
Volume 4, Number 32 http://isedj.org/4/32/ July 13, 2006

In this issue:

Automating the Development of Data Access Layer

Robert Dollinger Daniel V. Goulet
University of Wisconsin Stevens Point University of Wisconsin Stevens Point

Stevens Point, WI 54481 USA Stevens Point, WI 54481 USA

David Gibbs
University of Wisconsin Stevens Point

Stevens Point, WI 54481 USA

Abstract: Modern software environments like XDE .NET provide integrated and powerful tools
that designers and developers can use in all stages of the application development from building
use case diagrams to automatically generating code. Such tools allow a much more systematic and
highly automated approach of the entire development process transforming what not long ago was
more like an “art” into a better understood engineering activity. Still, there are many challenges that
designers and developers have to deal with in order to make the tools work properly and produce
meaningful results. Some of these challenges are faced at the sensitive point of passing from the
realm of Object Models to the one of Data Models. There is a missing link between these two, which
still has to be coded by the application developers in what is called the Data Access Layer. In order
to simplify developers’ work we propose a two step approach in automating the creation of a Data
Access Layer. The first step consists in factoring out the database specific functionality into a sub-
layer which is completely independent of the specifics of the entity types of the given application.
The second step consists of using dynamic code generation techniques in order to automatically
generate code for the basic database operations associated to the application’s entity types. As a
result application developers will be able to use a data access class generator instead of having to
write the class specific code themselves.

Keywords: data access layer, entity classes, reflection, attributed programming

Recommended Citation: Dollinger, Goulet, and Gibbs (2006). Automating the Development of
Data Access Layer. Information Systems Education Journal, 4 (32). http://isedj.org/4/32/. ISSN:
1545-679X. (Also appears in The Proceedings of ISECON 2005: §2553. ISSN: 1542-7382.)

This issue is on the Internet at http://isedj.org/4/32/

ISEDJ 4 (32) Information Systems Education Journal 2

The Information Systems Education Journal (ISEDJ) is a peer-reviewed academic journal
published by the Education Special Interest Group (EDSIG) of the Association of Information
Technology Professionals (AITP, Chicago, Illinois). • ISSN: 1545-679X. • First issue: 8 Sep 2003.
• Title: Information Systems Education Journal. Variants: IS Education Journal; ISEDJ. • Phys-
ical format: online. • Publishing frequency: irregular; as each article is approved, it is published
immediately and constitutes a complete separate issue of the current volume. • Single issue price:
free. • Subscription address: subscribe@isedj.org. • Subscription price: free. • Electronic access:
http://isedj.org/ • Contact person: Don Colton (editor@isedj.org)

2006 AITP Education Special Interest Group Board of Directors

Stuart A. Varden
Pace University

EDSIG President 2004

Paul M. Leidig
Grand Valley State University
EDSIG President 2005-2006

Don Colton
Brigham Young Univ Hawaii

Vice President 2005-2006

Wendy Ceccucci
Quinnipiac Univ
Director 2006-07

Ronald I. Frank
Pace University

Secretary 2005-06

Kenneth A. Grant
Ryerson University
Director 2005-06

Albert L. Harris
Appalachian St

JISE Editor

Thomas N. Janicki
Univ NC Wilmington

Director 2006-07

Jens O. Liegle
Georgia State Univ
Member Svcs 2006

Patricia Sendall
Merrimack College

Director 2006

Marcos Sivitanides
Texas St San Marcos
Chair ISECON 2006

Robert B. Sweeney
U South Alabama
Treasurer 2004-06

Gary Ury
NW Missouri St
Director 2006-07

Information Systems Education Journal 2005-2006 Editorial and Review Board

Don Colton
Brigham Young Univ Hawaii

Editor

Thomas N. Janicki
Univ of North Carolina Wilmington

Associate Editor

Samuel Abraham
Siena Heights U

Tonda Bone
Tarleton State U

Alan T. Burns
DePaul University

Lucia Dettori
DePaul University

Kenneth A. Grant
Ryerson Univ

Robert Grenier
Saint Ambrose Univ

Owen P. Hall, Jr
Pepperdine Univ

Jason B. Huett
Univ W Georgia

James Lawler
Pace University

Terri L. Lenox
Westminster Coll

Jens O. Liegle
Georgia State U

Denise R. McGinnis
Mesa State College

Therese D. O’Neil
Indiana Univ PA

Alan R. Peslak
Penn State Univ

Jack P. Russell
Northwestern St U

Jason H. Sharp
Tarleton State U

Charles Woratschek
Robert Morris Univ

EDSIG activities include the publication of ISEDJ, the organization and execution of the annual
ISECON conference held each fall, the publication of the Journal of Information Systems Education
(JISE), and the designation and honoring of an IS Educator of the Year. • The Foundation for
Information Technology Education has been the key sponsor of ISECON over the years. • The
Association for Information Technology Professionals (AITP) provides the corporate umbrella under
which EDSIG operates.

c© Copyright 2006 EDSIG. In the spirit of academic freedom, permission is granted to make and
distribute unlimited copies of this issue in its PDF or printed form, so long as the entire document
is presented, and it is not modified in any substantial way.

c© 2006 EDSIG http://isedj.org/4/32/ July 13, 2006

ISEDJ 4 (32) Dollinger, Goulet, and Gibbs 3

Automating the Development of

Data Access Layer

Robert Dollinger
rdolling@uwsp.edu

Daniel V. Goulet
dgoulet@uwsp.edu

David Gibbs

dgibbs@uwsp.edu

Mathematics and Computing Department
University of Wisconsin Stevens Point

Stevens Point, WI 54481 USA

Abstract

Modern software environments like XDE .NET provide integrated and powerful tools that de-

signers and developers can use in all stages of the application development from building use

case diagrams to automatically generating code. Such tools allow a much more systematic and

highly automated approach of the entire development process transforming what not long ago

was more like an “art” into a better understood engineering activity. Still, there are many

challenges that designers and developers have to deal with in order to make the tools work

properly and produce meaningful results. Some of these challenges are faced at the sensitive

point of passing from the realm of Object Models to the one of Data Models. There is a missing

link between these two, which still has to be coded by the application developers in what is

called the Data Access Layer. In order to simplify developers’ work we propose a two step ap-

proach in automating the creation of a Data Access Layer. The first step consists in factoring

out the database specific functionality into a sub-layer which is completely independent of the

specifics of the entity types of the given application. The second step consists of using dy-

namic code generation techniques in order to automatically generate code for the basic data-

base operations associated to the application’s entity types. As a result application developers

will be able to use a data access class generator instead of having to write the class specific

code themselves.

Keywords: Data Access Layer, Entity Classes, Data Access Classes, Data Access Manager,

reflection, attributed programming, data access class generator.

1. INTRODUCTION

Based on the Rational Unified Process (RUP)

specification, most software engineering

manuals present the typical application de-

velopment activity as a structured and sys-

tematic approach that would produce an ob-

ject model organized in at least three main

layers: Presentation Layer, Business Layer

and Data Access Layer (Figure 1).

Further on, each of these layers is refined in

several class categories or sub-layers. The

Presentation Layer is composed of the

Boundary Classes, Windows or Web forms

with which the users interact directly, and

c© 2006 EDSIG http://isedj.org/4/32/ July 13, 2006

ISEDJ 4 (32) Dollinger, Goulet, and Gibbs 4

Presentation Logic Control Classes which

implement the use cases. In the Business

Layer we have the Business Logic Control

Classes, implementing the applica-

tion/enterprise business rules, and the Entity

Classes which are the representations of the

enterprise entity types. Entity types are

common to all applications in the enterprise

and thus most of them need to be stored

persistently such that they can be shared

across applications or for remembering vital

enterprise status values. It is the Data Ac-

cess Layer that makes the connection be-

tween the application and the associated

persistent storage, typically a database. Its

role is two-fold: (1) provide the functionality

for transferring data back and forth between

the application and the database, and (2) fill

the conceptual gap between the representa-

tion model used in the application (object

oriented) and the one used in the database

(relational model). The first function of the

Data Access Layer is supported by the Data

Layer Classes which implement at least the

select, update, insert and delete functions as

the minimal set needed for the operation of

a typical database. The Data Access Layer

lies between the Object Model of the applica-

tion and the Data Model of the data base

thus functioning like an adapter between the

two. The second sub-layer of the Data Ac-

cess Layer consists of the Data Type Classes

which are the in memory recipients of the

entity classes’ instances in the format of the

Data Model corresponding to the persistent

storage. For example in .NET the Data Type

Classes are materialized as XML Data Sets

which are memory structures closely mim-

icking the underlying database. (See Boggs,

W. & Boggs M. 2003 and Manassis E. 2004).

Modern integrated design and development

environments like XDE .NET provide the

tools for the creation of the Object Model of

an application through a well-defined, sys-

tematic and traceable process. Part of the

resulted Object Model, consisting of the En-

tity Classes, forms the Entity Model and

usually needs to be stored persistently. One

can further use the XDE .NET tools to con-

vert the Entity Model, consisting of class de-

scriptions, into an equivalent, Database De-

sign Model, consisting of tables, constraints,

stored procedures and other. The Database

Design Model can then be converted into a

database description in the form of a DDL

script or into a concrete database. The re-

verse process is equally easy at any of these

stages. One can reverse engineer a database

into a Database Design Model, and the later

one into an Entity Model. Let us notice that

in all these processes the Data Access Layer

is completely skipped, which leaves to the

application developer the task of filling the

P

r

e

s

e

n

t

a

t

i

o

n

B

u

s

i

n

e

s

s

D

a

t

a

A

c

c

e

s

s

U

s

e

r

D

a

t

a

b

a

s

e

Figure 1: Typical Application Layers

c© 2006 EDSIG http://isedj.org/4/32/ July 13, 2006

ISEDJ 4 (32) Dollinger, Goulet, and Gibbs 5

gap and make the functional connection be-

tween the (objectual) Entity Model and the

(relational) Database Design Model. Tradi-

tionally, this functionality is implemented in

the Data Layer Classes, one class associated

to each Entity Class. A Data Layer Class cap-

tures both the specifics of its corresponding

Entity Class (data members to be saved,

constraints etc.) as well as the specifics of

the database type where instances of the

Entity Class are stored (e.g., Oracle versus

Microsoft SQL Server). Fortunately this task

can be substantially simplified and almost

completely automated by the understanding

of the fact that one can separate the two

kinds of functions a Data Layer Class imple-

ments: functions specific to the Entity Class

and functions specific to the database. Thus

we propose a two step refinement of the

Data Access Layer. The first step consists in

factoring out the database specific function-

ality into a sub-layer which is completely

independent of the specifics of the entity

types of the given application. The second

step consists of using reflection and dynamic

code generation techniques in order to auto-

matically generate code for the basic data-

base operations associated to the applica-

tion’s entity types. As a result application

developers will be able to use a data access

class generator instead of having to write

the class specific code themselves.

The advantages of using such an approach

are two-fold. As a result of the first step,

application developers can get a prefabri-

cated Data Access Manager class capturing

the specifics of dealing with the database

system used as the persistent storage for

the application’s data. By simply instantiat-

ing this class with the right parameters and

calling the right methods, developers would

be able to perform the basic database re-

lated tasks of connecting to, opening and

closing the database, etc. The parameters

that need to be provided give the coordi-

nates and type of the database system like

server name, database, login, password etc.

Much flexibility is gained in this way since

one can switch from one database to an-

other by simply changing the parameters

without the need of writing new code. The

second step is more challenging in that new

code is needed in each application to capture

the specifics of the Entity Classes. One can-

not reuse the same code over several appli-

cations as in the case of the Data Access

Manager class. The specifics of available da-

tabase systems can be known ahead of time

before any application would be developed,

which is not the case with the specifics of

the Entity Classes. What we can do is to

automate the process of writing the code for

these classes, which means that a prefabri-

cated Data Access Class generator would be

used to automatically produce the code for

saving, deleting, updating or retrieving an

Entity Class instance given as parameter.

2. A SIMPLE EXAMPLE

We illustrate the ideas presented in this pa-

per through a simple example inspired by

the Bradshaw Marina application from

(Doke, E.R. et al. 2003). The class diagram

in Figure 2 shows only a slice of the Entity

Model from this application.

The main entity types are Customer, Boat

and Slip. There is a many to many relation-

ship between Customer and Slip which is

captured by the association class called

Lease. Boat is an abstract class specialized

in two subclasses Powerboat and Sailboat.

The diagram in Figure 2 also captures some

significant business rules of the Bradshaw

Marina enterprise. First as shown by the as-

sociation relationships between Boat and

Customer, each Boat belongs to exactly

one Customer, while a Customer may

have at most one Boat (or none!). Second,

the relationships between Slip and Boat

specify that a Slip may or may not be occu-

pied by at most one Boat, and a Boat may

have assigned a Slip (or none!).

Current modeling tools like XDE .NET are

capable of automatically converting the

above class diagram into a corresponding

database schema which can then be further

used to create a DDL script or to directly

create the tables into a target database. In

XDE .NET the classes in the diagram of Fig-

ure 2 would be packaged into a Logical Data

Model. The classes from such a model can

be transformed into corresponding tables of

a Data Model associated to a target DBMS

type like SQL Server, Oracle or Sybase.

From this point on a simple forward engi-

neering step would create either the DDL

script or database schema itself.

The result of transforming the Bradshaw Ma-

rina Entity Model into a database schema is

shown in the E/R Diagram of Figure 3. First

c© 2006 EDSIG http://isedj.org/4/32/ July 13, 2006

ISEDJ 4 (32) Dollinger, Goulet, and Gibbs 6

thing to notice in the E/R Diagram is that

primary key and foreign key columns have

been added into the tables, e.g. the Boat

table added the Boat_ID column as primary

key and Customer_ID and Slip_ID columns

as foreign keys referencing tables Customer

and Slip. The association class Lease is

converted to the Lease table representing

the many-to-many relationship between

Customer and Slip. The diagram also re-

flects some of the business rules mentioned

above, e.g. each boat is owned by exactly
one customer which is realized by enforcing

a unique constraint on the Customer_ID for-

eign key in the Boat table.

3. THE MISSING LINK: DATA ACCESS

LAYER

The Entity Classes mainly represent the

business entities of an enterprise and are

the part of the Object Model most likely to

be saved in a persistent storage. The Entity

Classes are related to a given enterprise and

are more or less application independent.

Most often one would organize Entity Classes

into a separate package in the form of an

Entity Model which is common to all applica-

tions related to an enterprise. Applications

need to perform current functions related to

object persistency of Entity Class instances

like saving or retrieving an object. This func-

tionality has to be provided in a uniform and

storage independent way, while maintaining

all the advantages of the object oriented

approach. This means that the applications

would refer to some completely generic and

polymorphicaly available methods like

“Save” or “Read” object, which provide the

same interface for each possible Entity

Class. For example, applications will invoke

the “Save” method in the same way for each

of the elements of a polymorphicaly proc-

essed array of mixed typed objects.

_ - theBoat _ 0 .. 1

_- theBoat

_0.. 1

_- theCustomer _

1

_ - theSlip _0.. 1
_ 0 .. 1

_0.. 1

_ Customer

_ - name : String
_ - address : String
_ - phoneNo : String

_ Slip

_ - slipNumber : Integer
_ - slipWidth : Integer = 12

_ - slipLength : Integer = 25

_ - numberOfSlips : Integer = 0

_ Lease

_ - amount : Double

_ - startDate : Datetime
_ - endDate : Datetime

_ Boat

_ - stateRegistrationNo : String
_ - length : Single
_ - manufacturer : String
_ - year : Integer

_ Powerboat

_ - numberEngines : Integer
_ - fuelType : String

_ Sailboat

_ - keelDepth : Double
_ - numberSails : Integer
_ - motorType : String

Figure 2: Sample class diagram
(Bradshaw Marina partial model)

c© 2006 EDSIG http://isedj.org/4/32/ July 13, 2006

ISEDJ 4 (32) Dollinger, Goulet, and Gibbs 7

On the other hand, the Entity Classes need

to be decoupled from the details of persis-

tently storing or retrieving objects. It is the

Data Access Layer through which the Entity

Model gets decoupled from the specifics of

the persistent storage. The traditional tech-

nique for achieving this is to interpose a

layer of Data Access Classes where the spe-

cifics of persistently saving, retrieving or

updating a particular type of object are dealt

with. One would have a Data Access Class

corresponding to each Entity Class.

One can identify two types of functionality

the Data Access Classes need to implement.

First, each Data Access Class has to deal

with the specifics of the corresponding Entity

Class; the second is to deal with the specif-

ics of the persistent storage where the ob-

ject is saved. For example, as part of the

first kind of functionality, the Data Access

Class would take care of building the par-

ticular SQL string such that the relevant

fields of an object would be inserted in a

database table. For another Entity Class the

SQL string will be different and it is a differ-

ent Data Access Class building it. Besides

building the SQL strings, which is a task

specific to each Entity Class, the Data Access

Classes need to deal with database specific

tasks as well, like connecting to the data-

base server, opening/closing the database,

and so on. This makes the Data Access

Classes dependent on the specific kind of

persistent storage used, which means that

one would have to rewrite or have a differ-

ent set of Data Access Classes for each type

of persistent storage.

The approach described above results in a

relatively simple and easy to understand

structure, but it offers little flexibility in the

organization of code which, at least in its

database related part, repeats itself from

application to application. Based on the idea

of separating the two types of functionality

Data Access Classes are required to imple-

ment, we propose a two step approach to-

wards refining and automating the creation

of the Data Access Layer. The first step con-

Figure 3: Database E/R Diagram corresponding to the
partial Bradshaw Marina Class Diagram

c© 2006 EDSIG http://isedj.org/4/32/ July 13, 2006

ISEDJ 4 (32) Dollinger, Goulet, and Gibbs 8

sists of moving out the storage specific func-

tionality from the Data Access Classes into a

(set of) separate classe(s) called Data Ac-

cess Manager(s). One could have a Data Ac-

cess Manager class for each type of persis-

tent storage used by the enterprise’s appli-

cations: MSSQL database, Oracle database

or even flat files, or one single Data Access

Manager Class serving all types of data stor-

ages. What matters is that these classes are

completely unaware of the specifics of any

Entity Class and provide exclusively storage

specific functions like connecting to the da-

tabase server, opening/closing the database

or execute an SQL string given as parameter

by the Data Access Class.

4. IMPLEMENTING THE ACCESS

CLASSES AND THE DATA ACCESS

MANAGERS

In this section we detail the first step of our

approach and provide a possible C# imple-

mentation layout that allows decoupling of

Entity Classes from the details of persistent

storage functionality, as well as independ-

ence of Data Access Classes from the data-

base server used as persistent storage. Fig-

ure 4 shows the layouts for the Customer

Entity Class and its corresponding Data Ac-

cess Class. Notice that all the Customer
class has to do in its Save() method is to call
the Save() of the CustomerDA giving itself
as parameter. This later method constructs

the SQL string for the specific INSERT

statement of a Customer object into the da-
tabase and calls the ExecuteSQLString()
method from the currently active Data Ac-

cess Manager. Note that no database spe-

cific code can be found in the CustomerDA

class. Other methods for building the SQL

strings needed for delete, update and re-

trieve operations of a customer would be

included.

All database specific code is located in the

DAManager class, which is illustrated in Fig-

ure 5. One would create an instance of this

class for each concrete database to which an

application connects.

The constructor of DAManager takes as pa-

rameters the type of database as a value of

the ConnectionType enumeration, that is:

ODBC, OleDB, Oracle or SQL which are the

types supported by this implementation. The

second parameter is the database connec-

tion string specifying the concrete database

to which this DAManager will connect. An

alternative overloaded constructor may take

instead the individual elements of the con-

nection string identifying the target data-

base: database provider, server name, da-

tabase name, user name, password, etc. In

both versions, what the DAManager con-

structor does is to create the corresponding

connection and command objects which

would be subsequently used to execute the

SQL statements. A switch-case statement

controlled by the type of the database, given

as the first parameter, determines the spe-

cific kind of connection and command ob-

jects to create.

The ExecuteSQLString() method is called
by the Data Access Classes whenever a non-

query operation is to be requested from the

database. This method opens the database

connection, sets the command object to

execute the SQL string given as parameter,

executes the command and closes the con-

nection.

The last method shown in Figure 5, illus-

trates a remarkably useful feature of C#

.NET, which is the key element for building

database server independent Data Access

Classes. Namely, .NET defines a set of in-

terfaces containing a unique interface for

each of the most important objects used in

database connectivity operations: IDBCon-

nection for connection objects, IDBCom-

mand for command objects, IDataReader for

data reader objects and so on. The
GetReader() method in our implementation
creates a data reader object for the SQL

SELECT statement given as parameter and

returns it to the Data Access Class. Actually,

what this method generates can be any of

ODBCDataReader, OleDBDataReader, Ora-

cleDataReader or SQLDataReader objects

depending on the database type to which

the current DAManager is connected. In all

cases the data reader is returned as an IDa-

taReader allowing for uniform treatment in

the Data Access Class.

5. IMPLEMENTATION OF A GENERIC

DATA ACCESS CLASS

As a result of the first refinement step of the

Data Access Layer, application developers

are relieved from the burden of dealing with

the database specific functionality in each

and every application. Once a Data Access

Manager class is properly developed and

c© 2006 EDSIG http://isedj.org/4/32/ July 13, 2006

ISEDJ 4 (32) Dollinger, Goulet, and Gibbs 9

tested, its functionality will be available for

reuse in any application. All that needs to be

done is to import the class into the current

application. So far, as one can see in Figure

4, the object persistency specifics of each

Entity Class are dealt with on a class by

class basis. For example, there is a Cus-

tomerDA class associated to the Customer

class and it incorporates specific code to

generate the SQL strings for operations like

saving, updating, deleting or retrieving cus-

tomer objects.

The second step of our refinement process is

to automate the creation of the functionality

in the Data Access Classes that is specific to

the Entity Types. The approach here has to

be different from the one used in factoring

out database functionality. One cannot have

a precompiled class that would deal with the

specific properties of various Entity Classes.

Instead, by using reflection and dynamic

code generation techniques, it is possible to

automatically generate the code we need

during program execution. With this second

step one would not have to develop a Data

Access Class for each Entity Class in the ap-

plication. There will be one single generic

class that would generate the code for sav-

ing, updating, deleting or retrieving any in-

stance of an Entity Class given as parameter

whenever such an operation is requested

during application execution.

 A sample layout of the code for this generic

class, called here GenericDA, is given in Fig-

ure 6. Like in the case of the Data Access

Manager class, the code for the GenericDA

class is the same for all applications and can

be reused by simply importing the class.

For simplicity, only the method for saving an

object into the database is presented in the

sample code from Figure 6, but this is just

enough to illustrate the main ideas underly-

ing our approach. The method gets as a pa-

rameter an object which is an instance of an

Entity Class and generates an SQL state-

ment of the form:

INSERT table_name(list_of_columns)

VALUES (list_of_values)

where table_name, list_of_columns and

list_of_values are unknown at the time of

compilation and have to be revealed during

execution from the description of the Entity

Class. The class name will give us the data-

base table name, the Entity Class properties

correspond to the column names and the

values of these properties are saved in the

columns with the same names. The key for

the entire process is called reflection (see

Liberty, J. 2003 and Troelsen, A. 2003), a

very powerful feature of modern OO lan-

guages like C#, by which, given an object,

one can identify, during runtime, the most

important features of the class it instanti-

ates, such as: class name, class fields,

methods, properties and so on. All this is

made available by setting a reference to the

System.Reflection library of the .NET envi-

ronment.

The Save(Object entityInstance) method
gets as a parameter the object to be saved

in the database through the entityInstance

variable and will save it in the database ta-

ble with the same name as the class from

which the object is instantiated. The class

name is part of the class description re-
turned as a Type object by the GetType()
method (every .NET object comes with a

GetType() method) and will be saved in the
local variable called classType:

Type classType=entityInstance.GetType();

The name of the class (alias database table)

is stored in the Name property of the

classType object and will be inserted into the

generated SQL string after the keyword

“INSERT” and before the list of columns:

string sqlString="INSERT ";
sqlString+=classType.Name;
sqlString+="(";
The next line of code:
PropertyInfo[] pInfo=
 classType.GetProperties();

returns the list of get/set properties defined

in the class under the form of an array of

PropertyInfo objects. The Name properties

of these objects give us the names of the

get/set properties defined in our class, which

allows building the list of corresponding ta-

ble columns by inserting them one by one in

the generated SQL statement.

After closing the list of property names (alias

table columns) and adding the “VALUES”

keyword, the last element to be added to

the generated SQL statement are the values

the get/set properties have in the particular

object that was given as parameter. In order

to properly build the list of property values,

one needs both the value of the property,

returned by the GetValue() method, as well
as the data type of each property (integer,

c© 2006 EDSIG http://isedj.org/4/32/ July 13, 2006

ISEDJ 4 (32) Dollinger, Goulet, and Gibbs 10

double, character or else), which is returned

by the GetType() method. This is necessary

because values get inserted in the SQL

string in different ways for different types. In

our sample code we differentiate only be-

tween character types, identified as
sqlString.GetType(), and all other types.
Values of character types have to be delim-

ited by simple quotes, while numeric values

and values of other types are inserted as

such. More sophisticated processing to take

into account other data types can be easily

implemented.

As in the case of the CustomerDA class from

Figure 4, the Save method ends by a call to

the ExecuteSQLString() method of the cur-

rently active Data Access Manager which

takes care of all the related tasks like: open-

ing the database, executing the generated

SQL string, producing an exception in case

of failure and properly closing the database

when done.

6. BASIC ASSUMPTIONS, LIMITATIONS

AND POSSIBLE REFINEMENTS

The approach presented above heavily relies

on some assumptions in order to make code

like the one in Figure 6 work properly. These

assumptions can be summarized as follows:

- the Entity Classes and the corresponding

database tables have exactly the same

names;

- every table column referred in a gener-

ated SQL statement corresponds to the

same name get/set property of the cor-

responding Entity Class;

- every relevant (that is one that needs to

be stored persistently) get/set property

of an Entity Class corresponds to a table

column with the same name;

- corresponding get/set properties and

table columns have compatible data

types;

- all other table columns accept null val-

ues, unless part of a primary key.

The first four assumptions are satisfied by

default when we use XDE .NET to either

automatically convert a class diagram into a

database schema or the other way around to

produce a class diagram from an existing

database as illustrated in section 2. This

makes the entire procedure described in sec-

tions 4 and 5 fairly viable as long as the

guidelines described in this work are fol-

lowed. In the case where, for some reason,

there is no one to one correspondence be-

tween class get/set properties and table col-

umns one can still use an automated ap-

proach in a more elaborate and sophisticated

way by using attributed programming.

Through attributes one can specify all sorts

of options like: which get/set property is

going to be saved in the database, the name

of the corresponding column, explicit data

type conversion etc.

The last assumption requires that if there

are columns in the database tables other

then those corresponding to the get/set

properties, they should allow null values if

not part of a primary key.

As we have seen in section 2, primary and

foreign key columns may be automatically

added to tables. Single column primary keys

will not pose a problem for the operations

described in section 5. When saving an ob-

ject, the primary key value would be typi-

cally generated by the database system as a

sequence number. The primary key column

can be easily ignored when retrieving the

database row into an Entity Class instance

and/or handled separately if needed. XDE

.NET generates single key primary keys by

default which means that our approach

would work unless other database design

options are considered.

The problem is a little bit more complicated

in the case of foreign keys. One can imagine

several workarounds for this problem, but

there will be some specific coding in each of

these. One simple approach would be to add

a second parameter to the Save method in

Figure 6 (and to all other methods in the

GenericDA class far that matter). This sec-

ond parameter would be a list of foreign key

name-value pairs to be included in the gen-

erated SQL statement representing the links

the object is saved has to other objects in

the database. Of course, building this list

would be the job of the application developer

which is one of the limitations of the ap-

proach considered here. As a possible re-

finement and topic for further research the

idea of automatically dealing with several

related objects at once, thus controlling

generation of primary and foreign key values

seems to be appealing to the resolution of

this problem.

c© 2006 EDSIG http://isedj.org/4/32/ July 13, 2006

ISEDJ 4 (32) Dollinger, Goulet, and Gibbs 11

7. THEORY AND PRACTICE

Obviously, the two step approach to the

Data Access Layer automation we empha-

sized in this paper has some inherent limita-

tions, which raises the question of how much

its use can be generally applied in the cur-

rent software development practice. More

research will be needed in order to test and

asses the viability of the proposed approach.

Also, there are several alternative refine-

ments to explore (e.g. using attributed pro-

gramming), as well possible requirements

and challenges that may yet to have to be

discovered (e.g. dealing with transactions,

storing very large objects like images, etc.).

On the other hand the ideas captured in the

two step approach seem to be productive by

themselves and proved to be useful in prac-

tice, not only when developing applications,

but also in the classroom. Separation of the

database specifics into a specialized sub-

layer which is independent of the application

specifics makes it easier to understand the

role and functions of the Data Access Layer

in general. The use of reflection as a basis

for the automatic generation of Entity Class

specific code is a generous one and deserves

further exploration of its potential.

8. CONCLUSIONS

Current design tools offer powerful support

in almost all stages of the application devel-

opment process. However, there are still

important issues remaining to be solved by

proper code structuring. In this paper we

illustrated a two step approach as a way to

automate the development of the Data Ac-

cess Layer. The first step consist of refining

the Data Access Layer by factoring out data-

base server specific elements into a layer of

Data Access Manager classes by which effec-

tive decoupling between Data Access Classes

and database servers is achieved. The sec-

ond step is based on the dynamic generation

of SQL code dealing with the specifics of En-

tity Classes, thus eliminating the need to

develop specialized Data Access Classes,

which are replaced by one single application

independent generic class. The techniques

presented in this work can be further refined

in order to eliminate some limitations like

those related to the proper handling of for-

eign keys. Several approaches can be em-

phasized which will be the subject of future

research.

REFERENCES

Boggs, W., & Boggs M. (2003). Mastering

Rational XDE, Alameda, CA: SYBEX Inc.

Doke, E.R. et al. (2003) Object Oriented Ap-

plication Development Using Microsoft

Visual Basic .Net, Thomson Course Tech-

nology.

Liberty, J. (2003) Programming C#, Third

Edition, O’Reilly

Manassis E. (2004). Practical Software engi-

neering, Analysis and Design for the

.NET Platform, Addison-Wesley, The Ad-

dison-WesleyObject Technology Series.

Troelsen, A. (2003) C# and the .NET Plat-

form, Second Edition, Apress.

c© 2006 EDSIG http://isedj.org/4/32/ July 13, 2006

ISEDJ 4 (32) Dollinger, Goulet, and Gibbs 12

Figure 4: Implementation layout of the Customer and CustomerDA Classes

namespace ProblemDomain.EntityModel

{

 public class Customer

 {

 private string name;

 private string address;

 private string phoneNo;

 ...

 //saving a customer to the database

 public virtual void Save()

 {

 DataAccess.CustomerDA.Save(this);

 }

 }

}

namespace DataAccess

{

 public class CustomerDA

 {

 //build SQL string to save customer

 //and call the Data Access Manager to execute it

 public void Save(Customer customerToSave)

 {

 string sqlString="INSERT Customer VALUES (";

 sqlString+="'"+customerToSave.name+"',";

 sqlString+="'"+customerToSave.address+"',";

 sqlString+="'"+customerToSave.phoneNo+"')";

 DAManagers.DAManager.currentDAManager.

 ExecuteSQLString(sqlString);

 }

 //other methods here

 ...

 }

}

c© 2006 EDSIG http://isedj.org/4/32/ July 13, 2006

ISEDJ 4 (32) Dollinger, Goulet, and Gibbs 13

Figure 5: Implementation layout of DAManager Class

namespace DAManagers

{

 public enum ConnectionType {Odbc,OleDb,Oracle,Sql}

 public class DAManager

 {

 public static DAManager currentDAManager;

 System.Data.IDbConnection connection;

 System.Data.IDbCommand command;

 System.Data.IDataReader dataReader;

 System.Data.IDbDataAdapter dataAdapter;

 public DAManager(ConnectionType connectionType,

 string connectionString)

 {

 switch(this.connectionType){

 case ConnectionType.Odbc:

 {

 this.connection=

 new OdbcConnection(connectionString);

 this.command=new OdbcCommand("",

 (OdbcConnection)this.connection);

 break;

 }

 ...

 }

 }

 public void ExecuteSQLString(String SqlString)

 {

 this.connection.Open();

 this.command.CommandText=SqlString;

 try{

 this.command.ExecuteNonQuery();

 }catch(Exception ex)

 this.errorMessage=ex.Message;

 this.connection.Close();

 }

 public IDataReader GetReader(String SqlString)

 {

 this.connection.Open();

 this.command.CommandText=SqlString;

 return this.dataReader=

 this.command.ExecuteReader();

 }

 ...

 }

}

c© 2006 EDSIG http://isedj.org/4/32/ July 13, 2006

