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Abstract 
 

Quantum Key Distribution (QKD) is the use of quantum phenomena to create and distribute secure random symmetric 
private one-time keys (random bit strings) used for encrypting and decrypting messages.  The encryption using these 
keys is known to be unbreakable even classically.  QKD encryption is also called Quantum Encryption (QE).  There are 
products on the market doing this today.  DARPA is funding the use of QKD to replace IPSEC on the internet.  QKD 
overcomes the only weakness of classical unbreakable one-time pads – the secure distribution of the pads themselves.  
Encryption is used for transmitting data securely. 
 
In previous papers I have proposed an IS course module covering QE, and I have discussed where it would fit into the 
IS curriculum.  I have analyzed and presented an outline on the prerequisites for such an IS course module and pro-
vided an advanced tutorial for faculty or graduate students.  This paper is my suggestion, in some detail, for such a 
module for undergraduate students.  I simplify the presentation so that undergraduate IS students ought to be able to 
follow the discussion.  They need only some remembrance of high school algebra.  The relevant physics is presented in 
a purely descriptive form.  Appendices contain the QKD (QE) algorithm in UML-like diagrams.  This module should 
be teachable in two one-hour lectures.  Due to space limitations, I have left out appendices on the Vernam one-time-
pad, and a typical simulation run output which should be part of the module. 
  
Keywords:  Quantum encryption, Quantum cryptography, Quantum key distribution, IS curriculum 
 

1.    INTRODUCTION 

Quantum Key Distribution (QKD) is the use of quan-
tum phenomena to create and distribute unbreakable 
symmetric one-time keys (random bit strings) which 
are used for classical message encrypting and decrypt-
ing.  This is also called Quantum Encryption (QE).  
There are products on the market doing this today.  
See  http://www.idquantique.com/qkd.html  
 

 

Figure 1.  QKD Boxes from Idquantique 
 

DARPA is funding an effort at Harvad, BU, and BBN 
which will is prototyping a QKD network that could 
effectively replace IPSEC on the Internet [BBN 2004].  
This is very much in the spirit of the original DARPA 
– BBN effort leading to the first routers and email. 

 
The argument for QKD (BBN 2004) in outline, is that 
the current crypto schemes are built on unproved as-
sumptions about the difficulty of certain mathematical 
factoring problems.  Also, as quantum computing 
comes online, it will effectively break those codes 
(BBN 2004), (Johnson, George, 2003).  So now is the 
time to develop and deploy more robust transmission 
security measures – before they become absolutely 
necessary.  Some critical government and finance 
applications need this added robustness today. 
 
In previous papers I have proposed and argued for an 
IS course module on QE for the IS curriculum and 
discussed where it would be placed (Frank 2003).  I 
have analyzed and presented an outline on the prereq-
uisites for such an IS course module and provided an 
advanced tutorial for faculty or advanced students 
(Frank 2004).  This paper is my suggestion for a sim-
plified version of such a module for undergraduate 
students.  I am trying to simplify the module prepara-
tion process by giving this example. 
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I simplify the presentation so that undergraduate IS 
students ought to be able to follow the discussion. 
Appendices contain the algorithm in diagrams, and a 
review of the Vernam one-time pad.  I choose one of 
the simpler algorithmic descriptions and leave out all 
advanced issues such as error correcting codes and 
advanced probability analysis since they are neither 
needed nor desirable at this level.  The basic physical 
ideas are accessible to our students. 
 
Students need only some remembrance of basic alge-
bra and no trig.  The trig needed is introduced here.  
The quantum and other physics “stuff” is self con-
tained and of independent cultural interest. 
 
Independently of QKD, there is an important reason 
for learning something about the applications of quan-
tum mechanics.  About 1/3 of our gross domestic 
product comes from quantum phenomena, and this 
will only grow in the future (Waite 2002). 
 
The most robust (unbreakable) encryption method is 
based on Quantum Encryption/QKD (Johnson 2003), 
(Singh, 2002), (Nielsen and Chuang, 2000), 
(ArXiv.org, 2004) and (Tanenbaum, 2003).  Products 
using this method are available on the open market 
(IdQuantique.com, 2004), and (MagiqTech,com 
2004).  They create absolutely secure one-time keys at 
100b/sec. and send them in fiber up to 60 miles. 
 
The basic QKD ideas I introduce are quantum system 
state, light polarization, and a peculiarity of system 
measurement in the quantum domain – the “No Clon-
ing” theorem.  This is all in a context of basic prob-
ability.  For those who want a complete presentation 
of these topics see (Messiah, 1999) or (Nielsen and 
Chuang, 2000). 
 
I first give a short statement of the probability facts I 
will use.  Then I review polarization (sun-
glasses/telescopes).  I proceed to simple two dimen-
sional vectors, bases, and components, including pro-
jections and the cosine of an angle. 
 
I connect these latter topics with polarization by using 
the direction of a linear polarization filter applied to 
photons.  The filter polarizes the photons in a fixed 
direction.  The direction of polarization is used as a 
two dimensional quantum state vector which lies in 
the plane perpendicular to the light‘s propagation. 
 
By adding a quantum axiom – the quantum state is 

represented as a vector (here a two dimensional vector 
of polarization) we can apply the No Cloning theorem 
(states can’t be copied).  This then is all that is re-
quired to present and understand the QKD algorithm, 
in a simplified form, used in current products. 
 

2. PROBABILITY 

A discrete probability measure is a set of weights {pi} 
associated with events i and k, that has these proper-
ties: 

1) For all i 0 1ip≤ ≤   (0.1) 

[Positivity] 

2) and 1i

i

p =∑   (0.2) 

[Normalization] 
3) They combine as follows: 

a. The probability of i and k: 

( ) i kP i and k p p=  (0.3) 

[Joint occurrence law] 
b. The probability of i or k: 

( ) i kP i or k p p= +   (0.4). 

[Disjoint occurrence law] 
 

Later (optionally) we see the binomial distribution and 
its application to Bernoulli Trials.  This is not a central 
point so it should be skipped.  It is not a proper part of 
the actual algorithm.  I use it only for a heuristic when 
discussing the probability of Bob choosing filter that 
match Alice’s choices or Eve choosing filters that 
match Alice’s..  Bayesian analysis is also not applica-
ble here. 
 

3. POLARIZATION OF LIGHT 

 
Light is made up of two fields: the electric field and 
the magnetic field.  See (Mathpages.com 2004).  The 
two fields propagate together in a given direction (our 
old friend the light ray).  The fields oscillate in a sine 
like pattern perpendicular to the direction of propaga-
tion.  The magnetic field is always at a right angle to 
the electric field, so our first simplification is that we 
will consider only the electric field.  If we know the 
electric field, we know where the magnetic field is: it 
is at right angles to the electric field! 
 
There is one complication.  The electric field (and its 
associated magnetic field) is rotating around the direc-
tion of propagation as it progresses.  A Polaroid lens 
coating of our sunglasses (for an added $50 fee/lens!) 
allows through only the light (photons) whose fields 
are lined up with the direction (axis) of polarization of 
the lens (usually chosen to minimize the glare coming 
off water and metal surfaces).  This reduces the 
amount of light but it also reduces the glare since glare 
is itself polarized and the lenses are chosen with an 
axis of polarization perpendicular to the usual direc-
tion of reflected water glare and glare reflected off 
metal surfaces. 
 
Light (the combined electromagnetic field) is quan-
tized into photons at the quantum level.  We can think 
of the photons as having the oscillating behavior of the 
field and of having the ability to be modified by a 
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filter so that they only oscillate in parallel to the filter 
axis.  That is: a photon which oscillates in parallel to 
the axis of a polarizing filter will pass through it un-
changed, a photon oscillating at right angles to the 
filter axis gets totally blocked.  A photon oscillating at 
an angle to the filter axis gets through, as we will see 
below, with a probability equal to the square of the 
cosine of the angle between the filter axis and the 
photon’s oscillation (a positive number between 0 and 
1). 

 
A typical macroscopic experiment puts two polarizing 
filters in tandem.  The first lets through light with a 
certain direction (mostly).  If the second filter’s po-
larization axis is parallel to the first we get a bright 
beam coming through.  

 
If they have axes at right angles we see almost no light 
coming through.  As we turn the filters relative to each 
other, the transmitted scene lightens and then darkens 
again as the square of the cosine of the angle between 
their axes.  Later we see this as a probability of trans-
mission of photons. 

 
Polarization Filter

Light ray

coming

out of page

Direction of

Linear

Polarization

 
Figure 2.  Planar filter ( / ), linear polarization. 

 

Light ray

coming

out of page

Direction of

Linear

Polarization

of first filter

Polarization Filters:  We

are looking  back along

the light ray

Direction of

Linear

Polarization

of second

filter

Angle

between

filter

directions

 
Figure 3.  Tandem planar linear polarizing filters, 

( | ) and ( / ), viewed from straight on. 
 

Classroom Demonstrations 

Effective and quick demos of polarization can be done 
using a classroom-lecture laser pointer and any inex-
pensive optics kit listed in the references. (B&H, Ed-
mund Industrial Optics, Edmund Scientifics – all 
2004) 

 

Light ray

passing

through two

filters whose

axes are at

45 degrees

Direction of

Linear

Polarization

(in the plane

of the filter)

Direction of

Linear

Polarization

(in the plane

of the filter)

Figure 4.  Tandem planar linear polarization filters,  

( | ) and ( / ),  viewed from an angle. 

 

4. COSINE OF AN ANGLE 

 

The cosine of an angle is defined as in this diagram: 
(adjacent side divided by hypotenuse). 
 

A triangle, an angle,  and its

Cosine = (a/H)

Angle θθθθ
(greek theta)

H

(h
yp
ot
en
us
e)

a

(adjacent side)

o

(opposite side)

 
Figure 5.  The definition of cosine 

( )cos( ) a
H

θ =   (4.1) 

 
5. TWO DIMENSIONAL VECTORS 

Equation Section 5 

Vector 

A vector is defined as length and direction. 
 

Basis 

We usually pick N vectors of length 1 in an N dimen-
sional space, place them at the origin (picked arbitrar-
ily), pointing in mutually perpendicular (orthogonal) 
directions, and call them a basis. 
There can be many bases.  A 2-D basis could consist 
of any two non-parallel vectors.  Any other vector can 
be written out as a sum of the two basis vectors.  Unit 
length orthogonal bases make the sum simpler to fig-
ure out. 
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Usual X, Y

basis

(|)

( - )

Figure 

6.  The usual 2-D Basis Vectors have length 1 ( – ) 
and ( | ) 
 

Another basis

at 45 degrees

45

degrees

Alternate

Basis

45

degrees

(/)(\)

Figure 
7.  Another unit orthogonal basis 

( / ) and ( \ ) 
 

Components 

An arbitrary vector (arbitrary direction and length) can 
be written as a weighted sum of the two basis vectors 
[remember we are limiting ourselves to a two dimen-
sional space].   
 
The arbitrary vector is the sum of two vectors, each in 
the direction of one of the basis directions.  These are 
its components. 
 

Coordinates in a basis 

Given a basis: coordinates are the lengths of the com-
ponents in that basis.  The co-ordinates of the basis 
vectors themselves are the two pairs: (1,0) and (0,1). 
The coordinates are the length of the orthogonal (per-
pendicular) projections of the vector onto the basis 
vectors. 
 

Orthogonal projections 

Finding an orthogonal projection length is just finding 
the cosine of an angle. 
 

Orthogonal unit vector projections 

Notice that if the vector being projected is itself of unit 
length, then its coordinates ARE the cosines of the 
angles it makes with the basis vectors. 

( )
1cos( )

cos( ) cos( )
1

a
H

θ
θ θ= = =  (5.1) 

Arb itra ry  o th e r  vec to r

rep resen ted  b y a  sum  o f its

com ponen t vec to rs  a lo ng

the  b as is  d ire c tio ns

 
Figure 8.  Components 

 

Same arbitrary other vector

represented by a sum of its

component vectors along

another basis

 
Figure 9.  Components in another basis 

 

Trick, trick, trick 

If the vector being projected is a unit vector (length 1) 
and it lies at 45 degrees, then its projections are equal 
since  

1

2
cos(45 ) sin(45 )° = = °  (5.2) 

Projection = Vector length

times Cosine of angle θθθθ

Angle θθθθ

(greek  theta)

Ve
ct
or
 le
ng
th

Projection

length

Perpendicular

Projection

Line

 
Figure 10.  Computing a projection 

Orthogonal Projections on the other basis vector 

The projection on the other basis axis is the cosine of 
the compliment of the first angle.  It equals the sine of 
that first angle. 
 

θθθθ

Basis

π−θπ−θπ−θπ−θ

 
Figure 11.  cos(π−θ) = sin(θ) 
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Four Factoids to be used later 

1) The square of the projections of a 45 degree 
unit vector are: 

( )
2

2 1

2
cos (45 ) .5° = =   (5.3) 

2) The square of the projection of a unit vector 
on itself is: 

( )
22cos (0 ) 1 1° = =   (5.4) 

3) The square of the projection of a unit vector 
on a vector perpendicular to itself is: 

( )
22cos (90 ) 0 0° = =   (5.5) 

4) The sum of the squares of the coordinates of 
a unit vector is 1, so we can consider them 
probabilities. 

( ) ( )

2 2

2 2
1 1

2 2

cos (45 ) sin (45 )

1 1

2 2

1

+ =

+ = +

=

o o

  (5.6). 

 

6. QUANTUM SYSTEM STATE 

 

State 

A quantum system is represented by its states.  A 
quantum system state is a vector in some suitable 
space (often infinite dimensional or at least more than 
3-D).  However in this case we can limit the system to 
a photon that can be polarized.  Its quantum state is 
represented by a vector of length one in the direction 
of its polarization. 
 
This is a rare example where the quantum state can be 
pictured in the real world (not a phase space) and is 
limited to only two dimensions! 
 

Unit Multipliers (sort of a trick) 

We are interested only in the length of the vector and 
its line of action.  We will neglect factors of magni-
tude 1.  For example, if a state vector is reversed (mul-
tiplied by –1) we consider it unchanged.  It is still 
representing the same filter axis since physically a 180 
degree turn makes no difference. 
 

Basis or PURE states and their filters 

 
A photon is in a “pure” state if it has just been meas-
ured (passed through a filter).  WE NOW KNOW ITS 
STATE!  If we measure it again with the same filter 
we get the same result with p=1.  If we measure it with 
the complimentary filter of the pair we get NO result 
(NO photon).  Probability of a photon is p = 0.  But 

this tells us the probability of the photon being in the 

other direction of the pair is p = 1.  So we know the 

photon polarization.  This weirdness happens only in 

2-D where the pure states are either or. 
 

On the other hand, if we measure the known state with 
one of the other pair of filters we get out a photon in 
that state with p=.5 or in its complimentary state  with 
p=.5.  This is totally ambiguous. 
 
Any two orthogonal filters can determine a basis set.  
We will use two special sets of filter pairs. 
 

A filter pair (horizontal and vertical) {| and -–} pass 

polarization states which are orthogonal and therefore 

form a basis of the 2-D space of polarization.  ( | ) 
and ( – ) are called the {+} pair. 
 

Similarly, a 45-degree left filter (\) and 45-degree 

right filter (/) form a mutually perpendicular set of 

axes.  They can form another basis of the same two-

dimensional space of polarization states.  ( \ ) and ( 
/ ) are called the {X} pair. 
 
These two bases are at 45-degrees to each other.  The 
polarization state of any photon can be written as a 
sum of the basis states of either basis.  For example, 
each basis vector in each set can be written as a sum of 
the other basis set (underline indicates vector):  
 

1 1
(\) (|) ( )

2 2
= − −

  (6.1) 

1 1
(/) (|) ( )

2 2
+= −

 (6.2) 

1 1
(|) (\) (/)

2 2
+=

 (6.3) 

1 1
( ) (\) (/)

2 2
+− =−

 (6.4) 

Notice the minus signs since (\) projects onto the 

negative of (–), and  (–) projects onto the negative 

of (\). Notice that the sum of squares of ALL coordi-

nates is always 1! 

Another basis

at 45 degrees

45

degrees

Usual X, Y

basis

45

degrees

45

degrees

|

--

/\

 
Figure 12.  The two basis sets  

{+} = {| , –} and {X} = {\ , /} 
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Mixed States 

4

π
θ=

Representation of (\) in {+}

4

πθ =

(\)

(|)

(--)
-(--)

1

2
−

1

2
+

1 1
(\) (|) ( )

2 2
= − −

 
Figure 13.  (\) represented in {+} 

 

4

π
θ=

Representation of (/) in {+}

(/)

(|)

(--)
1

2
+

1

2
+

1 1
(/) (|) ( )

2 2
+= −

4

π
θ =

 
Figure 14.  (/) represented in {+} 

 

Representation of (-) in {X}

(\)

(--)
1

2
+

1

2
−

1 1
( ) (\) (/)

2 2
+− = −

4

πθ =

4

π
θ =

(/)

-(\)
 

Figure 15.  (-) represented in {X} 
 

Representation of (|) in {X}

(\)

(|)

1

2
+

1

2
+

1 1
(|) (\) (/)

2 2
+=

4

π
θ =

4

π
θ =

(/)

 
Figure 16.  (|) represented in {X} 

 
Just to be complete and to practice thinking about 
representing vectors in a basis, let’s look at the repre-
sentations of the bases in themselves! 
 

Basis or PURE states 

 

( ) ( )( ) ( )( )

( ) ( )( ) ( ) ( )

| 1 | 0

0 | 1

and

= + −

− = + −

  (6.5) 

 

( ) ( )( ) ( ) ( )

( ) ( )( ) ( )( )

\ 1 \ 0 /

/ 0 \ 1 /

and

= +

= +

  (6.6) 

 
Notice that the sum of squares of ALL coordinates is 
always 1! 
 

7. CONNECTING IT ALL TOGETHER 

 
A filtered photon is in a pure state.  Its state vector is 
parallel to the filter - one of the basis vectors.  If it is 
then sent through another filter (measured) we can 
only determine the probability of the outcome of the 
measurement.  The probability is the square of the 
coordinate of the state vector as it is written in the 
measuring filter basis.  See equations (6.1)-(6.6) 
 

1) If the photon is sent through the same filter, 
we get the same result with a probability of 
1.  See the pure state equations above (6.5) 
and (6.6). 

2) If it is sent through the same filter set but the 
other filter of the pair, we get the result of 
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NO MEASURED PHOTON (probability of 
0).  See the pure state equations above (6.5) 
and (6.6). 

3) If it is sent through the any of the two filters 
of the other set, we can only predict the re-
sult with a probability of .5.  See the mixed 
state equations (6.1)-(6.4) above or in Fig-
ures 13-16. 

 

8.   NO CLONING THEOREM 

 
In general we can never know for sure what the state 
was before our first measurement.  Since we have no 
prior knowledge of the before state, we can only give 
the probabilities of getting what we do measure, as-
suming some prior state. 
 
This means that we can’t copy exactly a prior state 
(clone it).  The best we can do is that we measure the 
quantum system state and compute the probabilities of 
our measured state value given that we started out in 
an assumed (but unknown) prior state. 
 

No Cloning Theorem:  We can not copy ex-

actly (clone) an unknown prior quantum state. 

 

9. THE QUANTUM KEY DISTRIBUTION 

ALGORITHM 

 

(Johnson, 2003; Nielsen and Chuang,, 2000; Singh, 
2002; Tanenbaum, 2003) 
 

0) Alice (sender) and Bob (receiver) agree to 

use two sets of polarization filters: (+) 
and (X).  They choose which filtered 

photons will represent what bits before they 
start, say: 

 

Bit Interpretation1 0

Filter

Choice

+

Filter

Choice

X

1 0

Figure 17.  Filter Sets {+} & {X} and 

(arbitrary) bit-filter correspondences 

 
1) Alice chooses N random bits [not an easy 

trick in itself]. and sends these N random 
bits (photons) using a random choice of N 
filters.  Alice knows her bits, filter sets,  and 
filters. 

 
2) Bob uses a random choice of receiving fil-

ters.  Bob knows his measured bits (photons) 
and his filters but he does not know what 
Alice sent – yet.  Some measured bits will 

be errors because he chose the non-matching 
(incorrect) filter set.   
 
An incorrect filter set gives a bit error 50% 
of the time.  A correct (matching) filter 
gives a correct bit 100% of the time.  Some 
of Bob’s bits might actually be bad because 
an eavesdropper (Eve) passed on modified 
bits.   See step 5. 

 
3) Alice phones Bob in the clear and tells him 

her sequence of filter SETS (Eve could hear 
this).  Neither Bob nor Eve (an eavesdrop-
per, if she exists) knows the bits yet. 

  
4) Bob tells Alice in the clear which of his se-

quence of filter SETS agree  (Eve could hear 
this).  She won’t know what actual filters 
Bob used. 

 
This determines a secret set of M known bit 
values, known to both Alice and Bob.  This 
is a symmetric key for encryption - if no 
Eve. 
 
Some bits might be wrong if there was an 
Eve who corrupted the original bit string due 
to No Cloning. 

 
5) Alice phones Bob again in the clear and 

reads to him a discardable subset of her ac-
tual bits.  If Bob agrees, then there has been 
no Eve.  All bits MUST be the same since 
they used the same filter sets.  Otherwise, 
there has been an Eve due to bit stream cor-
ruption, so they must discard ALL bits and 
start over!   

 
It is highly UNlikely that in a long but dis-
cardable set of bits Eve would have chosen 
to pass on to Bob bits exactly matching 
those Alice sent.  Since she can’t copy them 
by the No Cloning Theorem, some will be in 
error (not the same as Alice sent).  This 
causes the bit errors in Alice‘s read back to 
Bob. 

 

Discussion 

The 50% error rate in step 2 comes from a photon 
prepared in one filter basis by Alice then being meas-
ured in the other filter basis by Bob.  The sent photon 
state vector gets projected onto Bob’s filter’s direction 
with probability 50% or onto its orthogonal direction 
also with a probability of 50%.  Either gives Bob a bit 
value.   
 
If Alice only sends Bob her bit choices he has a 50% 
chance of having read the correct bit even though it is 
from the wrong filter set.  Fortunately she will send 
her filter choices, in step 3, so he will know this bit is 
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probably only 50% correct – so he drops it from con-
sideration. 
 
Notice that at no time does Eve know the bits in 
agreement (the key) because she does not know Bob’s 
filter choices.  She may know some bits in common 
with Bob because she luckily chose some filters 
matching Alice’s correctly.   
 
The bit read back in step 5 does not help Eve either.  
They are a subset of a bit string that she does not know 
and will be discarded anyway. 
 
The best Eve can hope for is a possible denial of ser-
vice attack. 
 
There are two other ideas here.  One is that the prob-
ability of her choosing ALL of the correct filter sets 

for an N bit string is ( )1
2

1

2

N

N
=  (probability of a 

set of N ands) which is, for long strings, effectively 0.  
The second is the No Cloning Theorem which forces 
Eve to pass on guessed photons to Bob.  The probabil-
ity of Eve matching all of Alice’s bits by chance is 
again vanishingly small. 
 
A critical part of the algorithm is that EVE can’t ex-
actly mimic Alice’s bit string to send on to Bob be-
cause of the No Cloning theorem.  She MUST corrupt 
some of the bits she forwards on to Bob thus enabling 
the step 5 sensing of her presence. 
 
A subtlety is that because of the filter set definitions 
and their 45 degree relationship to each other, Bob 
(and Eve) get some benefit.  If they choose the correct 
filter set (by step 3) they actually know the bit even if 
they chose the wrong filter of the pair!  In that case 
they measured NO PHOTON.  This is a dead give 
away for both the bit (the other filter of the pair) and a 
fortiori the filter pair.  This is a fortuitous situation 
that comes up only in two dimensions where there are 
no other dimensions for the complimentary state vec-
tor. 
 
The probability of randomly choosing the correct filter 
pair for any bit is .5.  Therefore many of the bits meas-
ured by Bob or Eve will be wrong.  Although the ac-
tual algorithm uses error correcting codes (Nielsen and 
Chuang, 2000), the following heuristic is helpful. 
 
Products now on the market  determine long keys at 
about 100b/sec. 
 
The appendix contains a pair of diagrams of the algo-
rithm. 

10.   CONCLUSION 
 

Because the best available encryption is problematic, 
we need to employ more robust encryption methods 

especially in networking.  A provable unbreakable 
encryption method is based on QKD.  With a little 
high school algebra and some elementary purely de-
scriptive physics we can get a basic understanding of 
how QKD works. 
 
We are using single photons and their quantum physi-
cal properties.  We are creating one-time keys (known 
unbreakable) 100b/sec.  QKD overcomes the one criti-
cal weakness of classical unbreakable one-time-pads – 
the secure distribution of the pads themselves.  The 
encryption of messages proceeds classically and is 
known unbreakable!  QKD is the solution of choice in 
critical environments. 
 
Even if there is an eavesdropper, we can sense it.  
Otherwise, the key is secure. 
  
No future speed up of computing can threaten this 
method as PKI is threatened (factoring large numbers 
depends on the speed of your computer).  QKD is 
founded on physical properties that won’t change in 
time. 
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12. APPENDIX – ALGORITHM DIAGRAM – NO EVE 
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13. APPENDIX – ALGORITHM DIAGRAM – WITH AN EVE 
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