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Abstract  
 
Data Science courses are becoming more prevalent in recent years.  Increasingly more universities are 

offering individual courses and majors in the field of Data Science.  This study evaluates data science 
education as a means to become proficient in scientific literacy. The results demonstrate how the 
educational goals of a Data Science course meet the scientific literacy criteria in regards to the process 
of science.  Based on the commonality between data science and scientific literacy courses, the paper 
concludes that a data science course can be used as an alternative way for students in any major to 
gain scientific literacy skills. 
 

Keywords: Data Science, Scientific Literacy, Scientific Process 

 

1.  INTRODUCTION 
 

The amount of data produced across the globe 
has been increasing exponentially and continues 

to grow.   Effectively analyzing these huge 
collections of data, now called Big Data, can 
create significant value, increasing 
competitiveness and delivering more value to 
consumers.    Data science is the general 
analysis of Big Data. It is the comprehensive 
understanding of where data comes from, what 

data represents, and how data can be 
transformed into meaningful information that 
can be used to solve problems in diverse 
domains.  It encompasses statistics, hypothesis 

testing, predictive modeling, understanding the 
effects of performing computations on data, and 
how to represent the data to others.   

The goal of this paper is to study the 
effectiveness of data science and visualization as 
a means to achieve scientific literacy.  By 
utilizing data science techniques, can students 

mailto:tarmarkin@stcc.edu
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acquire competency in the area of scientific 
literacy?  Some universities are now offering 
data science courses, and at least one university 
is now offering data science as a non-lab science 
course (Squire, 2012).    In order to examine 
how effective data science can be for scientific 

literacy, an analysis of the learning objectives, 
educational goals and methodologies used in the 
introductory data science courses is compared to 
the objectives of courses that fulfill a scientific 
literacy requirement.   

 
2.  BACKGROUND 

 
Data Science 
There are several similar definitions for data 
science in the literature. Provost and Fawcett 
define data science as a “a set of fundamental 

principles that support and guide the principled 
extraction of information and knowledge from 
data.” Data science involves principles, 
processes, and techniques for understanding 

phenomena via the (automated) analysis of 
data.” 
 
The term “data scientist” was originally coined 
by two data analysts working at LinkedIn and 
Facebook in 2008 (Davenport & Patil, 2012).  

While there is no consensus on the definition of 
data science and data scientists, there are some 
similarities. An article in Fortune magazine 
described a data scientist as a person who 

“helps companies make sense of the massive 
streams of digital information they collect every 
day, everything from internally generated sales 

reports to customer tweets.”   Another source, 
Data Scientists (2011), defined data scientists as 
using technology and skills “to increase 
awareness, clarity and direction for those 
working with data… Data scientists don’t just 
present data, data scientist present data with an 
intelligence awareness of the consequences of 

presenting that data.”  
Many institutes of higher education are now 
offering degrees, certifications or courses in the 
area of data science. The courses are offered by 
different departments, including Accounting, 
Mathematics, Computer Science, and 

Information Systems.  In order to understand 
the goals and objectives of introductory data 
science courses better, course syllabi from 
several universities were examined (Attenburg & 
Provost, 2012; Blumenstock, 2013; Pfister & 
Blitzstein, 2014; Schutt & Payel, 2013; Squire, 
2012).   

While the methodology and prerequisites for the 
introductory courses vary, there are several 

similarities in all of the classes.  They all focus 
around the six steps of data science as defined 
by Davenport:  

1. Recognize the problem or question. 
2. Review previous findings  
3. Model the solution and select the 

variables 
4. Collect the data  

5. Analyze the data  
6. Present and act on the results. 

(Davenport, 2012) 

In the first two steps, students determine the 
project scope and develop their questions and 
hypothesis. They research the topic and data. 

This step may include narrowing down initial 
ideas about a larger problem to one that is more 
defined and approachable.  The modeling 

techniques varied between the classes 
depending on the level of the students.    

The way the data collection step is covered 

varies based upon the course. Generally, 
sampling techniques are covered and 
methodologies for data capture are presented.  
Different tools are used to capture and mine the 
data, including R, python, Hadoop, web APIs and 
google searches.  In regards to the data storage 

step, some of the courses discuss tools for large 
and small data management and storage, 

another course simply uses Excel for data 
storage.   

For data preparation, munging, scraping, and/or 
cleaning is completed to get an informative, 
manageable data set.  Data cleaning is the 
process of detecting and correcting (or 
removing) corrupt or inaccurate data items from 

a dataset. At this point, unstructured data is 
transformed to structured data. 

At the data analysis stage, correlations and 
conclusions about the data are drawn.  
Depending on the prerequisites and emphasis of 
the course, the statistical depth of analysis 

various from simple linear regression and t-tests 
to basic machine learning. 
 

The last step, data visualization and translation 
is the communication of information in a clear 
and effective way through graphical means.  A 
number of different tools are used at this step, 
including Panda Visualization Tool, Python, 
Matplotlib, Microsoft Excel, and R. 
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Scientific Literacy 
Scientific literacy is generally valued and 
acknowledged among educators as a desirable 
student learning outcome.  Scientific literacy has 
received increasing attention over the years, but 
there is little consensus on its definition. Its 

meanings are drawn-out and sometimes 
contradictory (Laugksch, 2000).  According to 
the National Academy of Science (1996, page 
22): 
 
“Scientific literacy means that a person can ask, 
find, or determine answers to questions derived 

from curiosity about everyday experiences.  It 
means that a person has the ability to describe, 
explain, and predict natural phenomena.  

Scientific literacy entails being able to read with 
understanding articles about science in the 
popular press and to engage in social 
conversation about the validity of the 

conclusions.  Scientific literacy implies that a 
person can identify scientific issues underlying 
national and local decisions and express 
positions that are scientifically and 
technologically informed.  A literate citizen 
should be able to evaluate the quality of 

scientific information on the basis of its source 
and the methods used to generate it.  Scientific 
literacy also implies the capacity to pose and 
evaluate arguments based on evidence and to 
apply conclusions from such arguments 
appropriately”. 

In order to achieve scientific literacy as 

described above, one must be able to 
understand both basic scientific information as 

well as the process by which science is carried 
out.  These two aspects to scientific literacy 
were described by Jon D. Miller in 2007 
(Ogunkola, 2013) In other words, it is not 
enough to memorize basic scientific information 
to be scientifically literate—one needs to also be 
able to understand how science is carried out.  

Each aspect of scientific literacy must be 
considered in more detail. 

Science is the “knowledge about or study of the 

natural world based on facts learned through 
experiments and observation.” (Merriam-
Webster, 2014).   A similar definition by the 
Science Council (2014) is “Science is the pursuit 
and application of knowledge and understanding 
of the natural and social world following a 

systematic methodology based on evidence.”  
The most significant difference between these 
definitions is the inclusion of social sciences in 
the Science Council definition.  Scientific 
information needed for scientific literacy would 

include scientific terminology and concepts, 
potentially from both the natural and social 
sciences. 

After extensive literature review and surveys of 
science faculty, Gormally, Brickman and Lutz 
(2012) defined two major categories of scientific 
literacy skills “1) skills related to organizing and 
analyzing the use of methods of inquiry that lead 

to scientific knowledge, and 2) skills related to 
organizing, analyzing, and interpreting 
quantitative data and scientific information” (p. 
366). Based on responses from faculty on what 
skills they considered important for scientific 
literacy, Gormally and colleagues (2012) 
consolidated the responses into nine set of skills 

within the two categories.  These skills are 
primarily related to the process of science. 

The Scientific Process 
The scientific process has been described as a 
set of scientific method steps.  The origin of 
these steps as educational doctrine (beginning in 
the late 1800s) came from searching for a more 
interesting and authentic way to carry out 
science labs, other than simply following 

standardized lab procedures (Rudolph, 2005).  It 
also arose as an alternative to rote 
memorization of scientific facts.  One of the first 
proponents of the scientific method was John 
Dewey, who emphasized the process of 
knowledge construction over the knowledge 

itself.  More recently, Rissing (2007) showed 

that by using the process of science students 
learned better and “had learned to think for 
themselves.” 

There is a range in the number of steps in the 

scientific method today.  Commonly, there are 5 
(Simon, et al., 2013; Science Made Simple, 
2014) to 10 (Crooks, 1961) steps included, and 
these steps do not have to occur in order 
(Tignor, 1961).  The following are five steps of 

the scientific method from a current introductory 
biology textbook (Simon, et al., 2013): 

1. Observation 

2. Question 
3. Hypothesis 
4. Prediction 
5. Experiment 

To begin the scientific method requires 
observations and questioning.  During the 
observation step, scientists examine the world 
they are studying and look for anything of 

interest.  As they observe, they write down 

http://www.sciencemadesimple.com/scientific_method.html#observe
http://www.sciencemadesimple.com/scientific_method.html#hypothesis
http://www.sciencemadesimple.com/scientific_method.html#predict
http://www.sciencemadesimple.com/scientific_method.html#experiment
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descriptions to put their observations into words.  
Making observations helps them find a topic for 
study.  By restating their observations as 
questions, they narrow down their observations 
to find individual questions to ask (often many 
questions) based on their observations.   

The hypothesis step requires that a scientist 
choose only one of their questions and restate it 

as a hypothesis.  Since the hypothesis is a 
testable statement, it is usually phrased such 
that the scientists’ expected outcome is 
incorporated.    This step is often the hardest 
step for a student in a science lab, for two 
reasons.  First, they find it difficult to choose 
only one variable (from their questions) for their 

hypothesis.  It takes experience to learn to 
evaluate each possible component of one’s 
questions separately.  Secondly, students worry 
about committing to a possible outcome that 
could be wrong.  The fact that any hypothesis 
has value, whether it is supported or refuted, is 
in contrast to student experiences with 
assessment. 

The prediction step feeds into the experiment 

step.  Prediction is when scientists take the 
hypothesis and make predictions of how it could 
be demonstrated to begin to visualize how the 
hypothesis could be tested.  If a scientist cannot 
make predictions from their hypotheses then 
they cannot begin to formulate a test for it.  The 

experiment that must be done is readily 

revealed from the predictions.  The experiment 
step includes both carrying out the experiment 
and recording the results.  Some versions of the 
scientific method separate these components 
apart, and some even add a step to spell out 
that the experiment must be done repeatedly. 

Note that another step that is often added at the 
end of these five steps is a sixth “conclusion” 
step.  This conclusion step is where the 

scientists, based on the information gathered 
from the previous step, analyze and share what 
they discovered. The scientists will need to state 
whether or not the hypothesis was supported. 

Regardless of the result, it is during this step 
that the scientist try to provide meaning to the 

results and share their interpretation of the data 
with the scientific community. 

3.  RESULTS 
 

In evaluating Data Science as a Scientific 
Literacy equivalency, it is evident that it does 
not always fulfill the criterion that scientific 
literacy include science knowledge and 

terminology.  Data Science does include the 
scientific literacy criterion of the process of 
science, by both relatedness to the scientific 
method and to the skill set of scientific literacy 
as defined by Gormally and colleagues (2012). 
The comparison needed to support that 

statement is provided in this Results section. 
 
The methodology used in Data Science closely 
matches the scientific method. First, data 
scientists must try to make sense of the massive 
amounts of data. To do this, they will begin by 
formulating the problem. This is where they 

determine the questions they are trying to 
answer with the data. Let’s take for example a 
large national retailer with store locations 

throughout the United States as well as online. 
The data scientists may have observed that 
there are spikes in sales at certain times of the 
year.  Based on this observation, they may 

question why there are spikes in sales at 
particular times of the year.  They may even be 
able at this point to provide an educated guess 
as to what causes these spikes. This is similar to 
the hypothesis step of the scientific process.  
 

Because there is so much data to comb through, 
smaller sub-sets are often created to provide a 
more manageable view of the data. This is done 
in the data collection step of data science. The 
retailer has customer, vendor, and transaction 
data flowing in and being stored 24 hours a day, 

7 days a week.  In order to make sense of all 

this data, the data scientists develop smaller 
sub-sets that may be comprised of regional 
information, type of product sales/purchases, 
store front or online, or even smaller by specific 
location. Breaking down this extensive data into 
subsets is similar to isolating questions by 
individual variables.  By creating the smaller 

sub-sets, the data scientist is facilitated in 
creating appropriate hypotheses with singular 
variables.  
 
After selecting a data sub-set, the data scientists 
go through a process of preparing the data prior 

to analysis. As described above, this is where 
they will “clean” the data.  Part of the process of 

science is understanding whether data is valid; 
experimental results may not always be pure, 
and students should learn how to know what 
data should be included.  From these smaller 
sub-sets, data scientists can begin to analyze 

and determine what causes shifts in the data, 
which is similar to a prediction step in the 
scientific method. For example, in regards to the 
retail industry, data scientists may find that a 
smaller sub-set of data points to spikes in sales 
corresponding with various tourist events in the 
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location they are reviewing. The data scientist 
may then postulate that for all locations, spikes 
in data may be explained by the local events 
held during the year.  All of the actions a 
student would take to this point would also fit 
into the first category of scientific literacy 

“Understand methods of inquiry that lead to 
scientific knowledge” category of scientific 
literacy skills (Gormally, et al., 2012). 
 
The next step for the data scientists would be to 
determine what events are held around the 
various other retail locations. Data scientists 

would then run the sales data against the local 
events data to determine whether or not the 
correlations and conclusions made with the first 

set of data is proven true. This could be done for 
all of the smaller sub-sets of data. This is similar 
to the experimentation step in the scientific 
method. 

 
Finally, based on the information found in the 
previous steps, the data scientists would make 
their conclusions and present their findings. 
They would use techniques to translate their 
conclusions in a way that is clear to those who 

need this information to make decisions (data 
visualization). For the retailer, this may be 
showing charts that demonstrate the connection 
of the local events with the spike in sales data. 
This step is similar to a conclusion step in the 
scientific method.  This second half of actions a 

student would take would also fit into the second 

scientific literacy category of “Organize, analyze, 
and interpret quantitative data and scientific 
information” category of scientific literacy skills 
(Gormally, et al., 2012). 
 

4.  CONCLUSIONS 
 

This example clearly demonstrates that the 
steps of data science parallel the steps of the 
scientific method. Students in data science 
courses are thus exposed to a similar scientific 
processes as those students taking natural 
science classes.  If the purpose of using the 

scientific method in the classroom is to get 
students doing rather than memorizing, data 

science classes would certainly accomplish that 
active form of learning as well.   
 
Scientific literacy courses are becoming more 
prominent in higher education (Hobson, 2008).  

It has been shown that students encouraged to 
carry out experiments using the process of 
science rather than follow step-by-step 
instructions performed much better (Rissing, 
2007); Rissing specified that the improved 
scores reflected that students using the science 

process had learned to think for themselves.  By 
using this same process in a data science course 
students could gain the confidence to think for 
themselves in other courses as well.   
 
Data science generally deals with data taken 

from pre-existing data warehouses or marts 
whereas science courses typically derive their 
data through experimentation.  Both types of 
science go through the same steps of problem 
solving.  The process of questioning, generating 
a hypothesis, evaluating, processing, analyzing, 
and presenting the data are done similarly. 

 
The strong parallels between data science and 
scientific literacy suggest that a student taking a 

data science course would gain the same skills 
of objectivity and analysis as a student in a 
natural science course.  Therefore, whether a 
data science course is offered in business, 

computer science, or any other field, that course 
could fulfill student requirements for scientific 
literacy.  This opens up alternative options for 
students in any major to gain the important 
skills of scientific literacy. 
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