In this issue:

4. **Information and Communication Technology in the Classroom: BYOD and the University’s Role**
 Gary Alan Davis, Robert Morris University
 Frederick G. Kohun, Robert Morris University

12. **Cyber Security Curriculum Development: Protecting Students and Institutions While Providing Hands-On Experience**
 Jim Marquardson, Northern Michigan University
 David L. Gomillion, Texas A&M University

22. **Sprint, then Fly: Teaching Agile Methodologies with Paper Airplanes**
 Mark Frydenberg, Bentley University
 David J. Yates, Bentley University
 Julie S. Kukesh, Mendix Corporation

37. **Data Analytics Workshop Series for Non-Computing Major First-Generation-College-Bound Students**
 Sam Chung, Southern Illinois University

45. **Long-term Follow-up of STEM Scholarship Students to Degree Attainment**
 Sylvia Sorkin, The Community College of Baltimore County

56. **Do the Knowledge and Skills Required By Employers of Recent Graduates of Undergraduate Information Systems Programs Match the Current ACM/AIS Information Systems Curriculum Guidelines?**
 Timothy Burns, Ramapo College of New Jersey
 Yuan Gao, Ramapo College of New Jersey
 Cherie Sherman, Ramapo College of New Jersey
 Stephen Klein, Ramapo College of New Jersey

66. **The Impact of Teaching Approaches and Ordering on IT Project Management: Active Learning vs. Lecturing**
 Christopher Sibona, University of North Carolina Wilmington
 Saba Pourreza, University of North Carolina Wilmington
The **Information Systems Education Journal** (ISEDJ) is a double-blind peer-reviewed academic journal published by **ISCAP** (Information Systems and Computing Academic Professionals). Publishing frequency is six times per year. The first year of publication was 2003.

ISEDJ is published online (http://isedj.org). Our sister publication, the Proceedings of EDSIGCON (http://www.edsigcon.org) features all papers, panels, workshops, and presentations from the conference.

The journal acceptance review process involves a minimum of three double-blind peer reviews, where both the reviewer is not aware of the identities of the authors and the authors are not aware of the identities of the reviewers. The initial reviews happen before the EDSIGCON conference. At that point papers are divided into award papers (top 15%), other journal papers (top 30%), unsettled papers, and non-journal papers. The unsettled papers are subjected to a second round of blind peer review to establish whether they will be accepted to the journal or not. Those papers that are deemed of sufficient quality are accepted for publication in the ISEDJ journal. Currently the target acceptance rate for the journal is under 40%.

Information Systems Education Journal is pleased to be listed in the Cabell's Directory of Publishing Opportunities in Educational Technology and Library Science, in both the electronic and printed editions. Questions should be addressed to the editor at editor@isedj.org or the publisher at publisher@isedj.org. Special thanks to members of AITP-EDSIG who perform the editorial and review processes for ISEDJ.

2018 AITP Education Special Interest Group (EDSIG) Board of Directors

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
<th>Role</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leslie J. Waguespack Jr</td>
<td>Bentley University</td>
<td>President</td>
</tr>
<tr>
<td>Amjad Abdullat</td>
<td>West Texas A&M University</td>
<td>Vice President</td>
</tr>
<tr>
<td>Meg Fryling</td>
<td>Siena College</td>
<td>Director</td>
</tr>
<tr>
<td>Rachida Parks</td>
<td>Quinnipiac University</td>
<td>Director</td>
</tr>
<tr>
<td>Jason Sharp</td>
<td>Tarleton State University</td>
<td>Director</td>
</tr>
<tr>
<td>Jeffry Babb</td>
<td>West Texas A&M University</td>
<td></td>
</tr>
<tr>
<td>Scott Hunsinger</td>
<td>Appalachian State Univ</td>
<td>Past President (2014-2016)</td>
</tr>
<tr>
<td>Li-Jen Lester</td>
<td>Sam Houston State Univ</td>
<td>Director</td>
</tr>
<tr>
<td>Anthony Serapiglia</td>
<td>St. Vincent College</td>
<td>Director</td>
</tr>
<tr>
<td>Peter Wu</td>
<td>Robert Morris University</td>
<td>Director</td>
</tr>
<tr>
<td>Lee Freeman</td>
<td>Univ. of Michigan - Dearborn</td>
<td>JISE Editor</td>
</tr>
</tbody>
</table>

Copyright © 2018 by Information Systems and Computing Academic Professionals (ISCAP). Permission to make digital or hard copies of all or part of this journal for personal or classroom use is granted without fee provided that the copies are not made or distributed for profit or commercial use. All copies must bear this notice and full citation. Permission from the Editor is required to post to servers, redistribute to lists, or utilize in a for-profit or commercial use. Permission requests should be sent to Jeffry Babb, Editor, editor@isedj.org.
Data Analytics Workshop Series for Non-Computing Major First-Generation-College-Bound Students

Sam Chung
SamChung@siu.edu
School of Information Systems and Applied Technologies
Southern Illinois University
Carbondale, IL 62901, USA

Abstract

The purpose of this research is to propose how we can encourage non-computing major first-generation-college-bound students to be actively involved in learning data analytics. Non-computing major students have limited opportunities to take a data analytics related course. The computing major programs have the resource limit for offering none-major electives. The first-generation-college-bound students need more mentoring for their future directions. For this purpose, we challenge the following three goals: 1) What practices can we use with underpinning scientific evidences? 2) How can we enhance engagement of students with very limited interventions from an instructor? And, 3) how can we motivate the participation of the non-computing major students? To accomplish these goals, we start with developing a series of summer workshops that is Evidence-Based Practices (EBP)-guided, student-driven, and applied. Based upon the EBPs, we develop a series of student-driven summer workshops, not a regular elective course, with an emphasis on application of data analytics to the main areas in which the students are interested. We conclude that the EBP first helped us to develop these workshop series for applied data analytics with underpinning scientific evidences. Second, these workshops using active learning methods allowed the students to have their strong engagement with very limited interventions from an instructor. Third, these workshops motivated the participation of the non-computing major students by influencing the students to seek how data analytics can be applied to their domain. Last, the outcome of their team project allowed them to experience undergraduate research.

Keywords: Data Analytics, Non-Computing Major, First-Generation-College-Bound, Evidence-Based Practice, Active Learning Methods, Experiential Learning.

1. INTRODUCTION

In the era of Big Data, Data Science becomes an emerging subject across disciplines. Because of the multidisciplinary and interdisciplinary subject, it is important for students to learn concepts of data analytics, earn skills of data analysis, and then apply the skills to their real word problems regardless of their major (Wymbs, 2016; Wright, 2016).

Although students in a computing major such as Computer Science, Information Technology, and Information Systems can take a data analytics course as a regular class, most of non-computing major students have limited opportunities to take a data analytics related course. Since many computing programs have to teach pre-existing courses, it is not easy for them to open a data analytics course for non-major students. In addition, underrepresented students such as first-generation-college-bound students or socioeconomically disadvantaged students have limited resources of understanding their demands for their advanced study of professional careers in emerging areas (National Academic of Sciences (NAS), 2011; The Executive Office of the President, 2014).

To solve the constraints of non-computing major students, the resource limit of the computing major programs, the lack of mentoring of the
first-generation-college-bound students, we propose an approach that focuses on first-generation-college-bound student, not instructor but student-driven and non-computing majors. However, we encounter three challenges: 1) What scientific evidence-based practices can we use? 2) How can we enhance engagement of students with very limited interventions from an instructor? And, 3) how can we motivate the participation of the non-computing major students?

For those three challenges, we start with identifying best practices that have sound scientific evidences to make a course very friendly for the students who are non-computing major and first-generation-college-bound. Based upon the identified Evidence-Based Practices (EBP), we first choose the workshop series format for a small group during summer (Sackett, Rosenberg, Gray, Haynes, & Richardson, 1996). Second, to encourage the students drive the workshop series, we infuse active learning methods and a classroom assessment technique into each workshop module. Third, to be attractive to non-computing majors, we allow students to apply data analytics to their real problems and present their peer-reviewed research outcomes at a local conference. Fourth, we assess the workshop series in terms of formative and summative evaluation. Then, we discuss what we learned through the series of summer workshops. Last, we conclude that we could encourage non-computing major first-generation-college-bound students to be actively involved in learning data analytics.

2. BACKGROUND

Evidence-Based Practice (EBP)
To select a correct format for non-computing major first-generation-college-bound students, we adopt Evidence-Based Practice (EBP), which came from Medicine. According to Dr. David L. Sackett, who is known as one of the fathers of Evidence-Based Medicine (EBM), EBM means clinical practices should be conducted based upon the best available external scientific clinical evidences (Sackett, et al., 1996; Straus, Glasziou, Richardson, Haynes, & Sackett, 2011). Software Engineering research community adopted EBM and proposed Evidence-Based Software Engineering (EBSE) (Kitchenham, Dyba, & Jorgensen, 2004; Dyba, Kitchenham, & Jorgensen, 2005).

Active Learning Methods – FC, JiTT, & PI
An active learning method allows each student to be more directly involved in his or her leaning process. Each student is a learner as connection-maker, content producer, and sharer. We use three active learning methods: Flipped Classroom (FC), Just-in-Time Teaching (JiTT), and Peer Instruction (PI).

FC is an active learning method that reverses typical lecture in classroom to homework activities in classroom (Bergmann & Sams, 2012; Rutherford & Rutherford, 2013). Students are required to study lecture materials at home by watching short videos and solving short quizzes before the class session while they are devoted to discussions, exercises, or projects in class. JiTT is an active learning method that allows an instructor to adjust lecture materials within a short time before a lecture begins (Novak, Patterson, Gavrin, & Christian, 1999; Gurka, 2012; Martinez, 2012). PI is an active learning method that encourages student to help other students by discussing an answer of a given concept test (Mazur, 1997; Mazur and Watkins 2010; Simon and Cutts, 2012). The main point of a concept test is to confirm whether the students in class truly understood one important concept that the student should take away from the class.

Classroom Assessment Techniques (CAT’s)
CAT’s are strategies that allow instructors to conduct formative assessment in order to assess how well students are learning key concepts during class time (Angelo and Cross, 1993). Among CAT’s, we use the muddiest point that allows students to have their own chance to briefly describe what part of the lesson or the assignment in class was most confusing to them.

3. RELATED WORK

Data Science becomes an emerging subject across disciplines for both undergraduate and graduate degree programs. Data Analytics has been one of important Body of Knowledge (BoK) of Data Science. A Data Science degree program was proposed and implemented for an interdisciplinary undergraduate degree (Anderson, Bowring, McCauley, Pothering, & Starr, 2014). An interdisciplinary data analytics track and its minor for undergraduate students were proposed (Wymbre, 2016). A Master’s of Science degree in Data Analytics was also proposed for business major students (Jafar, Babb, & Abdullat, 2016). A data analytic centric MS Degree was proposed for Information Sciences and Technologies students (Kang, Holden, & Yu, 2014; Kang, Holden, & Yu, 2015). An online graduate program in Information Security and Analytics was proposed (Kumar, 2014).
However, most efforts above focused on a degree program with regular courses for either undergraduate or graduate students. The degree program considered multidisciplinary and interdisciplinary subjects. Some degree programs emphasized applied data analytics with advanced skills (Kang, Holden, & Yu, 2014; Kang, Holden, & Yu, 2015). All degree programs stay with a specific major such as Computer Science, Information Technology, and Information Systems. We could not find any explanations of teaching data analytics for either non-computing majors or underrepresented students.

4. RESEARCH METHOD

EBP in Data Analytics – Workshops
We apply EBP to data analytics education to identify unique values and preferences (Dyba, Kitchenham, & Jørgensen, 2005; Straus, Glasziou, Richardson, Haynes, & Sackett, 2011). As scientific evidences, our literature surveys show that underrepresented students including first-generation-college-bound students need proven and intensive interventions in Science, Technology, Engineering, and Mathematics (STEM) (NAS, 2011). Bettinger and Baker (2014) found that the students who received mentoring kept higher retention.

Based upon NAS recommendations (2011), we propose a series of summer workshops, which are not an elective course for the student participants. Instead of a regular semester, we target a summer semester. We include engagement in networking, peer-to-peer support, study groups, and social activities. Due to the small group setting, we constantly provide them with mentoring.

We also require research experiences, participation in conferences, and presentation of research. Students should apply what they learned in data analytics to their application to experience applied data analytics. In addition, since faculty resources are very limited during summer semester, we educate and train two IT major senior students before summer semester through an independent study. Then, we have the students lead the workshop series as their credits for their second independent study course.

Curriculum – Active Learning Methods
In order to enhance engagement of students, we infuse three active learning methods and the muddiest point into each teaching module. Each teaching module employs the same cycle of active learning method sequence: 1) JITT with the muddiest point and FC out of classroom, 2) JITT and PI in classroom, and 3) FC in classroom.

Before starting next class, students were required to study their reading assignment for next workshop. We designed this reading assignment for two purposes: engagement and JITT. Because the purpose of this assignment was not evaluation but engagement, we allowed unlimited trials for maximum five multiple-choice quizzes. To prepare for taking the quiz, we published lecture-related materials such as links to video clips, articles, and slides, etc. to the Canvas Learning Management System (LMS).

To check whether the students actually conducted their reading assignment and to know what the students could not understand clearly from the given teaching materials, we required a reading assignment quiz. The quiz consists of two types of questions: one for multiple-choice quizzes to check whether the students studied or not before next class, the other for an essay quiz to receive feedback from the students. We designed the last essay question to know the muddiest point of the given reading materials.

Before starting each workshop one day earlier, the instructor (one of two leading students) evaluated the submitted reading assignment and identified what part the students answered correctly or incorrectly from the multiple-choice quizzes and what they really got confused or wanted to learn from the muddiest point question. Then, the instructor adjusted his topics that he will cover in class i.e. the JITT is implemented. After explaining the confusing or interesting topics, the instructor gave a concept test to the students in class to check whether the students truly understood the key concept of today’s class or not. A concept test consists of a quiz with multiple choices. Each student selected an answer and then discussed his or her answer with another classmate who answered differently. Then, the instructor explained the right answer to the students.

After conducting a concept test in the middle of class, the instructor conducted classroom activities for lab assignment. Students practiced R programming with an Integrated Development Environment (IDE), RStudio. Then, they started their labs in class and could continue to finish it out of class. For next class, the instructor requested the students to start the reading assignment for next workshop again after class.
Evidenced Approach – Team Project
At the end of the workshop series, students were required to apply what they learned to a problem domain of their major through a team project. Before starting their team project, the students studied a sample case during weeks 9 and 10. Then, they could apply what they learned to their team project. If necessary, we allowed them to finish the project after week 10.

5. RESULTS

Teaching Modules
We developed the workshop series of data analytics in Spring 2015 with two IT major students. Then, by using the developed workshop series, the IT students conducted a 10-week workshop by tutoring seven non-major students for their second independent study course. We used first nine chapters of Jared Lander’s book for R programing with RStudio (Lander, 2013). Table 1 shows the topics of 10 teaching modules. Figure 1 shows that the 10 teaching modules were uploaded onto the Canvas LMS.

We introduced two well-known k-means clustering and k-nearest neighbor algorithms to the students and practiced the algorithms with Iris Data Set at weeks 9 and 10. For data clustering and classification, we used online resources (Influxity, 2013; Jalayer Academy, 2015a; Jalayer Academy, 2015b) with data samples from University of California Irvine (UCI) Machine Learning Repository (UCI MLR, 2017).

Weekly Workshop
Two IT major students took an independent study course for preparation in spring semester and led the workshop during summer. By using week 9 as an example, we (two students leading the workshop) explain how we conducted a weekly workshop. Table 2 shows which week we took an active learning method and where we exercised the method - out of class or in class.

Table 1. Teaching Modules for Workshops

<table>
<thead>
<tr>
<th>W</th>
<th>Teaching Module</th>
<th>Resource</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Active Learning Methods</td>
<td>Syllabus</td>
</tr>
<tr>
<td></td>
<td>Getting R</td>
<td>Ch. 1</td>
</tr>
<tr>
<td>2</td>
<td>R Computing Environment</td>
<td>Ch. 2</td>
</tr>
<tr>
<td>3</td>
<td>R Packages</td>
<td>Ch. 3</td>
</tr>
<tr>
<td>4</td>
<td>Basic Math Functions</td>
<td>Ch. 4</td>
</tr>
<tr>
<td>5</td>
<td>Data Structure</td>
<td>Ch. 5</td>
</tr>
<tr>
<td>6</td>
<td>Reading Data & Visualization</td>
<td>Ch. 6 & 7</td>
</tr>
<tr>
<td>7</td>
<td>Function Definition & Call</td>
<td>Ch. 8</td>
</tr>
<tr>
<td>8</td>
<td>Control Structure</td>
<td>Ch. 9</td>
</tr>
<tr>
<td>9</td>
<td>Clustering</td>
<td>Online</td>
</tr>
<tr>
<td>10</td>
<td>Classification</td>
<td>Online</td>
</tr>
</tbody>
</table>

Figure 1: Canvas LMS for Summer Workshop Series

Table 2. Active Learning Methods (CAT) & Teaching Materials (Where, Where)

<table>
<thead>
<tr>
<th>Active Learning Methods (CAT)</th>
<th>Teaching Materials (When, Where)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FC (MP)</td>
<td>Course Material for W9</td>
</tr>
<tr>
<td></td>
<td>Reading Assignment Quiz for W9</td>
</tr>
<tr>
<td></td>
<td>(W8, out of class)</td>
</tr>
<tr>
<td>JITT</td>
<td>Adjusted lectures for W9</td>
</tr>
<tr>
<td></td>
<td>(W9, out of class)</td>
</tr>
<tr>
<td>PI</td>
<td>Concept Test for W9</td>
</tr>
<tr>
<td></td>
<td>(W9, in class)</td>
</tr>
<tr>
<td>FC</td>
<td>Lab Assignment for W9</td>
</tr>
<tr>
<td></td>
<td>(W9, in class)</td>
</tr>
<tr>
<td>FC (MP)</td>
<td>Course Material for W10</td>
</tr>
<tr>
<td></td>
<td>Reading Assignment Quiz for W10</td>
</tr>
<tr>
<td></td>
<td>(W9, out of class)</td>
</tr>
</tbody>
</table>

FC: Flipped Classroom, MP: the Muddiest Point; JITT: Just-in-Time Teaching; PI: Peer Instruction
At week 9, the students learned a clustering algorithm with the k-means R package. We held the workshop on Saturday from 9:30 AM to 12:30 PM. There was a reading assignment quiz at the end of week 8 for the students to be engaged in week 9 class. We provided the students with course materials and video clips. We required the students to take a reading assignment quiz including the muddiest point question. Prior to each workshop, we checked the reading assignment quiz to know what concepts we need to explain in next class. After conducting the JiTT, we required the students to take a concept test quiz in class for PI. The students themselves discussed and answered the concept test first and we explained its answer later. Then, the students started hands-on labs in class and could continue the lab after class. We required the students to answer several questions at the end of each lab to confirm whether the students truly understood the lab – why you did this lab. We repeated this cycle throughout 10 weeks.

Three Team Projects

At the end of the workshop series, the students applied what they learned to their application domain through a team project. Table 3 shows the three-team projects (total 7 non-computing major students). The cases show that the students could apply the Machine Learning approach to their problem domains - identification of automotive vehicles, on-time performance of airline operations, and smoking effect on newborn babies.

<table>
<thead>
<tr>
<th>C</th>
<th>Majors</th>
<th>#</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Automotive Technology</td>
<td>2</td>
<td>Vehicle Clustering by Manufacturer Region Using the K-means Clustering Machine Learning Algorithm</td>
</tr>
<tr>
<td>2</td>
<td>Aviation Management & Flight</td>
<td>3</td>
<td>K-means Clustering of Airline On-Time Performance Statistics</td>
</tr>
<tr>
<td>3</td>
<td>Physiology & Biochemistry</td>
<td>2</td>
<td>Effect of Smoking on Newborn Weight and Length at Birth by Using the K-Means Clustering Algorithm</td>
</tr>
</tbody>
</table>

In Case 1, the team sought to find how a machine learning approach using the k-means clustering algorithm can be applied to vehicle clustering. The vehicles were clustered into North America, Europe, and Asia regions in terms of engine displacement and Miles Per Gallon (MPG). The team discovered that vehicles from the Asian region were surprisingly clustered quite differently from the actual data set because the vehicles were clustered as European vehicles rather than Asian (Figure 2).

![Figure 2. Scatterplot results of clustering engine displacement and MPG according to manufacturer regions (green for North America, black for Europe, and red for Asia) (Chung et al. 2017)](image)

In Case 2, the team analyzed airline on-time performance statistics and found that the lowest clustering group reflecting the low on-time performance rate is mainly associated with winter and summer months (Figure 3).

![Figure 3. Scatterplot results of clustering flight departures and percentages of on-time arrivals according to four seasons (Chung et al. 2017)](image)

In Case 3, the team analyzed the relationships of the height and weight of infants from non-smoking mothers and mothers with regular contact with cigarette tobacco. The team confirmed that there is a significant difference in the height and weight variables when maternal smoking is a contributing factor (Figure 4). More detail information of three case studies can be found in Chung et al. (2017).
improving student learning, learning by doing for earning skills, team project-based learning for cultural agility and systems thinking, and research experiences for creative thinking were integrated into the teaching modules.

Second, we answer how we could enhance engagement of students with very limited interventions from an instructor. While the intervention from a faculty member was minimized, the interventions among the students were maximized. Two leading students, who were IT major, were educated and trained first through their independent study for one semester (academic learning). Then, they led the workshop series with limited interventions from the instructor for other non-computing major students (experiential learning). They could also learn how the integration of active learning methods into teaching modules could improve student engagement and learning.

Third, we answer how we could motivate the participation of the non-computing major students. The non-computing major students could learn data analytics by applying what they learned to their own data analytics problem. The summer workshop series could support networking, peer-to-peer support, study groups, and social activities. Due to the small group setting, we constantly provided them with mentoring. The inclusion of undergraduate research experiences based upon the outcomes of their team projects helped them to learn how creative thinking, technical writing, and professional presentations are important.

7. CONCLUSION & FUTURE WORK

We propose how we can encourage non-computing major first-generation-college-bound students to be actively involved in learning data analytics. EBP guided us to choose the teaching format, summer workshop, and to implement each teaching module with three active learning methods, one CAT, and one team project. The team project allowed the students to apply data analytics to their own business domain and to experience research and creative activities through a student poster with their abstract. This approach could enhance engagement of the students and motivate the participation of the students.

A series of summer workshops for data analytics that are student-driven brought several benefits to either computing-major students who led the workshops or the non-computing major first-generation-college-bound who participated in the
workshops. The leading students had both academic learning through their preparation of the workshops and experiential learning through the workshop series. The non-computing major first-generation-college-bound students could experience hands-on learning and learning by doing through the applied team projects.

For next steps, we will expand the workshop series to more diverse groups of students. The current population is limited to male and one ethnic group. Also, we will analyze how these workshop series could help retention, pathways, and graduation of the students participated since we have kept connections with all of nine participant students (2 IT major and 7 non-IT major) since October 2015.

8. REFERENCES

Kumar, S. A. (2014, October). Designing a graduate program in information security and analytics: master’s program in information security and analytics (MISA). In Proceedings of the 15th Annual Conference on Information technology education (pp. 141-146). ACM.

