

Information Systems

Education Journal

Volume 20, No. 3

June 2022
ISSN: 1545-679X

Special Issue
Teaching Cases

4. 100 Million Doses in 100 Days: Analyzing the COVID-19 Vaccination Supply

Chain

Joseph M. Woodside, Stetson University

12. Here We Grow Again! An Expansion for Mark’s Doggy Day Care: A Database

Design and Development Case

Dana Schwieger, Southeast Missouri State University

19. An IT Start-Up meets a Conglomerate – the Integration Challenge

Biswadip Ghosh, Metropolitan State University of Denver

27. Interacting with Bloomberg Terminal from an Information Technology

Perspective (Student Assignment)

Mark Frydenberg, Bentley University

Jahangir Sultan, Bentley University

William VanderClock, Bentley University

36. An Experiential Learning Project using Sentiment Analysis of Twitter Posts

Joel Asay, Xavier University

Elaine Crable, Xavier University

Mark Sena, Xavier University

44. Bracketology: Predicting Winners from Music March Madness

Kevin Mentzer, Nichols College

Zachary Galante, University of California, Berkeley

Mark Frydenberg, Bentley University

Information Systems Education Journal (ISEDJ) 20 (3)
ISSN: 1545-679X June 2022

©2022 ISCAP (Information Systems and Computing Academic Professionals) Page 2

https://isedj.org/; https://iscap.info

The Information Systems Education Journal (ISEDJ) is a double-blind peer-reviewed

academic journal published by ISCAP (Information Systems and Computing Academic

Professionals). Publishing frequency is six times per year. The first year of publication was

2003.

ISEDJ is published online (https://isedj.org). Our sister publication, the Proceedings of

EDSIGCON (https://proc.iscap.info) features all papers, panels, workshops, and presentations

from the conference.

The journal acceptance review process involves a minimum of three double-blind peer

reviews, where both the reviewer is not aware of the identities of the authors and the authors

are not aware of the identities of the reviewers. The initial reviews happen before the

EDSIGCON conference. At that point papers are divided into award papers (top 15%), other

journal papers (top 25%), unsettled papers, and non-journal papers. The unsettled papers

are subjected to a second round of blind peer review to establish whether they will be accepted

to the journal or not. Those papers that are deemed of sufficient quality are accepted for

publication in the ISEDJ journal. Currently the target acceptance rate for the journal is under

40%.

Information Systems Education Journal is pleased to be listed in the Cabell's Directory of

Publishing Opportunities in Educational Technology and Library Science, in both the electronic

and printed editions. Questions should be addressed to the editor at editor@isedj.org or the

publisher at publisher@isedj.org. Special thanks to members of ISCAP/EDSIG who perform

the editorial and review processes for ISEDJ.

2022 ISCAP Board of Directors

Eric Breimer
Siena College

President

Jeff Cummings

Univ of NC Wilmington
Vice President

Jeffry Babb
West Texas A&M
Past President/

Curriculum Chair

Jennifer Breese
Penn State University

Director

Amy Connolly
James Madison University

Director

Niki Kunene
Eastern CT St Univ
Director/Treasurer

RJ Podeschi

Millikin University
Director

Michael Smith

Georgia Institute of Technology
Director/Secretary

Tom Janicki

Univ of NC Wilmington
Director / Meeting Facilitator

Anthony Serapiglia

St. Vincent College
Director/2022 Conf Chair

Xihui “Paul” Zhang

University of North Alabama
Director/JISE Editor

Copyright © 2022 by Information Systems and Computing Academic Professionals (ISCAP). Permission to make
digital or hard copies of all or part of this journal for personal or classroom use is granted without fee provided that
the copies are not made or distributed for profit or commercial use. All copies must bear this notice and full citation.
Permission from the Editor is required to post to servers, redistribute to lists, or utilize in a for-profit or commercial
use. Permission requests should be sent to Paul Witman, Editor, editor@isedj.org.

http://www.cabells.com/
http://www.cabells.com/
mailto:editor@isedj.org
mailto:publisher@isedj.org

Information Systems Education Journal (ISEDJ) 20 (3)
ISSN: 1545-679X June 2022

©2022 ISCAP (Information Systems and Computing Academic Professionals) Page 3

https://isedj.org/; https://iscap.info

Information Systems

Education Journal

Editors

Paul Witman
Editor

California Lutheran
University

Thomas Janicki
Publisher

U of North Carolina
Wilmington

Donald Colton
Emeritus Editor Brigham

Young University
Hawaii

Dana Schwieger
Associate Editor

Southeast Missouri
State University

Ira Goldman
Teaching Cases

Co-Editor
Siena College

Michelle Louch
Teaching Cases

Co-Editor
Carlow College

Brandon Brown
Cyber Education

Co-Editor
Coastline College

Anthony Serapiglia
Cyber Education

Co-Editor
St. Vincent College

Information Systems Education Journal (ISEDJ) 20 (3)
ISSN: 1545-679X June 2022

©2022 ISCAP (Information Systems and Computing Academic Professionals) Page 44

https://isedj.org/; https://iscap.info

Teaching Case

Bracketology:

Predicting Winners from Music March Madness

Kevin Mentzer

kevin.mentzer@nichols.edu

Nichols College

Dudley, MA 01571, USA

Zachary Galante

zachgalante62@gmail.com
School of Information

University of California, Berkeley
Berkeley, CA 94720, USA

Mark Frydenberg

mfrydenberg@bentley.edu
Computer Information Systems Department

Bentley University
Waltham, MA 02452, USA

Abstract

Organizations are keenly interested in data gathering from websites where discussions of products and
brands occur. This increasingly means that programmers need an understanding of how to work with
website application programming interfaces (APIs) for data acquisition. In this hands-on lab activity,

students will learn how to gather data from several prominent websites using APIs and then build
predictive models using that data. Unlike popular challenges on competition sites such as Kaggle where
challenges often supply the data, this project emphasizes the data acquisition step of the analytics
lifecycle. Working with data from Spotify, YouTube, and Twitter, students will fill out a music based
March Madness bracket to predict the winner of the annual Locura De Marzo, a popular middle and high
school Spanish competition. By becoming familiar with the data available from each site, through the

analysis of the JSON formatted data returned by the APIs, students will be able to explore which features
of a song might lend themselves to higher voting by high school students in order to build better
prediction models.

Keywords: Bracketology, March Madness, Python, Data Science, Data Analytics, APIs, Hit Song Science

1. INTRODUCTION

The most well-known March Madness event is the
annual NCAA basketball tournament that occurs
each spring when 68 college teams compete for
the national championship. The competition is

commonly displayed as a bracket showing each
division with the head-to-head matchups
comprising the tournament. The winner of each
head-to-head matchup moves on to the next
round while the loser goes home. The study of
predicting winners in this format is called

mailto:kevin.mentzer@nichols.edu
mailto:zachgalante62@gmail.com
mailto:mfrydenberg@bentley.edu

Information Systems Education Journal (ISEDJ) 20 (3)
ISSN: 1545-679X June 2022

©2022 ISCAP (Information Systems and Computing Academic Professionals) Page 45

https://isedj.org/; https://iscap.info

Bracketology. However, March Madness isn’t just

for basketball: similar tournaments, usually
based on public voting, have occurred for science
fiction TV shows (Io9’s March TV Madness, n.d.),

the Cooking Channel’s Best College Eats (Bracket
Battle Best College Eats, n.d.), and the
Consumerist’s Worst Companies in America (Here
Are Your Contestants For The 2013 Worst
Company In America Tournament!, 2013) where
Electronic Arts trounced Bank of America in the
final round earning them the title of Worst

Company in America in 2013. In each of these
tournaments the general public was asked to vote
for the best (or worst) in each head-to-head
matchup.

Consider the following challenge: if you were

given 16 songs and asked to predict which song
middle and high school students would select as
their favorite, do you think you could do it?

This project will look at another, non-sports
related, bracket style tournament run by middle
school Spanish teacher Señor Ashby titled Locura

De Marzo (Locura De Marzo 2021, n.d.). In this
event, 16 songs go head-to-head in a bracket
style competition for best song.

Using data that you will gather from Spotify,
YouTube, and Twitter, you will develop models to
fill out the Locura De Marzo bracket and to see

how well you can predict the winner. The model
will be trained using data from prior years’

competitions.

2. LEARNING OUTCOMES

Before starting this project you should be familiar
with the following

• A basic level of Python as you would
obtain in an Introduction to Python class.

• Familiarity with installing libraries in your
Python environment.

• Familiarity with Python Pandas (refer to
this site for a good overview of Pandas:
https://www.learndatasci.com/tutorials/
python-pandas-tutorial-complete-
introduction-for-beginners/).

• General familiarity with Spotify, YouTube,
and Twitter, from a user’s perspective.

• A general understanding of predictive
modeling techniques such as linear
regression and decision trees.

After completing this project, you will be able to:

• Automate data gathering from websites
using several different APIs

• Import Python libraries and call methods

in those libraries
• Generate a correlation matrix to explore

your data for feature identification

• Build basic predictive models including a
linear regression and random forest
model

• Interpret results from the regression and
random forest models

• Create a bracket-style elimination model

3. PROJECT DESCRIPTION

In this project, you will build a Python application
that carries out the process of acquiring data,
building a model, obtaining characteristics, and
performing linear regression and machine

learning analysis to predict the winner of a music
tournament. Your instructor may provide a
starter code file to help you develop or run this
solution.

Discussion Questions
Each step of the project ends with questions for

your consideration as you complete this project.
Discuss the questions with your group, prepare
responses for class discussion, or share your
responses in a format as specified by your
instructor.

Figure 1 provides an overview of the work flow

and data flow for this project.

Your solution will follow these steps:

Setup Step (Step 0). If you do not already have
free accounts on Spotify, YouTube, and Twitter,
then you need to create those accounts. Next you

will create Developer Accounts for these social
media sites. You will need these to gather data
about the songs and artists.

Step 1. Collect data on the past results of the
Locura de Marzo tournaments. Manually enter it
into a Pandas DataFrame. Features include the

song title, artist, and performance of that
particular song in the tournament.

Step 2. Call Application Programming Interfaces

(APIs), passing collected song titles, and artist

information to gather additional information. The

Spotify API provides more advanced features on

the song such as liveliness and tempo. The

YouTube and Twitter APIs collect additional data

about the song and artist’s exposure on social

media. The program uses this complete dataset

to train the model.

https://www.learndatasci.com/tutorials/python-pandas-tutorial-complete-introduction-for-beginners/
https://www.learndatasci.com/tutorials/python-pandas-tutorial-complete-introduction-for-beginners/
https://www.learndatasci.com/tutorials/python-pandas-tutorial-complete-introduction-for-beginners/

Information Systems Education Journal (ISEDJ) 20 (3)
ISSN: 1545-679X June 2022

©2022 ISCAP (Information Systems and Computing Academic Professionals) Page 46

https://isedj.org/; https://iscap.info

Step 3. Create a correlation matrix to identify key

features related to the target variables.

Step 4. Use the data and previous findings to train

a Linear Regression model. Explore how machine

learning can enhance this solution.

Step 5. Build a bracketed model solution to

predict which songs will win in the tournament.

Figure 1. Workflow and Data Flow for

Bracketology Project

Setup Step (Step 0 on Figure 1). Create
Developer Accounts

Application Programming Interfaces (APIs) are

callable functions that allow developers to access
data from a website for use in other applications.
Not all websites have APIs, and sometimes

developers resort to screen scraping, or gathering
information from a webpage based on its position
on the page when an API is not available. Calling
an information provider’s API is always the
preferred method when gathering large amounts
of data. While most large social media sites offer
APIs to developers, they frequently restrict the

amount of type of data that can be gathered from
the website.

To work with APIs, you usually have to create a
developer account and get a license key, a unique
identifier that allows the API provider to track the

amount of information you request. These keys
are unique for each user and the different
websites have their own processes to obtain these
keys.

In this project you will obtain data from Spotify,
YouTube, and Twitter by calling their APIs. Follow

the instructions in the paragraphs below to create
developer accounts so you can access each
service's API.

Follow the steps on these sites to create your
developer accounts for the three social media
sites:

• https://developer.twitter.com/en

• https://developer.spotify.com/
• https://developers.google.com/youtube/

Things to watch out for

When filling out the questions to submit to the
various social media platforms, make sure you
explain that you are requesting access as a
student in order to do a social media project for
your class. You may want to include your class
name and your professor’s name. It is preferred
that you use an email address with a .edu

extension in order to support your
documentation.

Discussion Questions

1. Looking at the Spotify API documentation,
discuss which pieces of data could help with
building a predictive model for song success.

2. Looking at the YouTube documentation,
which fields could be used to predict
popularity of a song?

Step 1. Data Acquisition
Gather information about songs, titles, artists,

and song performance in prior Locura de Marzo

Information Systems Education Journal (ISEDJ) 20 (3)
ISSN: 1545-679X June 2022

©2022 ISCAP (Information Systems and Computing Academic Professionals) Page 47

https://isedj.org/; https://iscap.info

tournaments from the SenorAshby.com website.

Manually enter it into a Pandas DataFrame.

Things to watch out for

Some years the songs may have total number of
votes while other years may include percent of
votes received or even simply whether the song
won or not. Consider how you will compare
various years and make sure you use the same
measure across years. This may require you to
convert total vote count to a percentage or some

other transformation.

Discussion Questions
1. Looking at the data you were able to gather

from the competition website, what fields
provide the most insight and which fields do

you think you could ignore?
2. Considering the data you examined in the API

documentation along with the competition
website, how would you ensure that the song
on the competition website is the official song
on the other sites (Spotify and YouTube)?

Step 2. Call APIs
Call APIs from Spotify, Twitter, and YouTube to
obtain additional information about these songs.

Your application will also need code to access and
interact with the data that the APIs provide.
Open-source libraries written in Python exist that

provide this capability. The next sections describe
those libraries and the data they make available.

To include a library in your Python application,
you need to install it in your environment and
then specify an import statement to include it in

your project.

Spotipy. To interface with Spotify we will use the
Spotipy library. Review the documentation for the
Spotipy project here:
https://spotipy.readthedocs.io/en/2.18.0/. Scroll
down to the API Reference section of the

documentation and you can see that there are
methods for getting data related to Artists,
Albums, Playlists, and Tracks, just to highlight a
few.

Appendix 1, Figure 1 shows a code sample for
accessing the Spotipy API along with the

expected results. You can use this code to
validate that your developer keys are working
properly. The output from each of these calls is
returned in a JSON format. This is a common
format used with APIs, so if you are unfamiliar
with the format then we suggest you read more

about it at https://www.json.org/.

Since we are concerned with predicting which

song will win in a head-to-head matchup with
another song, we will focus on song level data
(called a Track in the music industry). Looking at

the documentation for the Track method we see
the following:

Figure 2. Spotipy Track Method

In order to make the call to the track method, we
need to supply the track_id and an optional

market. The track_id is Spotify’s unique id for a
specific song in their database.

The Locura de Marzo website makes track
retrieval easier by supplying a playlist of each
song in the competition. This allows us to call the
API that retrieves the song details using that

playlist which eliminates the need to loop through
each song individually. This also reduces the calls
to Spotify to 1 call per year of the competition. It
is best practice to minimize the number of calls to
the APIs in order to reduce your chances of hitting
rate limits.

Table 1. Spotify Features

Spotify
Features

Description

Release Date Date song was released

Length

Length of the song in
milliseconds

Popularity

Scale of how popular the

song is (0-80)

Acousticness

Confidence measure if the
song is acoustic

Danceability Suitability for dancing

Energy

Measure of intensity and
activity

Instrumentalness

Predicts whether a track
contains no vocals

Liveness

The presence of an
audience in the recording

Loudness Loudness in decibels

Speechiness Presence of spoken words

Tempo Tempo in beats per minute

Key

Main group of pitches of a
track

Mode Modality of a track (1=
Major, 0 = Minor)

https://spotipy.readthedocs.io/en/2.18.0/
https://www.json.org/

Information Systems Education Journal (ISEDJ) 20 (3)
ISSN: 1545-679X June 2022

©2022 ISCAP (Information Systems and Computing Academic Professionals) Page 48

https://isedj.org/; https://iscap.info

The code in Appendix 1, Figure 2 validates that

the list of songs can be retrieved using the playlist
as supplied by the competition website.

Appendix 1, Figure 3 shows a code sample for
retrieving track details for each of the songs in
the playlist. The getTrackInformation() function is
called once for each song in each playlist. The
result of this call gives us the features found in
Table 1.

Tweepy. In order to access Twitter information
for each artist we need to find the handle for
each. This is a manual lookup process. An artist's
Twitter handle can be found in their Twitter
profile, as shown in Figure 3.

Figure 3. Finding a Twitter Handle

We can see that the artist’s handle is
@CamiloMusica. We’ll use this handle below to
interface with the Twitter APIs. We use the
Tweepy library to interface with the Twitter APIs.

Review the documentation for the Tweepy project
here: https://docs.tweepy.org/en/latest/.

See Appendix 1, Figure 4 for a code snippet to
collect Camilo's number of followers, a value
which we will use in our model. The result of this
call gives us the following features from Twitter:

Twitter
Feature

Description

Number
Followers

Number of followers for an
account

Table 2. Twitter Features

YouTube. Your solution/notebook will obtain

information about music videos for each song
from YouTube. Google provides an official Python
library for YouTube found here:

https://developers.google.com/youtube/v3

The code in Appendix 1, Figure 5 validates that
your YouTube credentials are correct and you are
able to retrieve the total number of views for the
music video for Vida De Rico by Camilo. Table 3

shows some of the features available for each

music video.

At this point you should have been able to

validate that your developer accounts for the
three websites are working properly. The next
step is to collect the data for each song for both
the training date (i.e. prior year competitions)
and the testing data (current year challenge).

Table 3. YouTube Features

Discussion Questions
1. If you could only pick a single piece of data to

predict popularity, which would it be and
why?

2. Based on your personal knowledge of the
songs, what values surprise you most? Why?

Step 3. Feature Selection
After gathering data about each song from the

three different sources (Spotify, YouTube,
Twitter), the next step is to decide which fields to
use in our models.

One way to approach this step is to consider
which variables are highly correlated with our
target variable. In this case our target is the
percentage of votes. By examining the correlation
matrix (see Appendix 2, Figure 1) we look for
fields that score high (using the absolute value,

so high positive or high negative) in relation to
the total number of votes. We see that the feature
that has the highest positive correlation with our
target variable is YouTube View Count, and Like
Count. Seed number appears to be our strongest
negatively correlated variable followed by mode

and acousticness.

Discussion Questions
1. Research and discuss the limitations related

to correlation matrices.
2. Discuss what other features you think should

be included in the analysis and why they
should be included.

YouTube
Features

Description

View Count Number of views for the
video

Like Count Number of likes for the
video

Dislike Count Number of dislikes for the

video

Comment Count Number of comments for

the video

Tags Tags associated with the
video

https://docs.tweepy.org/en/latest/
https://developers.google.com/youtube/v3

Information Systems Education Journal (ISEDJ) 20 (3)
ISSN: 1545-679X June 2022

©2022 ISCAP (Information Systems and Computing Academic Professionals) Page 49

https://isedj.org/; https://iscap.info

3. Are there features that were selected that you

think shouldn’t be used in the analysis and
why?

Step 4. Model Development
One way to select a modeling technique would be
to examine how others have solved similar
challenges in a related area. In this case we can
consider how others have approached trying to
predict the winner of the NCAA March Madness
Tournament.

Prior literature has shown that a team’s Seed
number is one of the best predictors of success.
Our correlation matrix suggests that Seed
number is important in this tournament as well.
Boulier and Stekler (1999) found that by using

seed alone one is able to predict winners with a
73.5% accuracy. Stekler and Klein (2012),
however, stress that this approach appears to
work well only for the early rounds of the
tournament. One reason this is the case is that an
incorrect prediction in the first round will feed into
subsequent rounds, which is known as a forward

propagation error.

Using a similar approach, we can look at the 2020
results (see Appendix 2, Figure 2) to see how well
Seed number predicted the win. There are 11
head-to-head matchups in the 2020 competition
and the higher Seed won in 11 of those 17

matchups for an accuracy of 64.71%. This can be
considered an improvement over a 50%

probability were we to simply use a random
guess. However, using Seed number alone in
predicting each head-to-head matchup assumes
that we know each head-to-head matchup while

this is only known (prior to the competition) for
the first round.

Let us see if we can improve upon this model
using the features we identified earlier as highly
correlated with percent of vote. We can use a
multivariate linear regression to predict

percentage of vote. The equation for the
multivariate linear regression is shown in
Equation 1.

Equation 1. Multivariate Linear Regression

Multivariate Linear Regression is a supervised
machine learning technique since the target
variable is known and we build the model using
that target (in this case, the target is percent of
vote). Code to set up the linear regression is
shown in Appendix 1, Figure 6. We use the results
of the regression to predict the winners of the

2021 challenge discussed next.

Discussion Questions
1. Using Seed number alone, how accurate

would the model be in predicting the 2019
competition?

2. Find another example of how others have
tried to predict the winner of the NCAA March
Madness tournament and discuss the
model(s) used and whether they were
effective or not?

3. How might machine learning algorithms
enhance your solution?

Step 5. Bracket Model Prediction
Looking at the regression coefficients for each
(see Appendix 1, Figure 7) of the independent
variables we can state the following:

• As the Locura de Marzo Seed number
increases, the win percentage decreases

• As the number of YouTube views
increase, the win percentage also
increases

• As the number of Twitter Followers
increase, the win percentage also

increases
• As the Spotify tempo increase, the win

percentage decreases.

The first three appear to make sense. Keep in
mind that the number 1 seed is a lower number
that than the number 16 seed even though it

would be considered the higher ranked song, so
an increase in Seed number means a lower rank

song. Therefore, as the Seed number increases
(song has a poorer Seed number), the predicted
percentage decreases.

Finally we can consider the tempo. A song’s
tempo is the beats per minute. Our model
suggests slower paced songs are more likely to
win.

Next we are able to use our model to predict the
winners of each matchup in the 2021 challenge.

You can see our round one predictions in
Appendix 2, Figure 3.

Completing the rest of the rounds allows us to

create the complete predicted bracket as shown
in Appendix 2, Figure 4. Comparing our results
(Figure 4a) to the 2021 actual results (Figure 4b)

we can see that we correctly predicted 5 of the 8
matchups in round 1 yet only 1 of the final 4 and
neither of the final matchup. Clearly there is room
for improvement.

Discussion Questions

1. Would you consider the regression model an
improvement over random guessing? An

Information Systems Education Journal (ISEDJ) 20 (3)
ISSN: 1545-679X June 2022

©2022 ISCAP (Information Systems and Computing Academic Professionals) Page 50

https://isedj.org/; https://iscap.info

improvement over using just the Seed

number? Explain your reasoning.
2. What would be a logical next step in trying to

improve the model?

4. CONCLUSIONS AND NEXT STEPS

There are many ways to improve upon this model.

First, you can expand on the data being used to
build the model. There are many other variables

being retrieved from the websites that weren’t
used in the development of the initial model.
Alternatively, you could consider data that we
haven’t yet retrieved such as a sentiment analysis
of Tweets that mention each song or artist.

Second, our model was based on the results from
the first round of data and the strongest showing
in the first round was predicted to win the entire
tournament. This model doesn’t take into account
that some songs had weak or strong competitors
in the first round which influenced our results.
Building a model that takes into account the

strength of each competitor would be a logical
future step.

Third, we have built and trained a multivariate
linear regression model. Based on some of your
own research in answering the discussion
questions, you have probably already found

alternative techniques (i.e. Decision Trees,
Random Forest, Neural Networks, etc.) that may

be a better fit for a challenge such as this one.

We caution you from being over exuberant, or
disappointed, if your model performs extremely

well, or poorly, for any given year. With such a
limited amount of data to train the models, we
are unable to split our data into an appropriate
training and testing dataset. As such, any model
is most certainly going to be overfitted based on
the prior year's results.

Finally, we request that you do not reach out to
Señor Ashby or anyone else responsible for the

Locura de Marzo challenge. The website is to

support Spanish language learning and not
machine learning.

5. REFERENCES

Boulier, B. L., & Stekler, H. O. (1999). Are sports

seedings good predictors?: An evaluation.
International Journal of Forecasting, 15(1),
83–91.

Bracket Battle Best College Eats. (n.d.). Cooking

Channel. Retrieved July 7, 2021, from
https://www.cookingchanneltv.com/recipes/p
ackages/bracket-battle-best-college-eats

Here Are Your Contestants For The 2013 Worst

Company In America Tournament! (2013,
March 18). Consumerist.

https://consumerist.com/2013/03/18/here-
are-your-contestants-for-the-2013-worst-
company-in-america-tournament/

io9’s March TV Madness: Pick the greatest science
fiction TV show ever made! (n.d.). Gizmodo.
Retrieved July 7, 2021, from
https://gizmodo.com/io9s-march-tv-

madness-pick-the-greatest-science-ficti-
452908411

Locura De Marzo 2021. (n.d.). SeñorAshby.Com.

Retrieved July 7, 2021, from

http://www.senorashby.com/locura-de-
marzo-2021.html

Stekler, H. O., & Klein, A. (2012). Predicting the

outcomes of NCAA basketball championship
games. Journal of Quantitative Analysis in
Sports, 8(1).

Information Systems Education Journal (ISEDJ) 20 (3)
ISSN: 1545-679X June 2022

©2022 ISCAP (Information Systems and Computing Academic Professionals) Page 51

https://isedj.org/; https://iscap.info

Appendix 1. Code Samples

Calling the Spotify API (spotipy)

The Spotify API will gather data on the songs included in the Locura de Marzo tournament. The API
allows for the collection of advanced measures for each song, including the loudness and danceability.
To run this code, you will need your own client_id and client_secret values from your Spotify developer
account.

The highest ranked song for 2021 is Vida De Rico by Camilo.

Use this song ID to see what data is available to us in regards to each song and

validate developer credentials.

Import the necessary libraries

import spotipy

from spotipy.oauth2 import SpotifyOAuth

from spotipy.oauth2 import SpotifyClientCredentials

MAKE SURE YOU INSERT THE CLIENT ID AND CLIENT SECRET BELOW

Set up a connection using the Spotify API credentials

auth_manager = spotipy.oauth2.SpotifyClientCredentials(client_id='INSERT CLIENT

ID', client_secret='INSERT SECRET')

sp = spotipy.Spotify(auth_manager=auth_manager)

Songs have metadata associated with them along with audio features. We make a call

 for each.

meta = sp.track('73nAK3HgQK8dak83Y2WQ8F')

features = sp.audio_features('73nAK3HgQK8dak83Y2WQ8F')

print(meta)

print(features)

 Output:
{'album':{'album_type': 'single', 'artists': [{'external_urls': {'spotify':

'https://open.spotify.com/artist/28gNT5KBp7IjEOQoevXf9N'} ,
'href':

'https://api.spotify.com/v1/artists/28gNT5KBp7IjEOQoevXf9N',
'id': '28gNT5KBp7IjEOQoevXf9N', …

[{'danceability': 0.824, 'energy': 0.457, 'key': 6, 'loudness': -5.428, 'mode': 1,
'speechiness': 0.0543, 'acousticness': 0.167, 'instrumentalness': 0, 'liveness':
0.041, 'valence': 0.95, 'tempo': 87.977, 'type': 'audio_features', 'id':
'73nAK3HgQK8dak83Y2WQ8F', 'uri': 'spotify:track:73nAK3HgQK8dak83Y2WQ8F',
'track_href':

'https://api.spotify.com/v1/tracks/73nAK3HgQK8dak83Y2WQ8F',
'analysis_url': 'https://api.spotify.com/v1/audio-
analysis/73nAK3HgQK8dak83Y2WQ8F', 'duration_ms': 187427, 'time_signature':
4}]

Figure 1. Calling the Spotify API Code and partial results

https://open.spotify.com/artist/28gNT5KBp7IjEOQoevXf9N
https://api.spotify.com/v1/artists/28gNT5KBp7IjEOQoevXf9N
https://api.spotify.com/v1/tracks/73nAK3HgQK8dak83Y2WQ8F
https://api.spotify.com/v1/audio-analysis/73nAK3HgQK8dak83Y2WQ8F
https://api.spotify.com/v1/audio-analysis/73nAK3HgQK8dak83Y2WQ8F

Information Systems Education Journal (ISEDJ) 20 (3)
ISSN: 1545-679X June 2022

©2022 ISCAP (Information Systems and Computing Academic Professionals) Page 52

https://isedj.org/; https://iscap.info

Obtaining Track List using Playlist Information

The following code sets up a function to retrieve a list of tracks using the playlist as supplied by the

Locura de Marzo website.

Figure 2. Obtaining Track IDs for songs in a playlist.

Figure 2. Retrieving the song IDs from the playlist code and partial results

#creating a function to get the trackID

def getTrackIDs(playlist_id):

 ids = []

 playlist = sp.playlist(playlist_id)

 for item in playlist['tracks']['items']:

 track = item['track']

 ids.append(track['id'])

 return ids

Senor Ashby supplied playlist for 2021 – you can find this list ID in the URL

when you click on the playlist link.

playlist = getTrackIDs('5uR6hSLXusr18AERyVmnbE')

print(playlist)

Output:
['73nAK3HgQK8dak83Y2WQ8F', '0GARcbxLIOmzrs0lHpuvmi', '4N7yGB3c8GXPMEeoc15Ekr',
'02dsc9B5N8BFatjGcGhk1u', '1pqnQ41XbfKjaFu6M0eGJp', …

Information Systems Education Journal (ISEDJ) 20 (3)
ISSN: 1545-679X June 2022

©2022 ISCAP (Information Systems and Computing Academic Professionals) Page 53

https://isedj.org/; https://iscap.info

Obtaining Track Details using Playlist

The following code shows how to get tracks from a playlist and add them to a list. The getTrackFeatures
function obtains the features for each track.

def getTrackFeatures(id):

 meta = sp.track(id)

 features = sp.audio_features(id)

 # meta

 name = meta['name']

 album = meta['album']['name']

 artist = meta['album']['artists'][0]['name']

 release_date = meta['album']['release_date']

 length = meta['duration_ms']

 popularity = meta['popularity']

 # features

 acousticness = features[0]['acousticness']

 danceability = features[0]['danceability']

 energy = features[0]['energy']

 instrumentalness = features[0]['instrumentalness']

 liveness = features[0]['liveness']

 loudness = features[0]['loudness']

 speechiness = features[0]['speechiness']

 tempo = features[0]['tempo']

 key = features[0]['key']

 mode = features[0]['mode']

 time_signature = features[0]['time_signature']

 track = [name, album, artist, release_date, length, popularity, danceability, ac

ousticness, energy, instrumentalness, liveness, loudness, speechiness, tempo, key, m

ode, time_signature]

 return track

track_labels = ['name', 'album', 'artist', 'release_date', 'length', 'popularity',

'danceability', 'acousticness', 'energy', 'instrumentalness', 'liveness',

'loudness', 'speechiness', 'tempo', 'key', 'mode', 'time_signature']

playlist_features = []

for i in range(len(playlist)):

 track = getTrackFeatures(playlist[i])

 playlist_features.append(track)

df_playlist = pd.DataFrame(playlist_features, columns = track_labels)

Figure 3. Obtaining Track information for songs in a playlist.

Information Systems Education Journal (ISEDJ) 20 (3)
ISSN: 1545-679X June 2022

©2022 ISCAP (Information Systems and Computing Academic Professionals) Page 54

https://isedj.org/; https://iscap.info

Calling the Twitter API

The Twitter API provides much more data than just the number of followers but that is the only feature
we will collect for each artist.

Figure 4. Calling the Twitter API

import tweepy

assign the values accordingly

consumer_key = "INSERT CONSUMER KEY"

consumer_secret = "INSERT CONSUMER SECRET"

access_token = "INSERT ACCESS TOKEN"

access_token_secret = "INSERT ACCESS TOKEN SECRET"

authorization of consumer key and consumer secret

auth = tweepy.OAuthHandler(consumer_key, consumer_secret)

set access to user's access key and access secret

auth.set_access_token(access_token, access_token_secret)

calling the api

api = tweepy.API(auth)

print(f'Number of followers: {api.get_user("@CamiloMusica").followers_count}')

Output:
Number of followers: 1483544

Information Systems Education Journal (ISEDJ) 20 (3)
ISSN: 1545-679X June 2022

©2022 ISCAP (Information Systems and Computing Academic Professionals) Page 55

https://isedj.org/; https://iscap.info

Calling the YouTube API

This code block shows how to obtain information about videos in a Play List.

Figure 5. Obtaining Video Information from a Play List.

importing necessary packages

from apiclient.discovery import build

from apiclient.errors import HttpError

from oauth2client.tools import argparser

setting up the YouTube api with the appropriate credentials

DEVELOPER_KEY = 'INSERT DEVELOPER KEY'

YOUTUBE_API_SERVICE_NAME = "youtube"

YOUTUBE_API_VERSION = "v3"

youtube = build(YOUTUBE_API_SERVICE_NAME, YOUTUBE_API_VERSION,developerKey=DEVELOPE

R_KEY)

setting up the video request and then executing

vid_request = youtube.videos().list(

 part="statistics, snippet",

 id='qKp1f7Vn9dM')

vid_response = vid_request.execute()

print(f'Total Number of Views: {vid_response["items"][0]["statistics"]["viewCount"]

}')

Output:
Total Number of Views: 606345247

Information Systems Education Journal (ISEDJ) 20 (3)
ISSN: 1545-679X June 2022

©2022 ISCAP (Information Systems and Computing Academic Professionals) Page 56

https://isedj.org/; https://iscap.info

Linear Regression

This code sample shows how to set up a linear regression model. This code assumes that you have a
dataframe called train_df with all of the data from prior years and a test_df with data about the current

year’s competition.

Figure 6. Setting up a linear regression.

Regression Coefficients

This sample code shows how to display the regression coefficients.

Figure 7. Showing Regression Coefficients.

from sklearn.linear_model import LinearRegression

linear_model_data = train_df[['seed','viewCount', 'followers', 'tempo', 'vote_perce

ntage']]

inputs = linear_model_data.drop(columns = ['vote_percentage'])

target = linear_model_data.vote_percentage

training the model on the previous results

regression = LinearRegression().fit(inputs, target)

getting the predictions for the 2021 tournament

tournament_2021_data = test_df [['seed','viewCount', 'followers', 'tempo']]

predictions_2021 = regression.predict(tournament_2021_data).tolist()

adding those predictions to the 2021 DataFrmae

test_df ['predicted_win_percentage'] = predictions_2021

Show Regression Coefficients for Locura de Marzo Seed #, YouTube View Count (per

Million views), Number of Twitter Followers (per Million

followers), and Spotify Tempo

print(regression.coef_)

Output:
array([-2.41596475e-02, 3.01212645e-05, 2.48028881e-03, -9.50443717e-
04])

Information Systems Education Journal (ISEDJ) 20 (3)
ISSN: 1545-679X June 2022

©2022 ISCAP (Information Systems and Computing Academic Professionals) Page 57

https://isedj.org/; https://iscap.info

Appendix 2. Additional Figures

Correlation Matrix

Figure 1. Correlation Matrix

Information Systems Education Journal (ISEDJ) 20 (3)
ISSN: 1545-679X June 2022

©2022 ISCAP (Information Systems and Computing Academic Professionals) Page 58

https://isedj.org/; https://iscap.info

Figure 2. 2020 Results Compared with Seed Number Prediction

Figure 3. Linear Regression Round 1 Predictions

Information Systems Education Journal (ISEDJ) 20 (3)
ISSN: 1545-679X June 2022

©2022 ISCAP (Information Systems and Computing Academic Professionals) Page 59

https://isedj.org/; https://iscap.info

(a) Predicted Bracket

Information Systems Education Journal (ISEDJ) 20 (3)
ISSN: 1545-679X June 2022

©2022 ISCAP (Information Systems and Computing Academic Professionals) Page 60

https://isedj.org/; https://iscap.info

(b) Actual results

Figure 4. (a) Predicted Bracket and (b) Actual Results.

