD-Explorer will initially display a list of all existing

functional dependencies (if any), so that the user can

view the precise set of functional dependencies already

created. The user may then start building a new

functional dependency by first choosing the appropriate

attribute(s) from the “Attributes” list on both sides;

clicking on an attribute on the LHS will initiate the

action to bring the corresponding attribute into the

determinant, while clicking on an attribute in the RHS

will initiate the action to bring the corresponding

attribute into the dependent. The corresponding “>>”

and “<<” buttons will commit the action to add (or

delete) the corresponding attributes to the functional

dependency being constructed. When the user has

completed the building of the functional dependency,

the “ok” button is clicked, the screen will be refreshed

and the newly constructed functional dependency will be

displayed on the FD list on the left side of the panel. (If

the identical attribute appears in both the “determinant”

and the “dependent,” an error message with specific

information will be generated to so alert the user, as in

Figure 1.3)

Figure 1.3

Original FDs screen: FD-Explorer will launch the

“Original FDs screen” when the user clicks on the

“Original FDs” button in the left hand side menu (see

Figure 1.4 below). Thus, clicking on the “Original FDs”

button gives the user a list of all the original functional

dependencies the user created. The program will not

alter this original set of functional dependencies. (A list

of optimized functional dependencies determined by

FD-Explorer can be viewed subsequently on the

“Optimized FDs” screen.)

If the user wishes to delete any one of the functional

dependencies, just select it, and then click the “Delete”

button at the bottom of the screen.

Figure 1.4

The Optimized FDs screen: This is the most

crucial component of FD-Explorer. Clicking on the

“Result Report” button will trigger a sequence of seven

analysis steps, as follows:

1. Alphabetic Coding: Attribute names are internally

coded to optimize performance.

2. Apply Armstrong's Union Rule: In this step, we

determine if Armstrong's Union Rule will result in any

elimination of redundant functional dependencies. For

c© 2006 EDSIG http://isedj.org/4/7/ February 13, 2006

ISEDJ 4 (7) Scher and Qiu 8

instance, if the user has defined A->B, A->C, A->D,

then Armstrong's Union Rule provides a new functional

dependency A->BCD, which means that the three

original functional dependencies are redundant and may

be deleted

3. Transitive Rule and Reorder, eliminate the same

attribute algorithm:

For instance, if A->BCD, BC->DE, then the result will

be as follows::

A->BCDDE and BC->DE yields A->BCDE and

BC->DE

4. Apply the Pseudotransitivity Rule to see if any new

functional dependencies can be implied. For instance, X-

>Y, WY->Z implies WX->Z

5. Eliminate similar alphabetic code algorithm - in order

to eliminate equivalent functional dependencies, this

algorithm is applied. For instance: ABC->D, BC->D can

be replaced by ABC->D, and thus BC->D can be deleted.

6. Sort code by alphabetic order algorithm: After a

sequence of analysis and combination steps, the result

will contain some duplicate values, so those

combinations of alphabetic codes will be re-ordered and

identical values eliminated.

7. Compute the candidate keys of the given relation R,

by first determining all the superkeys (a superkey of

relation R is a set of attributes which functionally

determines all the attributes in R). A superkey will be a

candidate key if it is minimal and contains no “extra”

attributes (i.e., it has no proper subset which is also a

superkey of the relation R).

Figure 1.5

FD-Explorer also maintains a Log file (in ASCII text

format), which records the detailed intermediate steps of

analysis and derivation based upon the functional

dependencies obtained from the initial “Define FD”

phase. This Log file, which is user-accessible from FD-

Explorer, provides the user with a (transparent) inner

analysis perspective of how Armstrong's Union Rule,

Transitivity Rule and Pseudotransitivity Rule are applied

to derive additional functional dependencies. In Figure

1.6 below, we present a partial view of the Log File for a

user interaction, which depicts the application of

Armstrong’s axioms and the derived rules.

Figure 1.6

c© 2006 EDSIG http://isedj.org/4/7/ February 13, 2006

ISEDJ 4 (7) Scher and Qiu 9

 4. CONCLUSIONS

Identifying functional dependencies constitutes an

integral part of the database design process, and yet,

like many information design problems in the real
world, represents a particular challenge to the user,

whether the user be a database designer, or a student

of database design. Deducing new functional

dependencies from an existing set of functional

dependencies is a well-understood process with known

theoretical and procedural methodologies to assist us,

though for a significant number of attributes, this

deduction process could become burdensome. We

have designed a software tool, FD-Explorer, which

focuses on this process of exploring functional

dependencies, and applying known theoretical

procedures and rules which will both assist and

instruct users. There is still work remaining in terms of

usability studies of this tool with both students of

database design as well as professionals, and we hope

use the evaluation instrument to fine tune the tool for

the future.

5. REFERENCES

Armstrong, W.W., 1974, "Dependency Structures of

Data Base Relationships," Information

Processing 74, J. L. Rosenfeld, Editor, pp. 580-

583, Stockholm, Sweden, August 5-10, 1974.

North-Holland, ISBN 0-7204-2803-3.

Computing Accreditation Commission, 2003, "Criteria

for Accrediting Computing Programs - Effective

for Evaluations During the 2004-2005

Accreditation Cycle," ABET-CAC, Inc.,

Baltimore, MD.

Connolly, T. and Begg, C., 2002, Database Systems:

A Practical Approach to Design,

Implementation and Management, Third

Edition. Addison-Wesley, Essex.

Gorgone, J., Davis. G., Valacich, J., Topi, H.,

Feinstein, D., Longenecker, H., 2002, "Model

Curriculum and Guidelines for Undergraduate

Degree Programs in Information Systems,"

Association for Information Systems.

Kent, William, 1978, Data and Reality, North Holland,

Amsterdam

Kroenke, D., 2004, Database Processing:

Fundamentals, Design and Implementation,

Ninth Edition, Prentice-Hall, Upper Saddle

River, NJ.

Mohtashami, M and Scher, J., 2000, "Application of

Bloom's Cognitive Domain Taxonomy to

Database Design," The Proceedings of the

ISECON 2000 Conference, v 17 (Philadelphia):

§918.

Pratt, P., and Adamski, J., 2002, Concepts of Database

Management, Fourth Edition, Thompson

Course Technology, Boston, Mass.

Ricardo, C., 2004, Databases Illuminated, Jones and

Bartlett Publishers, Sudbury, Mass.

c© 2006 EDSIG http://isedj.org/4/7/ February 13, 2006

