
Volume 4, Number 54 http://isedj.org/4/54/ August 14, 2006

In this issue:

Teaching Object-Oriented Systems Analysis and Design with UML

Robert V. Stumpf Lavette C. Teague
California State Polytechnic Univ, Pomona California State Polytechnic Univ, Pomona

Pomona, CA 91768 USA Pomona, CA 91768 USA

Abstract: The transition to object-oriented software presents a challenge to information systems
(IS) educators, especially in the area of systems analysis and design, as familiar structured methods
give way to the Unified Modeling Language (UML). This paper summarizes the principal similari-
ties and differences between structured and object-oriented approaches and provides advice about
strategies for teaching analysis and design with UML. Analysis strategies include: capturing the
content and structure of inputs in the use case narratives, constructing the domain model one use
case at a time, and expressing pre- and postconditions for the contracts in terms of the domain
model. Strategies for teaching object-oriented design include: working one use case at a time, and
starting with three basic design patterns.

Keywords: object-oriented analysis, object-oriented design, teaching UML, transition to objects

Recommended Citation: Stumpf and Teague (2006). Teaching Object-Oriented Systems
Analysis and Design with UML. Information Systems Education Journal, 4 (54).
http://isedj.org/4/54/. ISSN: 1545-679X. (Also appears in The Proceedings of ISECON 2005:
§3533. ISSN: 1542-7382.)

This issue is on the Internet at http://isedj.org/4/54/

ISEDJ 4 (54) Information Systems Education Journal 2

The Information Systems Education Journal (ISEDJ) is a peer-reviewed academic journal
published by the Education Special Interest Group (EDSIG) of the Association of Information
Technology Professionals (AITP, Chicago, Illinois). • ISSN: 1545-679X. • First issue: 8 Sep 2003.
• Title: Information Systems Education Journal. Variants: IS Education Journal; ISEDJ. • Phys-
ical format: online. • Publishing frequency: irregular; as each article is approved, it is published
immediately and constitutes a complete separate issue of the current volume. • Single issue price:
free. • Subscription address: subscribe@isedj.org. • Subscription price: free. • Electronic access:
http://isedj.org/ • Contact person: Don Colton (editor@isedj.org)

2006 AITP Education Special Interest Group Board of Directors

Stuart A. Varden
Pace University

EDSIG President 2004

Paul M. Leidig
Grand Valley State University
EDSIG President 2005-2006

Don Colton
Brigham Young Univ Hawaii

Vice President 2005-2006

Wendy Ceccucci
Quinnipiac Univ
Director 2006-07

Ronald I. Frank
Pace University

Secretary 2005-06

Kenneth A. Grant
Ryerson University
Director 2005-06

Albert L. Harris
Appalachian St

JISE Editor

Thomas N. Janicki
Univ NC Wilmington

Director 2006-07

Jens O. Liegle
Georgia State Univ
Member Svcs 2006

Patricia Sendall
Merrimack College

Director 2006

Marcos Sivitanides
Texas St San Marcos
Chair ISECON 2006

Robert B. Sweeney
U South Alabama
Treasurer 2004-06

Gary Ury
NW Missouri St
Director 2006-07

Information Systems Education Journal 2005-2006 Editorial and Review Board

Don Colton
Brigham Young Univ Hawaii

Editor

Thomas N. Janicki
Univ of North Carolina Wilmington

Associate Editor

Samuel Abraham
Siena Heights U

Tonda Bone
Tarleton State U

Alan T. Burns
DePaul University

Lucia Dettori
DePaul University

Kenneth A. Grant
Ryerson Univ

Robert Grenier
Saint Ambrose Univ

Owen P. Hall, Jr
Pepperdine Univ

Jason B. Huett
Univ W Georgia

James Lawler
Pace University

Terri L. Lenox
Westminster Coll

Jens O. Liegle
Georgia State U

Denise R. McGinnis
Mesa State College

Therese D. O’Neil
Indiana Univ PA

Alan R. Peslak
Penn State Univ

Jack P. Russell
Northwestern St U

Jason H. Sharp
Tarleton State U

Charles Woratschek
Robert Morris Univ

EDSIG activities include the publication of ISEDJ, the organization and execution of the annual
ISECON conference held each fall, the publication of the Journal of Information Systems Education
(JISE), and the designation and honoring of an IS Educator of the Year. • The Foundation for
Information Technology Education has been the key sponsor of ISECON over the years. • The
Association for Information Technology Professionals (AITP) provides the corporate umbrella under
which EDSIG operates.

c© Copyright 2006 EDSIG. In the spirit of academic freedom, permission is granted to make and
distribute unlimited copies of this issue in its PDF or printed form, so long as the entire document
is presented, and it is not modified in any substantial way.

c© 2006 EDSIG http://isedj.org/4/54/ August 14, 2006

ISEDJ 4 (54) Stumpf and Teague 3

Teaching Object-Oriented

Systems Analysis and Design with UML

Robert V. Stumpf
rvstumpf@csupomona.edu

Lavette C. Teague
lcteague@csupomona.edu

Computer Information Systems Department
California State Polytechnic University, Pomona

Pomona, California 91768, USA

Abstract

The transition to object-oriented software presents a challenge to information systems (IS)

educators, especially in the area of systems analysis and design, as familiar structured meth-

ods give way to the Unified Modeling Language (UML). This paper summarizes the principal

similarities and differences between structured and object-oriented approaches and provides

advice about strategies for teaching analysis and design with UML. Analysis strategies in-

clude: capturing the content and structure of inputs in the use case narratives, constructing

the domain model one use case at a time, and expressing pre- and postconditions for the con-

tracts in terms of the domain model. Strategies for teaching object-oriented design include:

working one use case at a time, and starting with three basic design patterns.

Keywords: object-oriented analysis, object-oriented design, teaching UML, transition to ob-

jects

1. INTRODUCTION

Object-oriented software development has

been in wide use for some time. There is

now a stable, industry-standard notation for

object-oriented analysis and design models

– the Unified Modeling Language (UML)

(Fowler 2004), (Rumbaugh (2005). There

are also explicit, teachable methods for ob-

ject-oriented analysis and design (Stumpf

2005). Yet universities have been slow to

follow industry’s move to objects. Few in-

formation systems programs offer courses in

object-oriented analysis and design meth-

ods, and the number of curricula requiring or

focused on these methods is still quite small.

Perhaps this situation is due to the difficulty

(or perceived difficulty) of re-tooling current

faculty so that they can comfortably teach

the development of object-oriented soft-

ware. The authors have been teaching ob-

ject-oriented analysis and design for more

than ten years and summarize here what

they have learned in order to assist others in

the transition from structured to object-

oriented methods.

The paper is organized into three major

parts. The first of these presents fundamen-

tal concepts and models of object-oriented

systems analysis, describing the commonal-

ties between it and structured analysis, fol-

lowed by the differences between the two.

The second part of the paper gives a similar

treatment of object-oriented design. The

third part, based on the authors’ experience,

offers strategies for teaching systems analy-

sis and design using the UML models.

2. FUNDAMENTAL CONCEPTS OF

 OBJECT-ORIENTED ANALYSIS

Expressing users’ requirements for software

through the models of the UML is new. Nev-

ertheless, the goals of requirements analysis

and the nature of the task itself imply some

c© 2006 EDSIG http://isedj.org/4/54/ August 14, 2006

ISEDJ 4 (54) Stumpf and Teague 4

inherent commonality with traditional, struc-

tured analysis.

2.1 How Object-Oriented Analysis Is

Like Structured Analysis

Like structured analysis, object-oriented

analysis benefits from the use of event

analysis for system decomposition. It also

requires conceptual, or semantic, modeling

of the application domain. In both ap-

proaches it is important to maintain a clear

distinction between essential and implemen-

tation models (logical and physical models)

as well as to separate the analysis models,

which specify requirements, from the design

models, which define a software solution.

2.1.1 Event Analysis for System De-

composition: Since at least the mid-

1980s, event analysis (McMenamin 1985),

(Page-Jones 1988), (Yourdon 1989) has

been the preferred technique for decompos-

ing a system into parts which respond inde-

pendently to external or temporal stimuli.

The results of event analysis are presented

in an event table, from which the initial sys-

tem models can be derived. In the struc-

tured approach, event analysis identifies a

fundamental set of processes. In object-

oriented analysis, each event leads to the

discovery of a fundamental use case (see

Section 2.2.1).

2.1.2 Conceptual (Semantic) Modeling

of the Application Domain: In structured

analysis, an entity-relationship diagram

(ERD) provides the conceptual model of the

entities and relationships in the application

domain. It is derived by normalizing the

data stores in the set of data flow diagrams

(DFDs).

In object-oriented analysis, a UML domain

model (Figure 1) plays a role similar to that

of the ERD. The two models differ almost

exclusively in the graphic conventions and

the component names. Both models explic-

itly depict relationships (associations in the

UML). However, implementing the relational

model requires foreign keys; these extrane-

ous attributes are unnecessary in a domain

model. The UML model incorporates gener-

alization-specialization hierarchies, which are

also included in extended entity-relationship

diagrams (EERDs) (Teory 1986).

2.1.3 Clear Distinction Between Essen-

tial and Implementation Models: Sys-

tems analysis describes what users need

but not how these needs are to be satisfied.

Best practices in systems analysis have al-

ways stated users’ requirements in a way

which does not bias the design solution by

incorporating details of an implementing

technology.

Structured analysis captures users’ require-

ments in a set of essential data flow dia-

grams, which is supplemented by a system

dictionary containing definitions of the es-

sential data flows, essential data stores, and

descriptions of the procedures for the essen-

tial, primitive transformations. Object-

oriented analysis with UML uses a different

set of models, as described in Section 2.2.

Figure 1 – Domain model to support the use case Check Out Book.

c© 2006 EDSIG http://isedj.org/4/54/ August 14, 2006

ISEDJ 4 (54) Stumpf and Teague 5

Figure 2 – Partial use case diagram

 for a public library.

2.1.4 Clear Distinction Between Analy-

sis and Design: Closely related to the im-

portant distinction between essential and

implementation models is that between

analysis and design. Maintaining the integ-

rity of the requirements models permits the

requirements to be traced through design

and implementation. This is especially valu-

able when, as in current practice, develop-

ment proceeds iteratively. When analysis

and design models are obviously different,

this distinction becomes easy to see. Sys-

tem developers need to be particularly care-

ful to be aware of and highlight the

differences when similar models are used in

both activities.

2.2 How Object-Oriented Analysis Dif-

fers from Structured Analysis

Except for the event model and the concep-

tual model of the application domain, the

UML models for object-oriented analysis dif-

fer from those of structured analysis. This

section discusses the most important of

these models — use case diagrams, use case

narratives, system sequence diagrams, and

system operation contracts. More detailed

charts comparing the models are contained

in the instructor’s guide to Stumpf (2005).

2.2.1 Use Cases as the System-Level

Units of System Requirements: In the

UML, the use case is the system-level unit

for defining requirements. A use case is

the sequence of actions which occur when

an actor — a person, organization, or sys-

tem — uses a system to complete a process.

Normally, each use case corresponds to an

event. Its structured analysis counterpart is

an essential process associated with that

event. Use case names are similar to proc-

ess names in structured analysis — usually a

verb followed by an object.

The UML lacks any counterpart of a context

diagram. Instead, it has a use case dia-

gram (Figure 2), which shows all the use

cases (unless the system is large) and the

actors, equivalent to the external entities of

structured analysis, who participate in each

use case. Thus a use case diagram is the

rough equivalent of Diagram 0. However, it

does not show inputs or outputs.

2.2.2 Use Case Narratives for Require-

ments Specification: Use case narratives

replace the process descriptions of struc-

tured analysis as well as the data dictionary

definitions of the system inputs and outputs.

When well-written, they may be easier for

users to understand than the structured

models. Expanded essential use case nar-

ratives (Figure 3) describe the sequence of

interaction between an actor or actors and

the system. They should capture the se-

quence and detailed composition of the es-

sential system inputs and outputs and also

show the expected internal response of the

system to each message from an actor.

2.2.3 System Sequence Diagrams for

Interaction between the System and Its

Environment: In object-oriented analysis,

a set of system sequence diagrams sub-

stitutes for a context diagram, but presents

a finer level of detail. The system sequence

diagrams (Figure 4) are based on the ex-

panded essential use case narratives. As in

a context diagram, what happens inside the

system is not shown. In principle, there is a

separate system sequence diagram for each

message (system input) from an actor to the

system. However, if the number of mes-

sages is small, one system sequence dia-

gram per use case may suffice. As its name

implies, this diagram will show the order in

which the messages from the actor occur.

The message format is similar to that of a

procedure or function, showing the message

(operation) name and a list of its parame-

ters. These parameters are the essential

data elements of the input.

c© 2006 EDSIG http://isedj.org/4/54/ August 14, 2006

ISEDJ 4 (54) Stumpf and Teague 6

Figure 3 – An expanded essential use case narrative that is detailed and accurate.

Use case: Check Out Book

Actors: Patron

Purpose: Record the loan request and produce a loan receipt.

Overview: The Patron checks out one or more books. The system

 records the patron number and the book identifier of each

 book checked out. On completion of the loan request, the

 system produces a loan receipt.

Type: Essential

Preconditions: Patron is known to system and is in good standing, that is,
 has no books overdue and no more than 20 books already
 checked out. Each book is known to the system.

Postconditions: Loan receipt is stored in system memory.
 Loan receipt was produced for the Patron.

Special Requirements: None

Flow of Events

Actor Action System Response

1. This use case begins when a Patron pre-

sents books to check out.

2. The Patron provides their patron number. 3. Records the patron number.

4. For each book to check out, the Patron pro-

vides the book identifier.

5. Records the book identifier.

6. The Patron indicates that no more books

are to be checked out.

7. Produces a receipt. Saves the

loan receipt.

8. The Patron receives the loan receipt

Alternative Flow of Events

Line 3: The patron number is invalid. Inform the Patron. The use case ends.

Line 3: The patron is not in good standing. Inform the Patron. The use case ends.

Line 5: The book identifier is invalid. Inform the Patron. Return to Step 4.

c© 2006 EDSIG http://isedj.org/4/54/ August 14, 2006

ISEDJ 4 (54) Stumpf and Teague 7

Figure 4 – A system sequence diagram for the use case Check Out Book.

x

2.2.4 Contracts for the Specification of

System Operations: Contracts for the sys-

tem operations (Figure 5) link the UML

analysis models to design. They enable the

use of a design method known as design by

contract (See Section 3.2.5).

Figure 5 – Contract for the system operation enterPatronNumber.

Use Case: Check Out Book

Contract Name: enterPatronNumber (patronNumber)

Responsibilities: Verify the Patron and determine that they are in good standing.

Exceptions: If the patron number is not valid, indicate an error.

If the patron is not in good standing, indicate an error.

Output: None

Pre conditions: Patron is known to the system.

Post conditions: A new Loan object was created.

A new instance of the association Patron – Loan was created.

c© 2006 EDSIG http://isedj.org/4/54/ August 14, 2006

ISEDJ 4 (54) Stumpf and Teague 8

When an object-oriented system (or an ob-

ject) receives a message, it executes an op-

eration with the same name as that of the

message. A system operation contract

specifies the response of the operation to a

message from an actor, as shown in a sys-

tem sequence diagram. As an analysis

model, it states what the system must do to

respond, not how the response will be im-

plemented. This is accomplished by writing

the contract in terms of postconditions.

These postconditions are expressed in terms

of the domain model; they state which in-

stances of concepts and associations have

been added to (or deleted from) the domain

model and which attribute values have been

modified.

Thus each system operation contract is

based on a message in a system sequence

diagram, which in turn is derived from a use

case narrative. The preconditions of the

contract state what must be true for the op-

eration to execute successfully in order to

accomplish the desired system response.

The postconditions state the required

changes to the state of the domain model as

a result of the execution of the system op-

eration.

3. FUNDAMENTAL CONCEPTS OF

 OBJECT-ORIENTED DESIGN

The UML design models, described below,

address the distinctive way in which object-

oriented software is organized. Still, design-

ers of both object-oriented systems and

those implemented in more traditional pro-

cedural languages share some high-level

goals.

3.1 How Object-Oriented Design Is Like

Structured Design

One goal of software design has always been

to specify systems which are easy to under-

stand, to modify, and to maintain. Thus,

both structured and object-oriented ap-

proaches share several principles of good

design. These principles include layered

system architecture, conservation of data

flow, coupling and cohesion as design crite-

ria, and the need to specify procedures or

operations correctly and completely.

3.1.1 Layered System Architecture:

Layered system architecture has long been a

best practice in software design, dating at

least as far back as the mid-1960s. This

architecture provides interfaces which help

minimize the effect of changes in one layer

on the other layers. At a minimum, it im-

plies separate layers for the user interface,

the application programs, and the data (or

objects) stored in a data base.

3.1.2 Coupling and Cohesion as

Design Criteria: Similar considerations

apply at the level of the program units.

There, the criteria of coupling and cohesion

also help the designer to minimize the im-

pact of change. Coupling addresses how

tightly the interconnections between pro-

gram units are and thus how likely change

is to propagate within the system. Cohesion

addresses how strongly focused and relevant

the features are within a program unit. In

the case of object-oriented software, these

features include attributes as well as opera-

tions.

3.1.3 Conservation of Data Flow: Con-

servation of data flow is an important princi-

ple of the structured approach. It assures

that data does not magically appear or dis-

appear, that the outputs of each process or

module can be derived from its inputs, and

that there is an unbroken path by which

each data element of an input can flow to

where it is used in the system. The designer

of object-oriented systems has the same

concerns when specifying internal message

flows in the interaction diagrams (See Sec-

tion 3.2.3).

3.1.4 Specification of Operations: Re-

gardless of the program structure, each op-

eration or procedure must be specified

completely. Such a specification includes all

the parameters of the operation with their

data types as well as the algorithm or pro-

cedure for the operation and how to handle

potential exceptions.

3.2 How Object-Oriented Design Differs

from Structured Design

The paradigm shift from structured to ob-

ject-oriented methods is most evident during

design. This is largely due to the difference

in the way that object-oriented software is

organized — a difference which affects the

designer’s way of thinking as well as the de-

sign models themselves.

The most significant changes are in the units

of program structure and the way in which

they communicate with each other. The

c© 2006 EDSIG http://isedj.org/4/54/ August 14, 2006

ISEDJ 4 (54) Stumpf and Teague 9

principal UML program design models are

interaction diagrams and class diagrams.

Moreover, the object-oriented approach in-

corporates the method of design by con-

tract and uses patterns extensively.

Similarities to structured methods will be

noted in the course of the discussion.

3.2.1 Objects as the Units of Program

Structure: In structured design the unit of

program structure is a module, typically ei-

ther a function or a procedure. In object-

oriented systems, the unit of program struc-

ture is an object, which encapsulates both

its attributes and the related operations.

3.2.2 Peer-to-Peer vs. Hierarchical

Communication: Objects collaborate to

carry out the responses of the system. They

communicate with each other by sending

messages requesting services from other

objects. By contrast, in the procedural pro-

gramming environment of structured design,

the structure of communication is hierarchi-

cal, and its tone is imperative.

3.2.3 Interaction Diagrams Model Dy-

namic Program Structure: The principal

activity of object-oriented design is to assign

operations to the objects to which they be-

long. This assignment involves two types of

models of program structure — interaction

diagrams and class diagrams. The former,

as their name implies, show the sequence of

internal messages and responses which are

triggered by each message to the system

from an actor. There is typically an interac-

tion diagram (Figure 6) for each system op-

eration.

3.2.4 Class Diagrams Model Static Pro-

gram Structure: A class diagram, on the

other hand, shows the static structure of the

program. It is like an expanded domain

model — essentially, each class in the dia-

gram replaces the corresponding concept in

the domain model. This design class dia-

gram (Figure 7) summarizes the results of

the design process by showing the opera-

tions assigned to each class.

3.2.5 Design by Contract: The object-

oriented design process is driven by the sys-

tem operation contracts produced during

analysis. The metaphor of the contract im-

plies that the object receiving a message has

an obligation to achieve the postconditions

of the contract, provided that the object

sending the message assures that the pre-

conditions of the contract are satisfied.

Figure 6 – Collaboration diagram for the system operation enterPatronNumber.

x

c© 2006 EDSIG http://isedj.org/4/54/ August 14, 2006

ISEDJ 4 (54) Stumpf and Teague 10

Figure 7 – A class diagram to support the use case Check Out Book.

Thus, each system operation must first

check to see that all the preconditions of the

contract are fulfilled and then must cause all

the postconditions to be true. Clearly the

quality of the design is highly dependent on

the care with which the contracts were for-

mulated.

3.2.6 The Use of Design Patterns: In

assigning operations to objects, the de-

signer is guided by patterns. Collectively,

these patterns record previously invented

good solutions to design problems. A pat-

tern states the problem, names the solution,

and provides advice about using the pattern.

An example is the Creator pattern, which

solves the problem of which object should

request a class to instantiate a new object.

(One might view transform analysis and

transaction analysis as patterns for mapping

data flow diagrams into structure charts.)

4. TEACHING STRATEGIES

This discussion of teaching strategies for

object-oriented analysis and design is pre-

sented using a public library system as an

example.

4.1 Teaching Strategies for Analysis

The first step, event analysis, is the same

for both structured and object methodolo-

gies. This step is important for identifying

c© 2006 EDSIG http://isedj.org/4/54/ August 14, 2006

ISEDJ 4 (54) Stumpf and Teague 11

Table 1 – Partial event table for the public library example.

Event Description System

Input

Actor Providing

Input

System Output Actor Receiving

Output

Patron Checks Out

Book

Loan

Request

 Patron Loan Receipt Patron

the use cases. An event table for one event

for the public library example is shown in

Table 1. Once an event analysis has been

completed, a use case diagram (Figure 2) is

drawn to provide a view of all the use cases

on a single page. (Although relationships

between use cases can be shown in the dia-

gram, in our opinion these refinements are

not valuable to beginning students and so

are best omitted.)

The use case is the fundamental unit of

analysis; therefore it is important for stu-

dents to focus on a single use case at a time

when building each of the analysis models.

Our example here deals with a single use

case – Check Out Book.

4.1.1 Capture the Content and Struc-

ture of the Inputs in the Expanded Use

Case Narratives: The core of object-

oriented systems analysis is the expanded

essential use case narrative (Figure 3).

Thus the instructor must strongly emphasize

this segment of the process. A properly

written use case that is detailed, complete,

and accurate sets the stage for creating the

remaining artifacts for requirements defini-

tion – domain model, system sequence dia-

gram, and contracts.

One secret to success at this stage is to pay

special attention to the data. For example,

the terms loan request and loan receipt in

the event table are not fully defined. Study-

ing the actual loan receipt is a first step. For

our example the loan receipt might be

something like the one in Figure 8.

Using the following simple formula to deter-

mine output, we have:

Output = Input + Stored Data + Computed

Data

Often it is useful to develop a simple table to

help students to be sure they have not omit-

ted any data. Such a table is shown in

Table 2.

Figure 8 – Sample system output for the use case Check Out Book.

Loan Receipt

Any City Public Library

Friday, May 13, 2005, 04:30 PM

Patron: 29483761

 Louise Forbes

Identifier Title Author Due Date

1290349 Book of Running Bigfoot, Amy Jun 3

1340329 PC Computing- May 2005 May 27

4203921 Who Did It Mystery, Writer Jun 3

To renew see website at: http/www.anycitylibrary.com

c© 2006 EDSIG http://isedj.org/4/54/ August 14, 2006

ISEDJ 4 (54) Stumpf and Teague 12

Table 2 – Analysis of loan receipt.

 System Outputs

Data Source

Date & Time of Checkout System

Patron Number Patron

Patron Name System

Book Identifier Patron

Title System

Author System

Due Date Computed

From this analysis, a use case narrative

(Figure 3) can easily be constructed. Two of

the more critical components are the pre-

and postconditions. The patron’s name

must come from the system, thus the patron

must be known to the system prior to the

checkout. At this time the simple business

rule can be introduced. The rule that no one

may check out books if some are overdue or

if the patron already has 20 books checked

out is useful to show that the system must

keep the essential data for the loan receipt

in system memory. Also the book’s title and

author must be known to the system prior to

the checkout. Listing the patron’s number

and book’s identifier as known to the system

in the preconditions insures that these re-

quirements are met in later steps.

The postconditions are just as critical. The

student can now see that to verify a patron’s

library standing, all the essential data in the

loan receipts must be kept. To keep tech-

nology out of the requirements statement,

the word produced is used.

Developing the use case narrative is often

the most difficult part for the student. The

authors strongly recommend the two-column

format shown in Figure 3 for the Flow of

Events section. This clearly separates what

the actor does from what the system does

and minimizes students’ errors. Although

the Actions 1 and 8 are boilerplate, the stu-

dent must carefully consider the individual

data elements in the messages from the ac-

tor as well as the corresponding system re-

sponses. Note that Actions 2 and 4 follow

directly from system output analysis.

Since many business transactions have the

hierarchical structure of a header and many

detail lines, this is a good type of example

for class lectures and exercises. Our library

checkout use case satisfies this recommen-

dation. To terminate the entry of repeated

detail lines, a common solution is to use a

separate message, as shown in Figure 4.

Lastly, the student must complete the ex-

ceptions, as illustrated in Figure 3. Only

business-level errors are considered.

Based on the use case narrative, the system

sequence diagram (Figure 4) may now be

completed. It is nothing more than a

graphic illustration of the sequence and

structure of the messages sent to the sys-

tem. The emphasis is on the data. Note

that patron number, book identifier, and

loan receipt come from the output analysis.

At this time the definition of the input and

output messages and their data is complete.

4.1.2 Construct the Domain Model One

Use at a Time: Next, the student must

model the data to be stored in the system

by producing a domain model (Figure 5) for

the use case. Since this step is virtually the

same as producing an entity-relationship

diagram, only the result will be shown here.

(However, it is important to remember that

foreign keys are not used in object analysis.)

The UML graphic notation is slightly differ-

ent, but, even for one unfamiliar with UML, a

domain model is just as readable as an ER

diagram. One must just get used to the

terms concept and association in object

parlance.

4.1.3 Express the Contracts in Terms of

the Domain Model: The pre- and postcon-

ditions listed in the use case narrative must

now be refined.

The preconditions require that the Patron

and Book pre-exist. They are expressed

rigorously in terms of the domain model.

For example, in object terms, the specified

Patron object pre-exists as well as the

specified Book Copy object.

c© 2006 EDSIG http://isedj.org/4/54/ August 14, 2006

ISEDJ 4 (54) Stumpf and Teague 13

Figure 9 – Contract for the system operation enterBookIdentifier.

Use Case: Check Out Book

Contract Name: enterBookIdentifier (bookIdentifier)

Responsibilities: Record the Book that is being checked out.

Exceptions: If the book identifier is not valid, indicate an error.

Output: None

Pre conditions: Book Copy is known to the system.

Post conditions: A new Loan Item object was created.

A new instance of the association Loan – Loan Item was created

A new instance of the association Loan Item – Book Copy was created.

Then the postconditions are expressed with

the same rigor. In this case, both a Loan

object and the Loan Item objects must

have been created. But, just as importantly,

the student must also realize that the asso-

ciations are a critical part of the model.

Thus the three associations, Patron – Loan,

Loan – Loan Item, and Loan Item – Book

Copy must also have been created.

Note that all these pieces are coordinated

and contribute to the requirements. The two

contracts are shown in Figures 5 and 9. This

completes the requirements definition for

the Check Out Book use case.

4.2 Teaching Strategies for Design

The UML analysis models do not necessarily

depend on the implementing technology.

Therefore it is appropriate to defer a presen-

tation or review of object technology until

the discussion of object-oriented program

design. Teaching system design involves

user interfaces and database design. Since

these two topics are not different when us-

ing object modeling, they will be omitted in

this discussion.

The major steps in program design are: de-

veloping an interaction diagram for each

system operation and deriving a class dia-

gram from the interaction diagrams. Since

the assignment of data types to all of the

arguments and returns of the operations is

more of a programming problem, it is not

discussed.

4.2.1 Use Patterns to Produce the In-

teraction Diagrams One Use Case at a

Time: It has been said that the most im-

portant design task in object-oriented design

is assignment of the responsibilities to

classes. The best way to approach this

process in the classroom is to emphasize

patterns. In a beginning course, three

common patterns may suffice. The Façade

pattern provides a new class to represent

the system. Its function is to receive mes-

sages from actors and request objects inside

the system to carry out the system’s re-

sponse. In completing the interaction dia-

grams, we recommend using only the Expert

and Creator patterns to assign responsibili-

ties.

Expert Pattern for the system operation

enterPatronNumber: In this system op-

eration, the only behavior requiring attention

is inGoodStanding. The Expert pattern

merely says which object is best suited to do

this. In general, this means the object that

knows what is necessary to do this task. For

example, inGoodStanding could be as-

signed to the object Patron, as it knows all

of the books checked out and if they are

overdue. Note that this information is in the

concepts Loan and Loan Item.

c© 2006 EDSIG http://isedj.org/4/54/ August 14, 2006

ISEDJ 4 (54) Stumpf and Teague 14

Figure 10 – A collaboration diagram for the system operation enterBookIdentifier.

Creator Pattern for the system opera-

tion enterPatronNumber: The Creator

pattern states that the creation of an object

should be requested by an object that has

the knowledge to do so. The two candidates

for creating Loan are Patron and Book

Copy. Since Book Copy is not associated

directly to Loan, Patron is the logical can-

didate. The resulting interaction (collabora-

tion) diagram is shown in Figure 6.

One strategy for teaching is to draw this

diagram with no name for the Patron ob-

ject. Then point out the similarity of this

diagram with the domain model. Also point

out that two actions are necessary in this

system operation in order to satisfy the

postconditions. In Figure 5 the postcondi-

tions of the contract are: a new instance of

Loan was created, and a new instance of

the association Patron – Loan was created.

Expert Pattern for the system operation

enterBookIdentifer: In this operation only

the computation of the due date is required.

In the domain model, this value is an attrib-

ute of the Loan Item; however, only the

concept Book Copy has access to the data

c© 2006 EDSIG http://isedj.org/4/54/ August 14, 2006

ISEDJ 4 (54) Stumpf and Teague 15

Figure 11 – A sequence diagram for the use case Check Out Book.

required to do this computation. Thus,

computeDueDate () is assigned to Book

Copy, which references both Book Specifi-

cation (where loanPeriod is stored) and

Loan Item (where dueDate is stored).

Creator Pattern for the system opera-

tion enterBookIdentifer: Any time a

composite object (Loan – Loan Item) is

used, the composite should create the com-

ponent objects. This means that Loan must

create Loan Item. A simple name for this

operation is makeLoanItem (). In order to

be clear, we believe it is best not to abbrevi-

ate operation names. Figure 10 shows the

resulting collaboration diagram.

Assembling the sequence diagram: If

space permits, it may be helpful to combine

the collaboration diagrams for a single use

case into one sequence diagram (Figure 11).

Since the same information is shown in both

a collaboration diagram and a sequence dia-

gram, it is easy to convert from one to the

c© 2006 EDSIG http://isedj.org/4/54/ August 14, 2006

ISEDJ 4 (54) Stumpf and Teague 16

other. It is recommended that the student

do this manually in order to learn the corre-

spondence even though tool sets will do the

conversion automatically.

4.2.2 Create the Class Diagram from

the Interaction Diagrams: This step is

now mechanical – all the decisions have

been made. That is why it is important to

address the class diagram (Figure 7) after

the interaction diagrams are developed.

Otherwise students will become lost in de-

signing the class diagram, as they have no

idea where to place the operations in the

class diagram and why.

5. SIGNIFICANT LITERATURE

The following references are useful sources

for preparing to teach object-oriented sys-

tems analysis and design:

5.1 Classics of Structured Analysis and

Design

Classic references for structured analysis are

(McMenamin 1985) and (Yourdon 1989).

The earliest presentation of event analysis

(as “route mapping”) is probably (Page-

Jones 1980). Page-Jones (1988) presents

structured design as well as a case study for

both analysis and design. Teory (1986)

summarizes the conventions and techniques

for extended entity-relationship diagrams.

5.2 The Object Paradigm

A brief and simple introduction to object-

oriented concepts is contained in (Taylor

1998).

5.3 UML

Fowler (2004) and Rumbaugh (2005) pre-

sent an overview of the Unified Modeling

Language.

5.4 Textbooks for Object-Oriented Sys-

tems Analysis and Design

Introductory texts include (Dennis 2005),

(Larman 2005), (George 2004), and (Stumpf

2005). More advanced treatments are con-

tained in (Page-Jones 2000), (Pooley 1999),

and (Richter 1999).

6. CONCLUSIONS

Preparing to teach object-oriented systems

analysis and design and the UML is perhaps

not as difficult as some IS faculty fear. IS

educators can take advantage of the simi-

larities between structured and object-

oriented approaches, especially during

analysis. Experience in data modeling car-

ries over directly to domain models. In the

authors’ experience, event analysis also re-

mains valuable for high-level system de-

composition.

Students should learn to work with one use

case at a time when building the UML mod-

els. Contracts for system operations ex-

pressed in terms of a model of the

application domain form the basis for design

by contract, linking the UML analysis models

to the design process.

Developing design models requires a basic

understanding of the structure of object-

oriented software. Nevertheless, three basic

patterns are sufficient to help beginners

construct acceptable initial interaction dia-

grams. The class diagrams should be de-

rived from these interaction diagrams.

While industry has moved to object-oriented

software development, information systems

faculty have been slow to incorporate ob-

ject-oriented analysis and design into the

curriculum. Doing so would improve the

currency of IS faculty and students and en-

hance the marketability of IS graduates.

7. REFERENCES

Dennis, Alan, Barbara Haley Wixom, and

David Tegarden (2005) Systems Analy-

sis and Design with UML 2.0: An Object-

Oriented Approach. John Wiley & Sons,

New York.

Fowler, Martin (2004) UML Distilled, Third

Edition: A Brief Guide to the Standard

Object Modeling Language. Addison-

Wesley, Boston.

George, Joey F., Dinesh Batra, Joseph S.

Valacich, and Jeffrey A. Hoffer, (2004)

Object-Oriented System Analysis and

Design. Prentice-Hall, Upper Saddle

River, NJ.

Larman, Craig (2005) Applying UML and Pat-

terns: An Introduction to Object-

Oriented Analysis and Design and the

Unified Process, 3rd ed. Prentice-Hall,

Upper Saddle River, NJ.

McMenamin, Stephen M, and John F. Palmer

(1985) Essential Systems Analysis.

Yourdon Press, New York.

c© 2006 EDSIG http://isedj.org/4/54/ August 14, 2006

ISEDJ 4 (54) Stumpf and Teague 17

Page-Jones, Meilir (1980) The Practical

Guide to Structured Systems Design.

Yourdon Press, Englewood Hills, NJ.

Page-Jones, Meilir (1988) The Practical

Guide to Structured Systems Design,

2nd ed. Yourdon Press, Englewood Hills,

NJ.

Page-Jones, Meilir (2000) Fundamentals of

Object-Oriented Design in UML. Addi-

son-Wesley, Boston.

Pooley, Rob and Perdita Stevens (1999) Us-

ing UML: Software Engineering with Ob-

jects and Components. Addison-Wesley,

Boston.

Richter, Charles (1999) Designing Flexible

Object-Oriented Systems with UML.

Macmillan, New York.

Rumbaugh, James, Ivar Jacobson, and

Grady Booch (2005) The Unified Model-

ing Language Reference Manual, 2nd ed.

Addison-Wesley, Boston.

Stumpf, Robert V. and Lavette C. Teague

(2005) Object-Oriented Systems Analy-

sis and Design with UML. Prentice-Hall,

Upper Saddle River, NJ.

Taylor, David A. (1998) Object Technology:

A Manager’s Guide, 2nd ed. Addison-

Wesley, Reading, MA.

Teory, Toby J., Dongqing Yang and James P.

Fry (1986) “A Logical Design Methodol-

ogy for Relational Databases Using the

Extended Entity-Relationship Model.”

ACM Computing Surveys, v 18 n 2, Sep-

tember 1986. pp. 197-222. (See also
the discussion and correction in v 19

n 2, June 1987. pp. 191-193.)

Yourdon, Edward (1989) Modern Structured

Analysis. Yourdon Press, Englewood

Hills, NJ.

c© 2006 EDSIG http://isedj.org/4/54/ August 14, 2006

