Special Issue: Teaching Cases

In this issue:

4. **Coastal Pacific Doctor Associates: Implementation of a Purchased System**
 Dana Schwieger, Southeast Missouri State University
 Michael McDonald, Western Kentucky University

8. **Slushie World. An In-Class Access Database Tutorial**
 Donald E. Wynn, Jr., University of Dayton
 Renee M.E. Pratt, Washington and Lee University

14. **Information Security in a World of Global Connectivity: A Case Study**
 Cameron Lawrence, The University of Montana
 Garrett Olson, The University of Montana
 Bambi Douma, The University of Montana

21. **USMCo Payroll System**
 Katrina Cohill, Miami University
 Danielle Dudley, Miami University
 Jason Gregg, Miami University
 Elizabeth Millette, Miami University
 Adam Zinnecker, Miami University
 Douglas Havelka, Miami University

26. **The Cocoa Shop: A Database Management Case**
 Renee M. E. Pratt, Washington and Lee University
 Cindi T Smatt, University of North Georgia

Special Issue: Teaching Case Editors:

Lawrence Cameron Anthony Serapiglia
Teaching Cases Co-Editor Teaching Cases Co-Editor
The University of Montana St. Vincent College
The **Information Systems Education Journal** (ISEDJ) is a double-blind peer-reviewed academic journal published by EDSIG, the Education Special Interest Group of AITP, the Association of Information Technology Professionals (Chicago, Illinois). Publishing frequency is six times per year. The first year of publication is 2003.

ISEDJ is published online (http://isedjorg). Our sister publication, the Proceedings of EDSIG (http://www.edsigcon.org) features all papers, panels, workshops, and presentations from the conference.

The journal acceptance review process involves a minimum of three double-blind peer reviews, where both the reviewer is not aware of the identities of the authors and the authors are not aware of the identities of the reviewers. The initial reviews happen before the conference. At that point papers are divided into award papers (top 15%), other journal papers (top 30%), unsettled papers, and non-journal papers. The unsettled papers are subjected to a second round of blind peer review to establish whether they will be accepted to the journal or not. Those papers that are deemed of sufficient quality are accepted for publication in the ISEDJ journal. Currently the target acceptance rate for the journal is under 40%.

Information Systems Education Journal is pleased to be listed in the 1st Edition of Cabell's Directory of Publishing Opportunities in Educational Technology and Library Science, in both the electronic and printed editions. Questions should be addressed to the editor at editor@isedj.org or the publisher at publisher@isedj.org.

2015 AITP Education Special Interest Group (EDSIG) Board of Directors

Scott Hunsinger
Appalachian State Univ
President

Jeffry Babb
West Texas A&M
Vice President

Wendy Ceccucci
Quinnipiac University
President – 2013-2014

Eric Breimer
Siena College
Director

Nita Brooks
Middle Tennessee State Univ
Director

Tom Janicki
U North Carolina Wilmington
Director

Muhammed Miah
Southern Univ New Orleans
Director

James Pomykalski
Susquehanna University
Director

Anthony Serapiglia
St. Vincent College
Director

Leslie J. Waguespack Jr
Bentley University
Director

Peter Wu
Robert Morris University
Director

Lee Freeman
Univ. of Michigan - Dearborn
JISE Editor

Copyright © 2015 by the Education Special Interest Group (EDSIG) of the Association of Information Technology Professionals (AITP). Permission to make digital or hard copies of all or part of this journal for personal or classroom use is granted without fee provided that the copies are not made or distributed for profit or commercial use. All copies must bear this notice and full citation. Permission from the Editor is required to post to servers, redistribute to lists, or utilize in a for-profit or commercial use. Permission requests should be sent to Nita Brooks, Editor, editor@isedj.org.
Teaching Case

Slushie World
An In-Class Access Database Tutorial

Donald E. Wynn, Jr.
University of Dayton
dwynn1@udayton.edu
Dayton, OH 45469

Renée M. E. Pratt
Washington & Lee University
prattr@wlu.edu
Lexington, VA 24450

Abstract
The Slushie World case study is designed to teach the basics of Microsoft Access and database management over a series of three 75-minute class sessions. Students are asked to build a basic database to track sales and inventory for a small business. Skills to be learned include table creation, data entry and importing, form and report design, switchboards, and numerous single and multiple table query designs. The resulting application is sufficient for students to identify a number of basic functions available to the small business, including order entry, sales reports, customer information, and more. The case is designed to be used in a course where the students have little or no prior relational database experience, such as an Introduction to MIS course.

Keywords: Tutorial, Database Basics, Microsoft Access

1. BACKGROUND
Twins Ed and Elaine Milano grew up in Tampa Florida. Every year, they grew more and more tired of having to bring their wallet to the local beach to buy drinks, such as slushies and sodas. Invariably, they’d forget to bring their wallet or forget that they didn’t have any money in it. To solve this issue, Elaine (a business student at a local university) came up with the bright idea of opening a stand to sell drinks, but only to residents and tourists that registered as members of the stand. Thus, Slushie World was born.

Slushie World sells 10 flavors of slushies, 4 sodas, lemonade, and water. Each member would be allowed to purchase drinks using their membership id, up to a preset limit. At the end of each month, each member would be billed for their purchases via email. Initially, each member would be given a $50 credit limit initially, which could increase over time based on their prompt payment history.

Ed and Elaine started out trying to track inventory, sales, and members on a spreadsheet, but soon realized that there were significant limits to how they were able to manage their business this way. After an introductory MIS course, Ed decided to have a Microsoft Access database designed and built to manage the sales process and generate a number of reports to help run Slushie World. Since you have taken this course, he has asked
you to help develop the database, including the desired tables, queries, forms, and reports.

2. FUNCTIONAL REQUIREMENTS

The owners need to track the following things:
- Membership information, including member standing
- Beverage sales information
- Beverage inventory

3. TUTORIAL STEPS – PART ONE

Prior to completing this lab, please download the slushie.xlsx, member.xlsx, and OldSalesDB.accdb files and save in a new subdirectory called SlushieWorld (or whatever else you wish to name it).

1. Create a new database called SlushieDB.
2. Create a new table within the SlushieDB database called Member consisting of four fields as shown in Figure 1.

[See Figure 1, Appendix]

3. Enter the data in Figure 2, located in the Appendix, into the Member Table.

[See Figure 2, Appendix]

4. Import the Inventory Table from the Slushie.xlsx spreadsheet.
5. Import members from the old member spreadsheet (member.xlsx) to the Member table.
6. Import the SalesOrder and OrderLine tables from the OldSalesDB database.
7. Build the relationships between the tables as show in Figure 3.

[See Figure 3, Appendix]

8. Build a form to see information in the Inventory table.
9. Use the form to change the quantity of Raspberry Slushie on hand to zero.
10. Build a report to show all the inventory on hand (name the report "Product Inventory").
11. Build a report to show a current menu (name the report "Menu").
12. Build a form to see the order information.
13. Use the form to enter an order for Member #5, for 2 Lemon Slushies (prod #105) and 2 Orange Slushies (prod #107).

*** End of Part 1. See SlushieDB-Part 1 for the completed database to this point.

4. TUTORIAL STEPS – PART TWO

After seeing the progress made so far, Ed and Elaine have asked you to make a few changes to the member table in order to capture more information. They have added additional members and information, and also want to see more examples of the types of information that can be generated from the database. The names of the products can be found in the database at the end of each step.

1. Add the following fields to the Member table: MemberCreditLimit, City, State.

[See Figure 4, Appendix]

2. Modify the information in the member table to include the following information in the new fields.

[See Figure 5, Appendix]

3. Generate a list of all members’ first and last name, city, state, credit limit, and standing, sorted by last name. (MemberList)
4. Generate the same information, but sorted by state, then within state by credit limit (higher values first). (MemberListByStateAndLimit)
5. Generate a list of all members’ first & last name, and credit standing, with a bad credit standing. (BadCreditQuery)
6. Generate to show all members’ names and credit limit where their credit limit is over $50.00. (HighLimitQuery)
7. Generate a list of all members from Georgia or Florida. (GAFLMemberQuery)
8. Generate a list of all members NOT from Georgia or Florida. (NonGAFLMemberQuery)
9. Generate a list of all members with either a bad credit standing OR who are from Georgia or Florida. (BadOrLocalMemberQuery)
10. Generate a list of all members with a bad credit standing AND from either Ohio or Kentucky. (BadAndLocalMemberQuery)
11. Generate a list of members whose first name starts with “D”. (DNameMemberQuery)
12. Generate a list of the order numbers and order dates, along with the id, first and...
last name of the member who place the order, sorted by order number. (OrderQuery)

13. Generate the order and member information for order #5. (OrderNum5Query)

14. Generate the order and member information for a single order number, which Access will prompt us for. (OrderPromptingQuery)

15. Generate the same information, but with Access prompting us for the member ID. (OrdersByMembersQuery)

16. Show the product information (flavor, price, sales quantity) along with the previous order information from #11 above. (Note: Not the “product quantity”) (OrderAndProductQuery)

17. Show the same product and order information, with the system prompting us for the order number. (ProductsByOrderQuery)

18. Generate a list showing the order number, quantity, and extended price (quantity * price) for each item on each order, sorted by order. (ExtendedPriceQuery)

19. Generate a list to show the total number of items and the total extended price by order, sorted in descending order (highest values first) by extended price. (OrderTotalQuery)

20. Modify the list to show only the five highest orders. (FiveHighestOrderQuery)

21. Build a report (not just a query), based on the information in problem #18. (OrderTotalReport)

*** End of Part 2. See SlushieDB-Part 2 for the completed database to this point.

5. TUTORIAL STEPS – PART THREE

Ed and Elaine really like the database application so far. But they would like a few more reports and queries to help with the management of the business, including getting information about best sellers and profit reports. They also want to make the application more user friendly.

1. Build a list to show how much each type of product (Slushie, Soda, and Other) have sold, both in terms of quantity and dollar sales. (SalesByType)

2. Show all the members that have ordered a “Lemon Slushie”. We want to see their first and last name, member ID, the date they ordered this flavor, and how many they ordered. Sort this list by last name, first name order. (LemonSlushieMembers)

3. List all of the orders with more than 3 total cups sold, with orders having the highest quantity sales listed first. (OrdersOver3Cups)

4. Show the most sold beverages by quantity. (Top3Beverages)

5. Show the top 3 slushie flavors sold by quantity. (Top3Slushies)

6. Show the total sales revenue for each flavor, with the highest revenues listed first. (SalesByFlavor)

7. Show the total sales revenue by date. (SalesByDate)

8. Add a field to the Inventory table to show ProductCost, representing the costs for each beverage sold by SlushieWorld.

[See Figure 6, Appendix]

Enter data in the new table to show the following:

a. Slushies cost $3.00
b. Sodas cost $2.00
c. Lemonade costs $2.75
d. Water costs $2.50

9. Now develop a query to see how much profit we’ve made. (ProfitByOrder)

10. Build a report around the ProfitQuery. (ProfitReport)

11. In order to better understand their customers, generate a list of all customers who have placed orders (first name, last name, city, then state), along with the total sales they have made, and the total number of orders they have made. Sort by state, then city. (CustomerInfo)

12. Build a form associated with the Member table. (MemberForm)

13. Make a switchboard with the items in Figure 6.

[See Figure 7, Appendix]

6. CONCLUSION

Clearly, the existing process of recording information on paper and spreadsheets would not be enough to truly run Slushie World as a real business. Eventually, Ed and Elaine would like to add even more forms and reports to this database in order to add more functionality and outputs. For instance, they are considering
expanding to add more slushie stands on different beaches, which would change parts of the database to track each stand’s sales and profits. But that is for later. For now, you will have developed a sufficient database for Ed and Elain’s current needs by completing each of the above tasks. In addition, you should now have a working knowledge of developing Microsoft Access-based database applications for other uses.

Note: Teaching Notes and Case Supplements are available by contacting the authors
Appendix

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Data Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MemberID</td>
<td>Autonumber; Primary Key</td>
<td>Member ID Number</td>
</tr>
<tr>
<td>MemberFirstName</td>
<td>Text; 25 characters</td>
<td>Member First Name</td>
</tr>
<tr>
<td>MemberLastName</td>
<td>Text; 25 characters</td>
<td>Member Last Name</td>
</tr>
<tr>
<td>MemberStanding</td>
<td>Yes/No Field</td>
<td>Does member have good credit?</td>
</tr>
</tbody>
</table>

Figure 1. Member Table Data Description

<table>
<thead>
<tr>
<th>MemberID</th>
<th>MemberFirstName</th>
<th>MemberLastName</th>
<th>MemberStanding</th>
</tr>
</thead>
<tbody>
<tr>
<td>(auto entered)</td>
<td>(your name)</td>
<td>(your name)</td>
<td>Yes</td>
</tr>
<tr>
<td>"</td>
<td>Darryl Martin</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>"</td>
<td>Jerry Campbell</td>
<td></td>
<td>No</td>
</tr>
<tr>
<td>"</td>
<td>Tony Roland</td>
<td></td>
<td>No</td>
</tr>
<tr>
<td>"</td>
<td>Casey Palmer</td>
<td></td>
<td>Yes</td>
</tr>
</tbody>
</table>

Figure 2. Member Table Data

Figure 3. Relationship Table

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Data Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MemberCreditLimit</td>
<td>Currency</td>
<td>Member's Maximum Credit Limit</td>
</tr>
<tr>
<td>MemberCity</td>
<td>Text; 30 characters</td>
<td>City where Member lives</td>
</tr>
<tr>
<td>MemberState</td>
<td>Text; 2 characters</td>
<td>State where Member lives</td>
</tr>
</tbody>
</table>

Figure 4. Additional Member Table Attributes
<table>
<thead>
<tr>
<th>MemberID</th>
<th>Member FirstName</th>
<th>Member LastName</th>
<th>Member Standing</th>
<th>Member City</th>
<th>Member State</th>
<th>Member CreditLimit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(Your)</td>
<td>(Name)</td>
<td>TRUE</td>
<td>Dayton</td>
<td>OH</td>
<td>$200.00</td>
</tr>
<tr>
<td>2</td>
<td>Darryl</td>
<td>Martin</td>
<td>TRUE</td>
<td>Houston</td>
<td>TX</td>
<td>$100.00</td>
</tr>
<tr>
<td>3</td>
<td>Jerry</td>
<td>Campbell</td>
<td>FALSE</td>
<td>West Palm Beach</td>
<td>FL</td>
<td>$100.00</td>
</tr>
<tr>
<td>4</td>
<td>Tony</td>
<td>Roland</td>
<td>FALSE</td>
<td>Orlando</td>
<td>FL</td>
<td>$100.00</td>
</tr>
<tr>
<td>5</td>
<td>Casey</td>
<td>Palmer</td>
<td>TRUE</td>
<td>Tampa</td>
<td>FL</td>
<td>$50.00</td>
</tr>
<tr>
<td>6</td>
<td>Dee</td>
<td>O’Durant</td>
<td>TRUE</td>
<td>Tampa</td>
<td>FL</td>
<td>$50.00</td>
</tr>
<tr>
<td>7</td>
<td>Terry</td>
<td>Dactle</td>
<td>FALSE</td>
<td>Savannah</td>
<td>GA</td>
<td>$50.00</td>
</tr>
<tr>
<td>8</td>
<td>Hal E.</td>
<td>Lewya</td>
<td>TRUE</td>
<td>Port St. Lucie</td>
<td>FL</td>
<td>$50.00</td>
</tr>
<tr>
<td>9</td>
<td>Nick</td>
<td>O’Teeen</td>
<td>FALSE</td>
<td>Columbia</td>
<td>SC</td>
<td>$50.00</td>
</tr>
<tr>
<td>10</td>
<td>Izzy</td>
<td>Able</td>
<td>TRUE</td>
<td>Atlanta</td>
<td>GA</td>
<td>$50.00</td>
</tr>
<tr>
<td>11</td>
<td>Harry</td>
<td>Kerry</td>
<td>TRUE</td>
<td>Columbia</td>
<td>SC</td>
<td>$50.00</td>
</tr>
<tr>
<td>12</td>
<td>Moe</td>
<td>Turoll</td>
<td>FALSE</td>
<td>San Diego</td>
<td>CA</td>
<td>$50.00</td>
</tr>
</tbody>
</table>

Figure 5: Additional Member Data

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Data Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ProductCost</td>
<td>Currency</td>
<td>Cost of Goods Sold per unit</td>
</tr>
</tbody>
</table>

Figure 6. Additional Inventory Table Attribute

Figure 7. Switchboard Menu Items