
Volume 3, Number 23 http://isedj.org/3/23/ August 4, 2005

In this issue:

Teaching the Blind to Program Visually

Robert M. Siegfried Denis Diakoniarakis
Adelphi University Adelphi University

Garden City, NY 11530, USA Garden City, NY 11530, USA

Uchechukwu Obianyo-Agu
Adelphi University

Garden City, NY 11530, USA

Abstract: The proliferation of graphical user interfaces has had a dramatic impact on the ability
of the blind to work as programmers. It is particularly difficult for the blind to design forms for
programs written in Visual Basic. A prototype scripting language is introduced that enables the
blind to create Visual Basic forms without the need to specify all the detailed information that
Visual Basic requires and without the “point and click” approach that the blind cannot use. The
syntax for the language is described and plans for expanding the language are discussed.

Keywords: blind programmer, visually impaired, graphical user interfaces, special education

Recommended Citation: Siegfried, Diakoniarakis, and Obianyo-Agu (2005). Teaching the Blind
to Program Visually. Information Systems Education Journal, 3 (23). http://isedj.org/3/23/.
ISSN: 1545-679X. (Also appears in The Proceedings of ISECON 2004: §3265. ISSN: 1542-7382.)

This issue is on the Internet at http://isedj.org/3/23/

ISEDJ 3 (23) Information Systems Education Journal 2

The Information Systems Education Journal (ISEDJ) is a peer-reviewed academic journal
published by the Education Special Interest Group (EDSIG) of the Association of Information
Technology Professionals (AITP, Chicago, Illinois). • ISSN: 1545-679X. • First issue: 8 Sep 2003.
• Title: Information Systems Education Journal. Variants: IS Education Journal; ISEDJ. • Phys-
ical format: online. • Publishing frequency: irregular; as each article is approved, it is published
immediately and constitutes a complete separate issue of the current volume. • Single issue price:
free. • Subscription address: subscribe@isedj.org. • Subscription price: free. • Electronic access:
http://isedj.org/ • Contact person: Don Colton (editor@isedj.org)

2005 AITP Education Special Interest Group Board of Directors

Stuart A. Varden
Pace University
Past President

Paul M. Leidig
Grand Valley St Univ
2005 EDSIG President

Don Colton
BYU Hawaii

Vice President

Ronald I. Frank
Pace University
Secretary, 2005

Kenneth A. Grant
Ryerson University
Dir 2002-2003, 2005

Albert L. Harris
Appalachian St Univ

JISE Editor

Jeffrey Hsu
Fairleigh Dickinson
Director, 2004-2005

Dena Johnson
Tarleton State Univ
Membership, 2005

Jens O. Liegle
Georgia State Univ
Director, 2003-2005

Marcos Sivitanides
Texas St San Marcos
Director, 2004-2005

Robert B. Sweeney
U of South Alabama
Treasurer, 2004-2005

Margaret Thomas
Ohio University
Director, 2005

Information Systems Education Journal Editorial and Review Board

Don Colton
Brigham Young University Hawaii

Editor

Thomas N. Janicki
University of North Carolina Wilmington

Associate Editor

Amjad A. Abdullat
West Texas A&M U

Samuel Abraham
Siena Heights U

Robert C. Beatty
N Illinois Univ

Neelima Bhatnagar
U Pitt Johnstown

Tonda Bone
Tarleton State U

Alan T. Burns
DePaul University

Lucia Dettori
DePaul University

Ronald I. Frank
Pace University

Kenneth A. Grant
Ryerson Univ

Robert Grenier
Augustana College

Owen P. Hall, Jr
Pepperdine Univ

Mark (Buzz) Hensel
U Texas Arlington

James Lawler
Pace University

Jens O. Liegle
Georgia State U

Terri L. Lenox
Westminster Coll

Denise R. McGinnis
Mesa State College

Peter N. Meso
Georgia St Univ

Therese D. O’Neil
Indiana Univ PA

Alan R. Peslak
Penn State Univ

Robert B. Sweeney
U of South Alabama

William J. Tastle
Ithaca College

Margaret Thomas
Ohio University

Jennifer Thomas
Pace University

Stuart A. Varden
Pace University

Charles Woratschek
Robert Morris Univ

EDSIG activities include the publication of ISEDJ, the organization and execution of the annual
ISECON conference held each fall, the publication of the Journal of Information Systems Education
(JISE), and the designation and honoring of an IS Educator of the Year. • The Foundation for
Information Technology Education has been the key sponsor of ISECON over the years. • The
Association for Information Technology Professionals (AITP) provides the corporate umbrella under
which EDSIG operates.

c© Copyright 2005 EDSIG. In the spirit of academic freedom, permission is granted to make and
distribute unlimited copies of this issue in its PDF or printed form, so long as the entire document
is presented, and it is not modified in any substantial way.

c© 2005 EDSIG http://isedj.org/3/23/ August 4, 2005

ISEDJ 3 (23) Siegfried, Diakoniarakis, and Obianyo-Agu 3

Teaching the Blind to Program Visually

Robert M. Siegfried
siegfrir@panther.adelphi.edu

Denis Diakoniarakis

Uchechukwu Obianyo-Agu

Department of Mathematics and Computer Science

Adelphi University

Garden City, NY 11530, USA

ABSTRACT

The proliferation of graphical user interfaces has had a dramatic impact on the ability of the blind to work as program-

mers. It is particularly difficult for the blind to design forms for programs written in Visual Basic. A prototype script-

ing language is introduced that enables the blind to create Visual Basic forms without the need to specify all the de-

tailed information that Visual Basic requires and without the “point and click” approach that the blind cannot use. The

syntax for the language is described and plans for expanding the language are discussed.

Keywords: blind programmer, visually impaired, graphical user interfaces, special education

1. INTRODUCTION

Text-based, interactive computing has existed since the

early 1960s (Palfreman 1991). As interactive operating

systems, minicomputers, and microcomputers were

developed, the command-line interface remained the

standard means of communicating with the computer.

This began to change with the development of the Xerox

Alto (Ceruzzi 2000), which led to GUIs such as X-

Windows, the MacIntosh operating system, and Micro-

soft Windows, which allowed Bill Gates to fulfill the

ambition of making it easy for his mother to learn how

to use a computer (Wallace 1993).

Computers have also provided an accessible means of

employment for the blind and visually impaired. This

has been unusual, given that the blind have a very high

unemployment rate (Kirchner 1997). This has been

facilitated by a collection of specialized tools including

screen readers such as JAWS, speech recognition pro-

grams such as Dragon, and Braille terminals and screen

enlargers for the visually impaired. These tools and the

relevant training have allowed the blind to compete in

the text-based world of computers.

Since Microsoft Windows version 3 debuted in 1990,

graphical user interfaces have become the standard for

modern computing. The change has also had a dramatic

impact on the job market for blind programmers. Ac-

cording to Janina Sajka, Director of Information Tech-

nology for the American Federation for the Blind

(AFB), most Windows-based applications are developed

using software tools that the blind cannot use (a 2004

private communication by J. Sajka to U. Obianyo-Agu).

Additionally, it has been difficult to update screen read-

ers frequently enough to remain current with new devel-

opments in GUIs. For these reasons, most blind pro-

grammers continue to concentrate on text-based applica-

tions. Of 130 blind programmers in the AFB’s database,

only a dozen work in Windows application development

(a 2004 private communication by Christa Earl to U.

Obianyo-Agu; see “Notes”).

It was the original goal of the project to create a plat-

form-independent RAD (Rapid Application Develop-

ment) programming language that was suitable for use

by blind programmers; no such language exists currently

(electronic mail from C. Chong to R. M. Siegfried, see

Notes). However, the feedback from members of the

Blind Programming mailserv list was that they did not

need their own programming language; what they

needed were tools that would help them work in lan-

guages such as Visual Basic. Given the need for such

tools, the goal of the project was changed to produce the

first of what is hoped to be a series of programming

tools to help the blind.

c© 2005 EDSIG http://isedj.org/3/23/ August 4, 2005

ISEDJ 3 (23) Siegfried, Diakoniarakis, and Obianyo-Agu 4

Visual Basic was introduced by Microsoft in 1991 (PC

Magazine 2004) and has become a popular application

because it allows users to create forms by “pointing and

clicking.” This popularity has been enhanced by a large

number of third party software components available for

it. The current version is part of Microsoft’s Visual

Studio .NET and shares a common runtime library (PC

Magazine 2004). Additionally, Visual Basic uses a text

file to store information about the forms that an applica-

tion uses, allowing programmers to make changes in the

form without the point and click approach. Forms are

stored in text format with the form's properties and its

member objects' properties listed together with their

values. While this allows one to change these values

fairly easily, it is difficult to design a form by creating

such a text file. For example, the size of a form is set by

specifying the form's height and width in twips (twenti-

eths of a point). Similarly, setting the position of a form

on the screen is done by specifying the position of the

left and top edges in twips.

This presents the blind with the task of providing a large

amount of detailed information about the form’s layout

when creating Visual Basic forms. An example of a

simple Visual Basic form appears in Figure 1; the file

for this form appears in Appendix A. While it is easy to

modify form properties using this file, it is difficult even

for a sighted person to create a file like this without

using trial and error to determine if the form is correctly

constructed. This challenge is even greater for the blind

because they cannot see the form. The main goal in a

scripting language is to simplify the process of design-

ing a form while allowing users to specify property val-

ues that differ from the default.

Figure 1: A form for a simple inches-to-centimeter

converter

2. THE SCRIPTING LANGUAGE

Using The Scripting Language To Create A Form

The full grammar of the proposed language was speci-

fied in 2001 (Siegfried 2002) and the prototype compiler

was developed during the summer of 2003. After proto-

type development was completed, the compiler and the

manual were made available to the blind programming

community for their feedback. So far, the comments

have been positive. The full revised grammar for the

language in BNF is specified in Appendix B.

The compiler is a console application under the name

molly.exe. The files containing the form scripts use the

extension .fms (for form script). After creating the form

script using any text editor (such as Notepad), the form

script can be compiled a command prompt window us-

ing the command

 molly FileName.fms

where FileName.fms is the name of the form script file.

If the file’s name is test.fms the command would be:

 molly test.fms

This will produce a standard form file test.frm, which

can be included in a Visual Basic project. The script for

the form shown is Figure 1 is:

Form InToCm

Location = Top Left

Caption = "Metric Converter"

Sections = Columns

 Section

 TextBox txtInches

 Height = 2 ' expressed in lines

 Width = Medium

 Label = "Inches"

 END

 TextBox txtCm

 Height = 2

 Width = Medium

 Label = "Cm"

 END

 CommandButton cmdConvert

 Caption = "Convert"

 END

 END ' Section

END ' Form

The language uses the Basic style of comments where a

comment begins after the apostrophe and continues until

the end of the line.

The Scripting Language Syntax

The basic layout of a form script is:

FORM FormName ↵↵↵↵

Location = VerticalAttrib HorizontalAttrib↵↵↵↵

Caption = “Caption on Title Bar of Form” ↵↵↵↵

Organization = { Rows or Columns }↵↵↵↵

c© 2005 EDSIG http://isedj.org/3/23/ August 4, 2005

ISEDJ 3 (23) Siegfried, Diakoniarakis, and Obianyo-Agu 5

SECTION

SectionAttributes

END ' Comments appear after an apostrophe until the

end of the line

…

END

Where ↵↵↵↵ indicates a carriage return.

The screen is divided into three rows and three columns:

the three rows are top, middle and bottom and the three

columns are left, center and right. This allows the user

to place the form in different areas of the screen without

having to measures twips or use trial and error.

Most forms are organized in rows or columns, but usu-

ally not both within the same form. For this reason, the

user specifies whether the form’s organization is in rows

or columns. After the organization is specified, each

section (either or a row or column, depending on which

one the programmer has chosen), is declared with one or

more object in the section, which are automatically laid

out sequentially within the section. Their exact place-

ment depends on the particular object and its own space

requirements. The programmer can specify as few or as

many objects as desired in any given section, as long as

they all fit within a window. Similarly, the only limit on

the number of sections is their ability to fit within the

window.

The initial prototype allows the programmer to use any

combination of five different object types: command

buttons, text boxes, combo boxes, frames, and check

boxes. While Visual Basic has several other object

types, it seemed prudent to implement these five objects

before adding other object types to the scripting lan-

guage.

Specifying Objects

Each of the five objects that can be specified has its own

syntax because the key properties differ from one object

to another. The general syntax for an object is:

 ObjectType ObjectName

 Properties

 END

where ObjectType is CommandButton, TextBox,

ComboBox, Frame or CheckBox. ObjectName is the

name that the object will have within the Visual Basic

form. It must be unique within the form and should

follow the standard name conventions for Visual Basic

objects.

 Command Buttons: The syntax for a command

button declaration is:

 CommandButton cmdButtonName↵↵↵↵

 Caption = “CommandButtonCaption” ↵↵↵↵

 END

Command buttons have only one property that must be

specified, the caption which is a character string en-

closed in quotation marks; this text will appear on the

button itself. The sample shown below begins with cmd

to keep within the naming conventions of Visual Basic.

An example of a command button declaration appears

below:

 CommandButton cmdConvert

 Caption = "Convert to Metric"

 END

All command buttons are the default size and are to be

centered within the row or column in which it is situated

on the form.

 Combo Boxes: The syntax for a combo box declara-

tion is:

 ComboBox cboComboBoxName

 Width = { Small or Medium or Large }

 END

The only property specified in the form script is width,

which is small, medium or large, which translate to

widths of 1215, 1815 and 2415 twips respectively. The

height of the combo box is preset and the box will be

centered in either the column or row, depending on the

organization. Combo box names should begin with cbo

in keeping with Visual Basic naming conventions. A

combo box declaration might resemble the following:

 ComboBox cboSample

 Width = Small

 END

 Text Boxes: The syntax for a text box declaration is:

 TextBox txtTextboxName

 Height = Number of lines (1, 2, …)

 Width = { Small or Medium or Large}

 Label = “Text Box Label”

 END

The Text Box declaration requires three properties to be

specified: the height of the text box, the width and the

label that will appear to the left of the text box. What

the scripting language treats as one object is really two

separate objects on a Visual Basic form: the text box

itself and the label that will appear to its left. The Vis-

ual Basic naming convention places the prefix txt at the

beginning of a text box name. The height is given as the

number of lines of text that can appear within the box on

the form. The programmer specifies an integer in the

range of 1 ≤ n ≤ 5; any value outside this range will

produce an error. Changes in the text box’s height will

c© 2005 EDSIG http://isedj.org/3/23/ August 4, 2005

ISEDJ 3 (23) Siegfried, Diakoniarakis, and Obianyo-Agu 6

not influence the height of its label; however, it will

reposition the label so that it remains vertically centered

in relation to the text box. The width statement allows

the programmer to choose either a small, medium or

large width for the text box, as it does for the combo box

declaration. The label will shift horizontally depending

on the width, but its own width will remain unchanged.

A sample text box declaration appears below:

 TextBox txtName

 Height = 1

 Width = Medium

 Label = “Enter Last Name”

 END

 Check Boxes: The syntax for a check box declara-

tion is:

 CheckBox chkCheckBoxName

 Caption = “CheckBox Caption”

 Height = Number of Lines

 Width = { Small or Medium or

 Large }

 END

In addition to its name, the check box has 3 properties

that the programmer specifies: the caption, the height

and the width, all of which have been discussed above.

The naming convention of Visual Basic requires us to

begin with the prefix chk. The caption appears next to

the actual check box on the form. A check box might

look like the following:

 CheckBox chkSample

 Caption = “CheckBox Sample”

 Height = 3

 Width = Medium

 END

 Frames: The syntax of a frame declaration is:

 Frame fraFrameName

 Caption = “Frame Caption”

 OptionButtonDeclarations

 END

Frame declarations are different from other object decla-

rations in that they contain one or more option button

declarations themselves. The only property that is set

for the frame itself is the caption that appears on its bor-

der. Additionally, one or more option button declara-

tions are included; their syntax is:

 OptionButton optOptionButtonName

 Caption = “Option Button Caption”

 Visibility = { True or False }

 END

In addition to specifying the caption for the option but-

ton, the programmer specifies whether the button is

visible. Although other objects can appear inside a

frame in a Visual Basic form, at this time the compiler

only allows option buttons. The naming convention of

Visual Basic requires that frame names begin with the

prefix fra and option button names begin with the prefix

opt. A typical frame might contain:

 Frame fraQuantity

 Caption = “# of Tickets”

 OptionButton optNone

 Caption = ″″

 Visibility = False

 END

 OptionButton optOne

 Caption = ″1″

 Visibility = True

 END

 OptionButton optTwo

 Caption = ″2″

 Visibility = True

 END

 END

Examples: Appearing below is an example of a com-

plete form script:

Form frmPayTV

Location = Bottom Center

Caption = "Pay TV Movies"

Organization = Rows

 Section

 ComboBox cboChannel

 Width = Medium

 END

 CheckBox chkControl

 Caption = "Parental Control"

 Height = 1

 Width = Small

 END

 END ' Section

 Section

 TextBox txtPrice

 Height = 2

 Width = Medium

 Label = "Channel Price"

 END

 CommandButton cmdOrder

 Caption = "Order Now!"

 END

 END ' Section

END ' Script

c© 2005 EDSIG http://isedj.org/3/23/ August 4, 2005

ISEDJ 3 (23) Siegfried, Diakoniarakis, and Obianyo-Agu 7

This produces the form shown in Figure 2. The com-

piler uses a standard spacing of 480 twips to allow room

for a frame on any given row, whether or not there is a

frame present. This will be addressed after additional

feedback from the blind programming community.

If the form script is changed to include a frame with

three option buttons, the resulting form is shown in fig-

ure 3. The extra space is useful for separating the frame

rom adjacent objects on the form. The full script ap-

pears in Appendix C.

Figure 2: The form created from the above script

Figure 3 – The form with a frame added to it.

3 DISCUSSION

After posting the prototype compiler and its manual on

Adelphi University’s web site

(http://www.adelphi.edu/~siegfrir/molly) and notifying

members of the Blind Programming mail list of its

availability, comments were received about the scripting

languages; they indicate that the blind programmers who

have read the specifications and the sample scripts be-

lieve that it has the potential to help them create Visual

Basic forms without the aid of a sighted person. At the

same time, there were questions about what it might

contain in the future. Since this was only an initial pro-

totype, there was never any doubt that additional fea-

tures needed to be added to the language.

Adding Other Objects to the Language

The five object classes enumerated above were the only

ones included in the initial prototype of the scripting

language because it was assumed, perhaps erroneously,

that these were the most commonly used and the ones

whose properties were the easiest to anticipate. It was

always expected that other classes of Visual Basic ob-

jects would be added to the scripting language later after

there was enough feedback to decide if the language as

specified met the general needs of the blind program-

ming community. So far the response has been positive,

but there is an initial indication that a few changes may

improve the language’s utility. These changes include:

• Creating defaults so certain properties need not be

specified. The properties that are specified in each

object declaration are required; if they are not in-

cluded, it will result in a syntax error when the

form script is compiled. But there are cases when a

programmer may wish to omit a caption, use a

standard frame size, such as a height of one line of

text and a medium width, or whatever width is suf-

ficient to hold the text.

• Include some additional properties that may be

specified in the scripting language. It may be ad-

vantageous to include other properties in the lan-

guage, such as initial values for combo boxes.

While the programmer can go into the form file and

make whatever changes are desired, it defeats part

of the scripting language’s purpose if programmers

have to make common modifications constantly.

• Allow the scripting language to include statements

written in the standard format. It is difficult to an-

ticipate all the object properties that a user may

choose. One unexpected question about the script-

ing language was whether it could allow the pro-

grammer to choose foreground and background

colors. The easiest way to deal with this is to allow

programmers to set any property for any object in a

standard fashion. Given that Visual Basic .NET

uses a different format to represent forms than ear-

lier versions of Visual Basic, it may be useful to al-

low users to specify any object property in a format

that is compatible with executable assignment

statements in Visual Basic rather than in the format

of form files.

• Include all of the remaining objects. Given that

many commonly used objects, such as scroll bars,

list boxes, directory and file list boxes, were not in-

cluded in the prototypical scripting language, these

would have to be added to the language if it were

expected to be useful to professional programmers

who were blind.

c© 2005 EDSIG http://isedj.org/3/23/ August 4, 2005

ISEDJ 3 (23) Siegfried, Diakoniarakis, and Obianyo-Agu 8

Form Files in Visual Basic .NET

The current version of Microsoft Visual Studio, Visual

Studio .NET uses a standard text file format to represent

forms in all of the language products that comprise Vis-

ual Studio .NET. While this facilitates the use of pro-

grams that are developed using more than one pro-

gramming language, it makes the compiler out of date

for those working with Visual Basic .NET. Fortunately,

Visual Studio .NET provides a tool for converting Vis-

ual Basic forms to the new format; however this compli-

cates the job of creating a single scripting language

compiler that is capable of creating forms that are com-

patible with all formats. Since only a small portion of

the compiler is involved in generating the form file, we

expect to have a version of the compiler that generates

.NET-compatible forms within a few months.

Further testing

Everyone who has worked on the project is sighted. As

sensitive as the development team could be to the needs

of the blind and visually impaired, it is impossible to

anticipate entirely what the blind would consider more

suitable for their needs. For this reason, we plan to be-

gin testing within the next few months.

4 CONCLUSIONS

The prototype compiler simplifies the task of creating

Visual Basic forms for blind programmers, for whom

the “point and click” design method is not possible.

Although testing has not been completed, preliminary

comments suggest that additional features will make it a

useful tool for the blind. These features allowing the

scripts to specify object not currently included in the

language and default values for certain properties. Ad-

ditionally, a version of the compiler that can create form

files compatible with Visual Studio .NET is needed as

well as the current version, which creates form files

compatible with version 6.

The compiler and manual are currently available online

at http://www.adelphi.edu/~siegfrir/molly.

5. NOTES

Christa Earl is blind and works as a web site developer

for the American Federation of the Blind in New York.

Curtis Chong is President of the National Federation of

the Blind in Computer Science, Des Moines, IA, USA.

6. REFERENCES

Ceruzzi, Paul E., 2000, A History of Modern Comput-

ing, The MIT Press, Cambridge.

Kirchner, C., & E. Schneidler, 1997,“Prevalence and

Employment of People in the United States Who

Are Blind or Visually Impaired”, Journal of Visual

Impairment and Blindness 91(5), Sept/Oct, p.508-

511.

Palfreman, Jon, and Doron Swade, 1991, The Dream

Machine: Exploring the Computer Age, BBC

Books, London.

PC Magazine, 2004. Retrieved June 17 from

http://www.pcmag.com/article2/0,1759,15012,00.a

sp

Siegfried, Robert M., 2002, "A Scripting Language To

Help The Blind To Program Visually", ACM

SIGPLAN Notices 32(2), February, p. 53-56.

Wallace, James, and Jim Erickson, 1993, Hard Drive:

Bill Gates and the Making of the Microsoft Empire,

HarperBusiness, New York.

c© 2005 EDSIG http://isedj.org/3/23/ August 4, 2005

ISEDJ 3 (23) Siegfried, Diakoniarakis, and Obianyo-Agu 9

Appendix A - The Visual Basic file for the form in Figure 1.

Begin VB.Form frmInToCm

 Caption = "Metric Converter"

 ClientHeight = 3750

 ClientLeft = 60

 Clients = 345

 ClientWidth = 5265

 LinkTopic = "Form1"

 ScaleHeight = 3750

 ScaleWidth = 5265

 StartUpPosition = 3 'Windows Default

 Begin VB.CommandButton cmdConvert

 Caption = "Convert"

 Height = 495

 Left = 2040

 TabIndex = 4

 Top = 2400

 Width = 1215

 End

 Begin VB.TextBox txtCm

 Height = 495

 Left = 2040

 TabIndex = 2

 Top = 1560

 Width = 1215

 End

 Begin VB.TextBox txtInches

 Height = 495

 Left = 2040

 TabIndex = 0

 Top = 360

 Width = 1215

 End

 Begin VB.Label lblCm

 AutoSize = -1 'True

 Caption = "Cm"

 Height = 195

 Left = 1560

 TabIndex = 3

 Top = 1560

 Width = 225

 End

 Begin VB.Label lblInches

 AutoSize = -1 'True

 Caption = "Inches"

 Height = 195

 Left = 1440

 TabIndex = 1

 Top = 360

 Width = 480

 End

c© 2005 EDSIG http://isedj.org/3/23/ August 4, 2005

ISEDJ 3 (23) Siegfried, Diakoniarakis, and Obianyo-Agu 10

Appendix B - A BNF grammar for the scripting language

Form ::= Header FormAttributes OrgAttributes SectionDeclarations end

Header ::= form id Returns

FormAttributes ::= LocationAttribute CaptionAttribute

LocationAttribute ::= location = VerticalAttribute HorizontalAttribute Returns

VerticalAttribute ::= top | middle | bottom

HorizontalAttribute ::= left | center | right

CaptionAttribute ::= caption = String Returns

OrgAttributes ::= organization = SectionOrg

SectionOrg ::= rows | columns

SectionDeclarations ::= SectionDeclarations SectionDeclaration | SectionDeclaration

SectionDeclaration ::= section Returns ObjectDeclarations end Returns

ObjectDeclarations ::= ObjectDeclarations ObjectDeclaration | ObjectDeclaration

ObjectDeclaration ::= CommandButtonDeclaration | TextBoxDeclaration | ComboBoxDeclaration | FrameDeclaration

| CheckBoxDeclaration

CommandButtonDeclaration ::= commandbutton id Returns CaptionAttribute Returns

 end Returns

TextBoxDeclaration ::= textbox id Returns SizeAttributes LabelAttribute end Returns

SizeAttributes ::= HeightAttribute WidthAttribute

HeightAttribute ::= height = Number Returns

WidthAttribute := width = Size Returns

Size ::= small | medium | large

LabelAttribute ::= label = String Returns

ComboBoxDeclaration ::= combobox id Returns WidthAttribute Returns end Returns

FrameDeclaration ::= frame id Returns CaptionAttributes OptionDeclarations end Returns

OptionDeclarations ::= optionbutton id Returns CaptionAttribute VisibleAttribute end Returns

VisibleAttribute ::= visible = Boolean Returns

Boolean ::= true | false

CheckBoxDeclaration ::= checkbox id Returns CaptionAttribute SizeAttributes

Returns ::= Returns ↵↵↵↵ | ↵↵↵↵

String ::= " AlphaNumeric* "

AlphaNumeric ::= Letter | Digit

Number ::= Digit Digit *

Letter ::= A | B | … | Y | Z | a | b | … | y | z

Digit ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 0

↵↵↵↵ indicates the newline character

c© 2005 EDSIG http://isedj.org/3/23/ August 4, 2005

ISEDJ 3 (23) Siegfried, Diakoniarakis, and Obianyo-Agu 11

Appendix C – the full script for the form in Figure 3.

Form frmPayTV

Location = Bottom Center

Caption = "Pay TV Movies"

Organization = Rows

 SECTION

 FRAME fraPremium

 CAPTION = "Premium Package Options"

 OPTIONBUTTON optNone

 CAPTION = "1 Premium Channel"

 VISIBLE = TRUE

 END ' option button

 OPTIONBUTTON optOne

 CAPTION = "1 Premium Channel"

 VISIBLE = TRUE

 END ' option button

 OPTIONBUTTON optAll

 CAPTION = "Full Premium Package"

 VISIBLE = TRUE

 END ' option button

 END ' frame

 END ' section

 SECTION

 ComboBox cboChannel

 Width = Medium

 END ' combobox

 CheckBox chkConrol

 Caption = "Parental Control"

 Height = 1

 Width = Small

 END ' combobox

 END ' section

 SECTION

 TextBox txtPrice

 Height = 2

 Width = Medium

 LABEL = "Channel Price"

 END ' text box

 CommandButton cmdOrder

 CAPTION = "Order Now!"

 END ' command button

 END ' section

END ' form

c© 2005 EDSIG http://isedj.org/3/23/ August 4, 2005

