

©2012 EDSIG (Education Special Interest Group of the AITP) Page 1

www.aitp-edsig.org - www.isedj.org

Volume 10, Issue 5
October 2012

ISSN: 1545-679X

Information Systems

Education Journal

In this issue:

4. Software Engineering Frameworks: Textbooks vs. Student Perceptions

Kirby McMaster, Fort Lewis College

Steven Hadfield, U.S. Air Force Academy

Stuart Wolthuis, Brigham Young University – Hawaii

Samuel Sambasivam, Azusa Pacific University

15. Teaching Management Information Systems as a General Education

Requirement (GER) Capstone

Bogdan Hoanca, University of Alaska Anchorage

30 Is Student Performance on the Information Systems Analyst Certification

Exam Affected By Form of Delivery of Information Systems Coursework?

Wayne Haga, Metropolitan State College of Denver

Abel Moreno, Metropolitan State College of Denver

Mark Segall, Metropolitan State College of Denver

37. CIS Program Redesign Driven by IS2010 Model: A Case Study

Ken Surendran, Southeast Missouri State University

Suhair Amer, Southeast Missouri State University

Dana Schwieger, Southeast Missouri State University

49. Problem Solving Frameworks for Mathematics and Software Development

Kirby McMaster, Fort Lewis College

Samuel Sambasivam, Azusa Pacific University

Ashley Blake, Scribblin’ Sisters

61. The Learning and Productivity Benefits to Student Programmers from Real

World Development Environments

Justin C. W. Debuse, University of the Sunshine Coast

Meredith Lawley, University of the Sunshine Coast

82. Systems Analysis and Design: Know your Audience

Bryan A. Reinicke, University of North Carolina Wilmington

87. Measuring Assurance of Learning Goals: Effectiveness of Computer Training

and Assessment Tools

Marianne C. Murphy, North Carolina Central University

Aditya Sharma, North Carolina Central University

Mark Rosso, North Carolina Central University

Information Systems Education Journal (ISEDJ) 10 (5)
 October 2012

©2012 EDSIG (Education Special Interest Group of the AITP) Page 2

www.aitp-edsig.org /www.isedj.org

The Information Systems Education Journal (ISEDJ) is a double-blind peer-reviewed
academic journal published by EDSIG, the Education Special Interest Group of AITP, the
Association of Information Technology Professionals (Chicago, Illinois). Publishing frequency is
six times per year. The first year of publication is 2003.

ISEDJ is published online (http://isedjorg) in connection with ISECON, the Information Systems
Education Conference, which is also double-blind peer reviewed. Our sister publication, the
Proceedings of ISECON (http://isecon.org) features all papers, panels, workshops, and
presentations from the conference.

The journal acceptance review process involves a minimum of three double-blind peer reviews,
where both the reviewer is not aware of the identities of the authors and the authors are not
aware of the identities of the reviewers. The initial reviews happen before the conference. At
that point papers are divided into award papers (top 15%), other journal papers (top 30%),
unsettled papers, and non-journal papers. The unsettled papers are subjected to a second
round of blind peer review to establish whether they will be accepted to the journal or not. Those
papers that are deemed of sufficient quality are accepted for publication in the ISEDJ journal.
Currently the target acceptance rate for the journal is about 45%.

Information Systems Education Journal is pleased to be listed in the 1st Edition of Cabell's
Directory of Publishing Opportunities in Educational Technology and Library Science, in both
the electronic and printed editions. Questions should be addressed to the editor at

editor@isedj.org or the publisher at publisher@isedj.org.

2012 AITP Education Special Interest Group (EDSIG) Board of Directors

Alan Peslak

Penn State University

President 2012

Wendy Ceccucci

Quinnipiac University

Vice President

Tom Janicki

Univ of NC Wilmington

President 2009-2010

Scott Hunsinger
Appalachian State University

Membership Director

Michael Smith
High Point University

Secretary

George Nezlek
Treasurer

Eric Bremier
Siena College

Director

Mary Lind
North Carolina A&T St Univ

Director

Michelle Louch
Sanford-Brown Institute

Director

Li-Jen Shannon
Sam Houston State Univ

Director

Leslie J. Waguespack Jr
Bentley University

Director

S. E. Kruck
James Madison University

JISE Editor

 Nita Adams

State of Illinois (retired)
FITE Liaison

Copyright © 2012 by the Education Special Interest Group (EDSIG) of the Association of Information Technology
Professionals (AITP). Permission to make digital or hard copies of all or part of this journal for personal or classroom
use is granted without fee provided that the copies are not made or distributed for profit or commercial use. All copies
must bear this notice and full citation. Permission from the Editor is required to post to servers, redistribute to lists, or
utilize in a for-profit or commercial use. Permission requests should be sent to Wendy Ceccucci, Editor,
editor@isedj.org.

http://www.cabells.com/
http://www.cabells.com/
mailto:editor@isedj.org
mailto:publisher@isedj.org
mailto:editor@isedj.org

Information Systems Education Journal (ISEDJ) 10 (5)
 October 2012

©2012 EDSIG (Education Special Interest Group of the AITP) Page 3

www.aitp-edsig.org /www.isedj.org

Information Systems

Education Journal

Editors

Wendy Ceccucci
Senior Editor

Quinnipiac University

Thomas Janicki
Publisher

University of North Carolina
Wilmington

Donald Colton
Emeritus Editor

Brigham Young University
Hawaii

Jeffry Babb
Associate Editor

West Texas A&M
University

Nita Brooks
Associate Editor

Middle Tennessee
State University

George Nezlek
Associate Editor

ISEDJ Editorial Board

Samuel Abraham
Siena Heights University

Alan Abrahams
Virginia Tech

Gerald DeHondt II
Grand Valley State University

Janet Helwig
Dominican University

Scott Hunsinger
Appalachian State University

Mark Jones
Lock Haven University

Mary Lind
North Carolina A&T State Univ

Pacha Malyadri
Osmania University

Cynthia Martincic
Saint Vincent College

Muhammed Miah
Southern Univ at New Orleans

Alan Peslak
Penn State University

Samuel Sambasivam
Azusa Pacific University

Bruce Saulnier
Quinnipiac University

Karthikeyan Umapathy
University of North Florida

Bruce White
Quinnipiac University

Charles Woratschek
Robert Morris University

Peter Y. Wu
Robert Morris University

Information Systems Education Journal (ISEDJ) 10 (5)
 October 2012

©2012 EDSIG (Education Special Interest Group of the AITP) Page 4

www.aitp-edsig.org /www.isedj.org

Software Engineering Frameworks:
Textbooks vs. Student Perceptions

Kirby McMaster

kmcmaster@weber.edu
CSIS Dept, Fort Lewis College

Durango, CO 81301, USA

Steven Hadfield

steven.hadfield@usafa.edu
CS Dept, U.S. Air Force Academy

Colorado Springs, CO 80840, USA

Stuart Wolthuis
stuartlw@byuh.edu

CIS Dept, Brigham Young University-Hawaii
Laie, HI 96762, USA

Samuel Sambasivam

ssambasivam@apu.edu
CS Dept, Azusa Pacific University

Azusa, CA 91702, USA

Abstract

This research examines the frameworks used by Computer Science and Information Systems students
at the conclusion of their first semester of study of Software Engineering. A questionnaire listing 64

Software Engineering concepts was given to students upon completion of their first Software
Engineering course. This survey was given to samples of students at three universities. To identify
which topics were most important, students were asked to rate each concept on a ten-point scale.
From their responses, we calculated the average perceived importance for each concept. This paper
analyzes the results of this survey for the three student samples. We then compare the student
ratings with word frequencies exhibited by authors of Software Engineering textbooks. In this way, we
show how student frameworks relate to frameworks presented by Software Engineering authors.

Keywords: Software Engineering, framework, gestalt, schema, concept, rating.

1. INTRODUCTION

Learning is more effective if course topics and

concepts are organized within an overall mental
framework, or gestalt. By gestalt, we mean "a
configuration or pattern of elements so unified
as a whole that it cannot be described merely as

a sum of its parts" (www.thefreedictionary.com).
Each concept is introduced as a "piece" of a

puzzle. The framework allows the pieces to fit
together into a meaningful "whole". Other
similar terms used by authors include schema,
paradigm, and mental model.

Information Systems Education Journal (ISEDJ) 10 (5)
 October 2012

©2012 EDSIG (Education Special Interest Group of the AITP) Page 5

www.aitp-edsig.org /www.isedj.org

According to Donald (2002), a course needs a
schema to enable and improve understanding.

A schema ... is a data structure of generic
concepts stored in memory and containing the

network of relationships among the
constituent parts.... If we are to understand
the relationships between concepts, we need
to know in what order and how closely
concepts are linked and the character of the
linkage.

Bain (2004) describes why instructors should

provide frameworks for courses, rather than rely
on students to form their own.

The students bring paradigms to the class that
shape how they construct meaning. Even if
they know nothing about our subjects, they
still use an existing mental model of

something to build their knowledge of what we
tell them.

Frameworks are common in virtually all
Computer Science and Information Systems
(CSIS) courses. Often, primary concepts are
organized into a layered framework, where
services received at one layer are provided by

algorithms and data structures in a lower layer.
Computer Network courses favor layers
consisting of a blend of the OSI Model and the
Internet Protocol Suite (Peterson & Davie,
2011). Operating Systems courses include topics

from the hardware, kernel, system services, and
application layers (Silberschatz, Galvin, &

Gagne, 2011). Computer Hardware has layers
from simple digital logic up to VLSI circuits and
functional components (Patterson & Hennessy,
2008). Database courses insert a DBMS software
layer between application programs and
operating system files (Connolly & Begg, 2009).

Not all computing frameworks are layered. The
usual framework for Object-Oriented
Programming (Lafore, 2001) includes sets of
interrelated classes, arranged according to
established design patterns (Gamma, Helm,
Johnson, & Vlissides, 1994). Data Structures
course topics are divided into data structure and

algorithm categories, such as stacks, queues,
linked lists, searching, and sorting (Drozdek,
2008). Artificial Intelligence has utilized a
variety of frameworks over the years for search
strategies, game playing, learning models,
knowledge-based systems, and intelligent
agents (Russell & Norvig, 2009).

But which frameworks are suitable for Software
Engineering (SE) courses? Pressman (2009) and

Sommerville (2010) offer common variations
(such as "waterfall" and iterative) of the classical
life cycle approach to software development.
Schach (2010) focuses more on object-oriented

methods. Cohn (2009) encourages successful
management practices to integrate agile
development with Scrum.

In our previous research (McMaster, Rague,
Hadfield, & Anderson, 2008), we examined
frameworks for software development from the
viewpoint of textbook authors. We determined

which words are used frequently in three
samples of books: Object-Oriented
Programming, Database, and Software

Engineering. Our assumption was that words
used most often in a book indicate the gestalt of
the author. From each sample of books, we

constructed a framework (or scale) as an
ordered list of most frequent words.

In this research, we sought to determine what
mental frameworks students had developed at
the completion of their first SE course. We
examined whether their frameworks were
consistent across courses taught by different

instructors at different schools. We also
compared the student frameworks with those of
authors of commonly used SE textbooks.

The remainder of this paper is organized as
follows. First, we present our methodology for

gathering data on student ratings of SE
concepts. Next, we analyze the results to

determine which concepts students perceive as
most important. We then look at rating pattern
variations for courses taught by different
instructors. Finally, we compare student ratings
with word frequencies in SE textbooks.

2. METHODOLOGY

In this section, we describe the methodology
used in our study. A questionnaire listing 64
Software Engineering concepts (see Appendix B)
was given to CSIS students upon completion of
their first SE course. All but one of the concepts
are described by a single word or acronym (e.g.

agile, design, quality, UML). The concept use

case is presented as a word pair.

These concepts were selected from a variety of
sources. First, we chose topics that ranked high
on a Software Engineering gestalt scale that we
previously developed from frequently used
words in SE books. We supplemented this word
list with topics we felt were important, utilizing

input from other instructors that teach SE
courses. To encourage responses at the low end

Information Systems Education Journal (ISEDJ) 10 (5)
 October 2012

©2012 EDSIG (Education Special Interest Group of the AITP) Page 6

www.aitp-edsig.org /www.isedj.org

of the scale, we intentionally added several
words that are not SE-specific (e.g. activity,
language). Once the list was compiled, it was
randomized so that there would be no implied

significance to the order in which the concepts
were presented to students.

The SE concept list was included in a survey
given to samples of students at three schools.
School-1 consisted of 9 SE students at a state
university, School-2 consisted of 27 SE students
at a national university, and School-3 consisted

of 19 SE students at a private university. Almost
all students were juniors or seniors and had
completed courses in programming and data

structures. Some students had also taken a
database course. The course sections had
different instructors and textbooks, but each

sample of students received a fairly traditional
first semester SE course with an emphasis on
systems analysis and design.

To identify which SE concepts were valued most,
students were asked to rate each concept on a
10-point scale, with 1 indicating “least
important” and 10 indicating “most important”.

From the responses, we determined the average
perceived importance for each concept within
each sample. We calculated trimmed means,
removing approximately the top and bottom
11% (1/9 or 2/19 or 3/27) of the individual
ratings, so that extreme responses would not

unduly influence the concept ratings.

We found that the trimmed means for the 64
concepts differed in a biased way between the
three schools. To make the data for the samples
comparable, we standardized (rescaled) the
concept means within each school, so that the
three sets of 64 scores had the same average

(7.20) and standard deviation (1.00). This
rescaling kept the combined mean at 7.20, but
changed the standard deviations slightly. Note
that we did not rescale individual student
ratings. We rescaled the trimmed means in a
way that preserved the ordering of concepts
within each school. We could have achieved a

similar result by converting the trimmed means

to ranks, but then the concepts would have been
equally spaced (except for ties).

After gathering and transforming the survey
results, we had two types of data to analyze and
compare: (1) student ratings for the three
schools, and (2) textbook word frequencies from

our prior research. We first examine the
concept ratings for the three schools, both
separately and combined. Next, we look at the
ratings variation for each concept within schools

and between schools. Then we compare the
combined student ratings with word frequencies
in SE textbooks.

3. CONCEPT RATINGS

In this section, we analyze the concept ratings
for the three student samples. Table 1 presents
the 32 top-rated Software Engineering concepts
(out of 64), along with the rescaled trimmed
means for School-1, School-2, and School-3.

Table 1. Top 32 concept ratings for schools.

SE Concept

School-
1

N = 9

School-
2

N = 27

School-
3

N = 19

Combined

Rating

design 8.71 9.19 8.71 8.87

quality 9.15 8.72 8.00 8.62

requirement 8.13 9.21 8.47 8.60

test 8.56 8.96 8.24 8.59

implementation 8.27 8.67 8.00 8.32

user 7.98 8.88 8.00 8.29

development 8.13 7.97 8.40 8.16

software 8.56 7.72 8.00 8.10

interface 8.42 8.30 7.38 8.03

information 7.98 7.76 8.24 7.99

analysis 7.83 7.35 8.79 7.99

solution 7.98 7.76 8.08 7.94

prototype 7.98 8.18 7.38 7.84

performance 7.83 7.68 7.85 7.79

customer 6.96 9.25 7.14 7.79

project 7.83 7.31 8.08 7.74

team 7.54 7.89 7.69 7.71

application 8.42 7.26 7.38 7.69

method 8.27 7.06 7.69 7.67

model 8.42 7.55 6.99 7.65

product 7.98 8.34 6.59 7.64

management 6.96 8.34 7.61 7.64

diagram 7.69 7.43 7.77 7.63

engineering 7.40 7.01 8.47 7.63

organization 7.54 8.38 6.83 7.59

program 7.83 7.10 7.69 7.54

system 7.40 6.97 8.08 7.48

data 7.98 6.56 7.77 7.44

function 7.83 6.85 7.61 7.43

code 7.69 7.10 7.46 7.41

process 7.40 6.52 8.32 7.41

architecture 6.96 7.72 6.91 7.20

We include a column showing the average rating
of each concept for the combined sample.

The combined ratings are unweighted to prevent
the larger School-2 sample from dominating the
results. The concepts are listed in decreasing
order, based on average rating.

Information Systems Education Journal (ISEDJ) 10 (5)
 October 2012

©2012 EDSIG (Education Special Interest Group of the AITP) Page 7

www.aitp-edsig.org /www.isedj.org

A quick visual inspection of the three schools in
Table 1 reveals substantial rating similarities for
the concepts. In this table, the top five rated
concepts, all with combined ratings above 8.30,

are design, quality, requirement, test, and
implementation (four life cycle phase
descriptors, plus an umbrella goal). These five
words received a mean rating greater than 8.00
within each school. Close behind are the ratings
for user, development, and software.

The other 24 concepts in Table 1 have average

ratings at or above the mean (7.20) for all 64
concepts. The 32 concepts having average
ratings below 7.20 are presented in Appendix A.

Another way to view these results is with an
ordered list of the 10 highest-rated concepts for
each school. These three lists are presented in

Table 2.

Table 2. Top 10 concepts by school.

Rank School-1 School-2 School-3

1 quality customer analysis

2 design requirement design

3 test design requirement

4 software test engineering

5 interface user database

6 application quality development

7 model implementation process

8 implementation organization test

9 method product information

10 algorithm management solution

The concepts design and test are included in the
Top-10 lists for all three schools. Quality,
requirement, and implementation are listed for
two of the schools. The remaining 18 concepts in
Table 2 appear only once.

We can gather the top-rated words and several
of the 18 unique words from Table 2 into brief

conjectural descriptions of how the three SE
courses differ.

School-1: Quality is #1. The methodology
uses models and algorithms to build
applications.

School-2: The customer is #1. Organization
and management are necessary to create a

product that will satisfy users. (Students in
this course worked on real-world projects.)

School-3: Analysis is #1. Databases are
developed to provide information and
solutions. (This was a CIS course.)

Among the bottom 32 concepts, four received
ratings below 6.00: change (5.72), domain
(5.44), discipline (5.33), and formal (4.56).
There are several possible reasons why a

concept received a below-average rating. Some
concepts apply to later stages in the software
development life cycle, such as construction
(7.01), integration (6.59), deployment (6.57),
validation (7.08), verification (6.95), and
maintenance (7.03). These concepts presumably
would receive more emphasis in a second-

semester SE course.

Other concepts relate to a narrow range of the
life cycle or to a specific technology, so they are

less likely to receive continual emphasis during a
semester. This includes concepts such as agile
(7.01), formal (4.56), incremental (6.36),

pattern (6.04), UML (6.74), and use case (6.87).
And, as mentioned earlier, some concepts are
fairly general rather than SE-specific, such as
activity (6.38), change (5.72), discipline (5.33),
document (6.67), language (6.56), and state
(6.05).

Over the 64 concepts, the school ratings were

reasonably consistent. The correlation
coefficients between pairs of schools are
summarized in Table 3. The correlations range
from 0.480 (School-2 vs. School-3) to 0.576
(School-1 vs. School-3). These values suggest a
moderate positive relationship between the

concept ratings for the separate samples. The

fact that the correlations are not larger suggests
that some notable differences in ratings exist
between the three schools. We examine sources
of this variation in the next section.

Table 3. Ratings correlations between
schools.

Correlations School-1 School-2 School-3

School-1 1.000 0.568 0.576

School-2 0.568 1.000 0.480

School-3 0.576 0.480 1.000

4. RATINGS VARIATION

We collected concept ratings from students in SE
courses at three schools. The previous section
focused on ratings differences between SE
concepts, especially with respect to concepts
that are considered most important by students.
In this section, we describe how ratings vary for

one concept at a time.

Information Systems Education Journal (ISEDJ) 10 (5)
 October 2012

©2012 EDSIG (Education Special Interest Group of the AITP) Page 8

www.aitp-edsig.org /www.isedj.org

4.1 Within-School Variation

The variability in ratings for each SE concept can
be divided into two sources: within-schools and
between-schools. We are primarily interested in

between-school variation, which should better
reflect the concepts that instructors emphasize
in their courses. We computed within-school
variation for each concept to provide a reference
point for evaluating course differences.

For each of the 64 SE concepts, we calculated
the (untrimmed) standard deviation for student

ratings within each course. Rather than present
individual values of these statistics, we
summarize the pattern of variation by school in

Table 4.

Table 4. Between-student ratings variation
for concepts at each school.

Statistic School-1 School-2 School-3

Min Std Dev 0.88 1.63 0.93

Max Std Dev 3.22 2.91 3.04

Avg Std Dev 1.86 2.25 1.92

The 192 standard deviations ranged from a low
of 0.88 (School-1) to a high of 3.22 (again
School-1). The average standard deviation value
was slightly below 2.0 at School-1 and School-3,
but was over 2.0 at School-2. So a "typical"

measure of student-to-student variability for a

concept is about 2.0. This is a relatively large
amount of variation, considering that a "well-
behaved" distribution has about 95% of the
scores within two standard deviations (+/- 4.0)
from the mean. On a 10-point ratings scale, this
would be an interval of width 8. Many ratings

distributions tended to be skewed, so the 95%
rule is less relevant in these cases.

We also calculated the range of the ratings
scores for each concept within each school.
School-1 had an average range of 5.31, while
the average range for School-3 was 6.39. The
average range for School-2 was somewhat

larger (8.05), which is consistent with the larger
standard deviation for this school.

4.2 Between-School Variation

We now summarize the variation in ratings
between schools in terms of patterns for concept
means. For (untrimmed) means of random
samples of size N, the variance of the means will

vary inversely with the sample size N. So for a
sample of size N = 9 (School-1), the standard
deviation of the sample means would be
approximately 2.0/3 = 0.67, assuming that the

individual scores have a standard deviation of
2.0. For larger sample sizes, the means would
vary less.

Two features of our methodology limit the strict

validity of the above probability model for this
study: (1) our samples were not random, and
(2) we calculated trimmed means for each
concept. The large within-school variation
described earlier was part of the motivation for
using trimmed means. Still, the above discussion
provides a context for the way we interpreted

differences in means between schools.

Table 5 lists the SE concepts for which the
between-school ratings showed the largest

differences.

Table 5. Concept ratings mean differences.
(highest H or lowest L for concept)

SE Concept
School-1

N = 9

School-2

N = 27

School-3

N = 19

Range=

Hi - Lo

database 6.37 5.98 8.47H 2.50

algorithm 8.27H 6.85 5.89 2.38

CASE 5.64 5.73 8.00H 2.36

customer 6.96 9.25H 7.14 2.30

cost 6.08 8.05 7.22 1.97

formal 3.89 5.85H 3.93 1.96

UML 6.37 6.01 7.85H 1.84

document 5.50L 7.22 7.30 1.80

process 7.40 6.52 8.32 1.80

product 7.98 8.34 6.59L 1.75

For each concept, we calculated the standard
deviation and the range of the three school

means. The ranges are shown in the table, with
concepts listed in decreasing range order. We
only include concepts with a range above 1.70,
which is much larger than the random variation
model for means described above. Four of the
concepts--database, algorithm, CASE, and
customer--have ranges larger than 2.0. This

suggests that the SE instructors in our study
vary noticeably in how they present these topics.

When a large range is obtained from three
values, several patterns are possible:

1. One value can be much higher than the
other two.

2. One value can be much lower than the
other two.

3. The values can be evenly spread, with
the middle value spaced about equally
between the high and low values.

Looking horizontally at the mean ratings for
each concept, we have marked a rating with an

Information Systems Education Journal (ISEDJ) 10 (5)
 October 2012

©2012 EDSIG (Education Special Interest Group of the AITP) Page 9

www.aitp-edsig.org /www.isedj.org

H if it is much higher than the others, and with
an L if it is much lower. For example, the
database rating for School-3 is 8.47H, and the
document rating for School-1 is 5.50L. Note that

the low formal rating of 5.85 for School-2 is
marked with an H, as the other two schools have
even lower ratings for this concept.

We can also look vertically at the concept ratings
in Table 5 to view the distinct ratings patterns
for each school. Concepts may not have been
rated as important, but they were rated much

higher or lower by one of the schools. From this
perspective, School-1 is high for algorithm and
low for document. School-2 is high for customer

and high (less low) for formal. School-3 is high
for database, CASE, and UML and low for
product.

4.3 Ratings Profiles

In Table 5, we listed SE concepts having the
largest differences in mean ratings between
schools. Now we provide a visual representation
of the top-24 (of 32) concepts from Table 1,
where concepts are ordered by decreasing
average rating. Figure 1 provides a graph of the

concept ratings for each school, with a separate
"line" for each school.

Figure 1: Top 24 concepts--profiles of 3
schools.

This figure presents the ratings pattern for each
school as a profile. The successive differences
between concept means for schools gives the
illusion of random variation in most cases. Two
exceptions are the concepts customer and
product, where the ratings vary most widely.

These concepts are included among the Table 5
concepts with large mean ratings differences.

5. STUDENTS VS. TEXTBOOKS

We now compare average concept ratings by

students with two measures of word usage in
Software Engineering textbooks. We exclude use
case from this analysis, because this concept
involves two words. Our textbook word counts
are for single words only. For the remaining 63
concepts, we recorded how often and how
consistently these words appear in a

(nonrandom) sample of 36 SE books. Table 6
shows the concept ratings, word frequencies,

and book counts for the top 32 student-rated
concepts. Textbook results for the bottom 32
concepts are included in Appendix A.

Table 6. Top 32 concept ratings--students

vs. textbooks.

SE Concept
Concept

Rating

Textbook

StdFreq

Books

design 8.87 158.3 35

quality 8.62 108.7 17

requirement 8.60 183.2 29

test (testing) 8.59 221.0 24

implementation 8.32 90.0 13

user 8.29 131.6 26

development 8.16 208.0 36

software 8.10 377.8 36

interface 8.03 103.5 18

information 7.99 109.4 27

analysis 7.99 92.4 26

solution 7.94 112.5 6

prototype 7.84 106.2 2

performance 7.79 61.5 7

customer 7.79 126.6 17

project 7.74 229.8 30

team 7.71 154.2 17

application 7.69 108.1 26

method 7.67 120.1 27

model 7.65 201.3 33

product 7.64 165.9 26

management 7.64 99.0 25

diagram 7.63 123.1 15

engineering 7.63 136.8 19

organization 7.59 108.3 16

program 7.54 145.6 26

system 7.48 358.1 35

data 7.44 154.9 32

function 7.43 93.1 21

code 7.41 118.8 27

process 7.41 259.1 36

architecture 7.20 117.3 13

6.0

6.5

7.0

7.5

8.0

8.5

9.0

9.5

des
ig

n

qual
ity

re
quir

em
en

t
te

st

im
ple

m
en

ta
tio

n
use

r

dev
elo

pm
en

t

so
ft
w
ar

e

in
te

rf
ac

e

in
fo

rm
atio

n

an
al

ys
is

so
lu

tio
n

pro
to

ty
pe

per
fo

rm
an

ce

cu
st

om
er

pro
je

ct

te
am

ap
plic

at
io

n

m
et

hod

m
ode

l

pro
duct

m
an

ag
em

en
t

dia
gra

m

en
gin

ee
ri
ng

Software Engineering Concepts

C
o

n
c

e
p

t
R

a
ti

n
g

School1 School2 School3 Combined

Information Systems Education Journal (ISEDJ) 10 (5)
 October 2012

©2012 EDSIG (Education Special Interest Group of the AITP) Page 10

www.aitp-edsig.org /www.isedj.org

To measure consistency of word use, the Books
column gives the number of books (out of 36)
that include the word in its concordance. The
concordance is a list of the 100 most frequently

used words in a book (excluding common
English words). In Table 6, the words software,
development, and process are listed in all 36
concordances; design and system are in 35
concordances.

To measure how often a word appears in a book,
we rescaled each word frequency so that the

average word frequency within a concordance
was 100. This compensates for books having
different total word counts. The standardized

frequency (StdFreq) for a word is the average
rescaled frequency across all books that include
the word in its concordance. Based on this

measure, the three most frequent words are
software (StdFreq = 377.8), system (StdFreq =
358.1), and process (StdFreq = 259.1).

In Table 6, the word model has a StdFreq value
of 201.3 for the 33 books that include this word
in their concordances. The interpretation of this
measure is that model occurs about twice as

often as an average concordance word in SE
books that include model in their concordances.

The below-average rated concepts from our
questionnaire are not shown in Table 6. Three of
these words--discipline, incremental, and

validation--are not in the concordance of any of
our sample books. This does not imply that

these words do not appear in the books. It just
means that they do not occur frequently enough
to be listed in the concordances.

Figure 2: Concept rating vs. textbook word
frequency.

Of current interest, the word agile (not in Table
6) appears in the concordances of just two SE
books. In contrast, the standardized frequency
of agile is 194.4, suggesting that these two

books utilize this word heavily.

The scatter diagram in Figure 2 displays the
relationship between the combined concept
ratings for the students vs. the standardized
frequencies of these words in the SE textbooks.
Note the "diamonds" along the horizontal axis,
representing the three books that were not listed

in any concordance (and therefore received
StdFreq values of 0.0)

In this graph, the words software and system

appear as "outliers", in that the frequencies are
noticeably higher for these words. One possible
reason for the prevalence of these words is that

they apply throughout the development cycle
and are mentioned in multiple chapters in SE
books. On the other hand, the highly rated word
quality applies to every life cycle stage, but SE
authors use this word less often.

The caution here is that word frequency does
not necessarily imply importance. If we accept

that the phrase "repetition brings conviction"
applies to SE courses, perhaps we should
emphasize important concepts such as schedule
(StdFreq = 91.4, cost (StdFreq = 86.3),
maintenance (StdFreq = 84.7), document

(StdFreq = 81.8), and performance (StdFreq =
61.5) throughout the course, regardless of how

sparingly these words appear in textbooks.

The correlation coefficient between combined
concept ratings and textbook word frequencies is
0.373 (0.381 with the two high outliers
removed), indicating a modest positive linear
relationship. Not surprisingly, this is lower than

the correlation coefficients for concept ratings
between pairs of schools (which range from
0.480 to 0.576).

Thus, the students in this study agree more with
each other on the relative importance of topics
than they do with textbook authors, even
though the students had different instructors

and different textbooks. We are content that the
correlation between concept ratings and
textbook word frequencies is not negative. In
the Internet era, many students do not bother to
purchase or read course textbooks.

Figure 3 displays the relationship between
combined concept ratings and the number of SE

books containing concept words in their
concordances. In this figure, no "outliers" are

0

50

100

150

200

250

300

350

400

4.0 5.0 6.0 7.0 8.0 9.0

Concept Rating

W
o

rd
 F

re
q

u
e

n
c

y

Information Systems Education Journal (ISEDJ) 10 (5)
 October 2012

©2012 EDSIG (Education Special Interest Group of the AITP) Page 11

www.aitp-edsig.org /www.isedj.org

obvious, probably because the number of books
is bounded by 36.

The correlation coefficient between student
concept ratings and number of textbooks is

0.415, which is slightly higher than the
correlation between ratings and word
frequencies. The diagram does illustrate how
much "scatter" can be present in a relationship
having a correlation of approximately 0.400.

Figure 3: Concept ratings vs. SE books.

To summarize, we found a modest positive

relationship between student ratings of concepts

and the two measures of word occurrence in
textbooks. Most of the concepts with above-
average student ratings appeared in the
concordances of the majority of the SE books
and had a standardized frequency above 100.
From the textbook point of view, all three SE

words that failed to appear in any concordances
had below-average student ratings.

6. SUMMARY AND CONCLUSIONS

Constructing a framework for knowledge is
essential for students in a Software Engineering
course. A successful mental framework can help
students organize course topics into a

meaningful whole, which promotes learning.

In a previous study, we developed an authors'
SE framework based on word frequencies in
popular SE books. In this current research, we
surveyed students at three schools on the
relative importance of topics in an introductory

SE course. We chose 64 concepts that students
might use in constructing their own mental
frameworks for SE. After standardizing the data
from students at each school, we obtained
relatively consistent concept ratings.

The five highest rated words were design,
quality, requirement, test, and implementation,
based on averages across the three schools.
Concepts that apply to early states or multiple

stages of the software development life cycle
tended to have higher ratings. Concepts that
arise late in the life cycle or involve a specific
technology had lower ratings.

Within schools, variability of student ratings for
concepts was quite large, with an average
standard deviation of about 2.0 (for a 10-point

scale). There was less ratings variation between
schools, partly due to our calculating trimmed
means for each concept. The largest between-

school variation occurred for four concepts--
database, algorithm, CASE, and customer.

Overall, the ratings profiles for the top-24

concepts were reasonably consistent for the
schools, with two exceptions (customer and
product). As faculty, we often agree on what is
most important, but we have difficulty agreeing
on what is less important. As a result, each
instructor emphasizes certain extra things that
make her/his course distinctive.

When student ratings for concepts were
compared to frequent (concordance) words in a
sample of 36 SE textbooks, only a moderate
positive relationship was found. Highly rated
concepts appeared more often in the sample

books, but three lower-rated words were not in
the concordances of any of the books.

Current Software Engineering instructors can
benefit from comparing results on student
ratings as summarized in this paper with their
own perception of most important concepts.
Where there are differences, consider how you
highlight your favored SE concepts. In

particular, how do emphasize important
concepts that do not appear frequently in SE
textbooks?

On a related note, are you certain that the
frameworks of your students are consistent with
the primary objectives of your SE course? Not all
student learning comes from listening to

lectures, reading textbooks, and doing
homework assignments. You are encouraged to
use the questionnaire in Appendix B to obtain
feedback from your students.

6.1 Future Research

Future research will include a replication of this
study with larger samples to verify our

preliminary findings. With additional data, we
can check how specific textbooks used in

0

5

10

15

20

25

30

35

40

4.0 5.0 6.0 7.0 8.0 9.0

Concept Rating

N
u

m
b

e
r

o
f

S
E

 B
o

o
k

s

Information Systems Education Journal (ISEDJ) 10 (5)
 October 2012

©2012 EDSIG (Education Special Interest Group of the AITP) Page 12

www.aitp-edsig.org /www.isedj.org

Software Engineering courses affect ratings of
concepts. SE instructors could be surveyed in a
similar manner to discover which concepts they
feel are most important. We would then be able

to assess how closely instructor ratings match
those of their students.

We would also like to extend this research to
examine how student frameworks evolve after
taking additional SE courses, especially the SE II
course. We would study how students
perceptions change as they gain more

experience with the later stages of the software
development life cycle.

The focus of this research has been on words

that form frameworks for Software Engineering.
Beyond a collection of words, a framework
should provide a meaningful context that

explains how the words fit together. A special
challenge for future research is to examine
various ways that SE words can be integrated
into a unified Software Engineering framework.

7. REFERENCES

Bain, K. (2004). What the Best College Teachers
Do. Harvard University Press, pp 26-27.

Cohn, Mike (2009). Succeeding with Agile:
Software Development Using Scrum.
Addison Wesley.

Connolly, T., and Begg, C. (2009). Database
Systems: A Practical Approach to Design,
Implementation and Management (5th ed).
Addison Wesley.

Donald, J. (2002). Learning to Think. Jossey-
Bass, p 15.

Drozdek, A. (2008). Data Structures and
Algorithms in Java (3rd ed). Cengage
Learning.

Gamma, E., Helm, R., Johnson, R., and

Vlissides, J. (1994). Design Patterns:
Elements of Reusable Object-Oriented
Software. Addison Wesley.

Lafore, R. (2001). Object-Oriented Programming
in C++ (4th ed). Sams.

McMaster, K., Rague, B., Hadfield, S., and
Anderson, N. (2008), Three Software

Development Gestalts. In The Proceedings
of the Information Systems Education

Conference 2008, v 25 (Phoenix).

Patterson, D., and Hennessy, J. (2008).
Computer Organization and Design (4th ed).
Morgan Kaufmann.

Peterson, L., and Davie, B. (2011). Computer
Networks: A Systems Approach (5th ed).
Morgan Kaufmann.

Pressman, R. (2009). Software Engineering: A
Practitioner's Approach (7th ed). McGraw-
Hill.

Russell, S., and Norvig, P. (2009). Artificial

Intelligence: A Modern Approach (3rd ed).
Prentice Hall.

Schach, S. (2010). Object-Oriented and Classical
Software Engineering (8th ed). McGraw-Hill.

Silberschatz , A, Galvin, P., and Gagne, G.
(2011). Operating System Concepts (8th
ed). Wiley.

Sommerville, I. (2010). Software Engineering
(9th ed). Addison Wesley.

Information Systems Education Journal (ISEDJ) 10 (5)
 October 2012

©2012 EDSIG (Education Special Interest Group of the AITP) Page 13

www.aitp-edsig.org /www.isedj.org

APPENDIX A

Bottom 32 Concept Ratings--Students vs. Textbooks.

SE Concept

School-1

N = 9

School-2

N = 27

School-3

N = 19

Combined

Rating

Textbook

StdFreq

Books

problem 6.52 7.72 7.22 7.15 108.8 31

cost 6.08 8.05 7.22 7.12 86.3 19

validation 6.37 7.97 6.91 7.08 -- 0

maintenance 6.96 7.14 6.99 7.03 84.7 4

construction 7.69 6.60 6.75 7.01 45.2 1

agile 7.98 6.60 6.44 7.01 194.4 2

algorithm 8.27 6.85 5.89 7.00 68.4 3

class 7.40 6.14 7.46 7.00 186.7 21

schedule 6.37 8.01 6.52 6.97 91.4 5

specification 6.52 6.97 7.38 6.96 107.8 21

verification 6.37 7.35 7.14 6.95 51.0 2

database 6.37 5.98 8.47 6.94 65.9 7

control 7.25 6.48 6.99 6.90 68.8 22

use (case) 6.52 6.72 7.38 6.87 -- --

UML 6.37 6.01 7.85 6.74 207.3 4

document 5.50 7.22 7.30 6.67 81.8 8

component 7.10 5.89 6.83 6.61 152.0 24

integration 6.52 6.97 6.28 6.59 75.9 5

deployment 7.25 6.72 5.73 6.57 67.3 3

language 6.52 6.10 7.06 6.56 127.9 19

module 6.23 6.56 6.67 6.49 103.2 11

tool 5.94 6.14 7.30 6.46 110.9 25

CASE 5.64 5.73 8.00 6.46 117.4 33

activity 6.96 5.52 6.67 6.38 83.5 20

incremental 5.94 7.01 6.12 6.36 -- 0

framework 6.52 6.64 5.89 6.35 63.4 6

state 5.79 6.01 6.36 6.05 97.6 17

pattern 6.81 5.81 5.50 6.04 209.5 12

change 6.23 6.06 4.87 5.72 100.2 28

domain 5.35 5.40 5.58 5.44 84.3 12

discipline 5.94 5.56 4.48 5.33 -- 0

formal 3.89 5.85 3.93 4.56 75.9 8

Information Systems Education Journal (ISEDJ) 10 (5)
 October 2012

©2012 EDSIG (Education Special Interest Group of the AITP) Page 14

www.aitp-edsig.org /www.isedj.org

APPENDIX B

Software Engineering Topic Identification Name ____________________

For each topic/concept listed below, please rate on a scale from 1 to 10 the
importance of the topic in this Software Engineering course. On this scale, 1

represents "least important" and 10 represents "most important".

 Topic/Concept Topic/Concept

____ implementation ____ product

____ algorithm ____ construction

____ model ____ performance

____ test ____ pattern

____ activity ____ framework

____ domain ____ state

____ deployment ____ system

____ formal ____ process

____ problem ____ development

____ design ____ database

____ interface ____ class

____ data ____ application

____ maintenance ____ requirement

____ diagram ____ management

____ discipline ____ organization

____ change ____ architecture

____ customer ____ user

____ cost ____ control

____ agile ____ document

____ schedule ____ incremental

____ program ____ prototype

____ UML ____ quality

____ CASE ____ validation

____ language ____ module

____ code ____ team

____ project ____ solution

____ engineering ____ information

____ tool ____ method

____ use case ____ function

____ integration ____ component

____ verification ____ specification

____ software ____ analysis

Information Systems Education Journal (ISEDJ) 10 (5)
 October 2012

©2012 EDSIG (Education Special Interest Group of the AITP) Page 15

www.aitp-edsig.org /www.isedj.org

Teaching Management Information Systems as a

General Education Requirement (GER) Capstone

Bogdan Hoanca
afbh@uaa.alaska.edu

Computer Information Systems

University of Alaska Anchorage
Anchorage AK 99508, USA

Abstract

Although many IS programs nationwide use capstone courses in the major, this paper reports on the

use of an upper division Management Information Systems (MIS) class as a general education
requirements (GER) capstone. The class is a core requirement for all majors in the Bachelor of
Business Administration (BBA) program at the University of Alaska Anchorage, which includes the MIS
major. The BBA program is accredited by the Association to Advance Collegiate Schools of Business
(AACSB).

The explosive developments in information technology have both economic and cultural impacts on

society, and often lead to ongoing debates. In dealing with the impact of technology on society, the
capstone class challenges students to integrate GER knowledge, business and their major-specific

knowledge, and IT knowledge. Students must demonstrate skills across five dimensions: 1) knowledge
integration, 2) effective communication (oral and in writing), 3) critical thinking and problem solving,
4) information literacy, and 5) quantitative perspectives. The five GER dimensions are assessed using
a research project and a series of four hands-on projects (information literacy, database management,
data mining, and decision support). The research project is based around a debate on topics relating

to the impact of technology on society, and challenges students across all five dimensions. The hands-
on projects focus more on information literacy, critical thinking and quantitative perspectives.

Assessment data collected over the past five years (spring 2007 to spring 2011) show that a majority
of students (75% or more in recent years) consistently achieve passing scores across the five GER
dimensions.

Keywords: general education requirement, capstone, management information systems, assessment

1. INTRODUCTION

Management Information Systems programs
nationwide often include a discipline capstone
course, focused on e-commerce (Abrahams &
Singh, 2010), systems development (McGann &
Canili, 2005) or emerging technologies (Janicki,
Fischetti, & Burns, 2007) – and emphasizing soft
skills (communication, interviewing, and client

interaction). Instead, this paper reports on the

use of an upper division MIS course as a general
education requirement (GER) capstone.

A number of colleges and universities require
GER capstone courses, mainly to give students
an integrative experience, but also to facilitate
assessment (Rowles, Koch, Hundley, &
Hamilton, 2004). Such capstone courses are
intended to help students integrate better across

the seemingly disparate courses they took to

mailto:afbh@uaa.alaska.edu

Information Systems Education Journal (ISEDJ) 10 (5)
 October 2012

©2012 EDSIG (Education Special Interest Group of the AITP) Page 16

www.aitp-edsig.org /www.isedj.org

fulfill their GER. Additionally, because GER
capstone classes rely on knowledge students
acquired in their general education classes,
assessments in a GER capstone class can

evaluate the overall impact of general education
courses on students (Wilson, et al., 2008).

Unlike discipline-specific learning, student
learning in the general education classes is
difficult to assess. Students have a choice of
classes to meet GER, and they often transfer

coursework from other institutions. Also, some
of the GER skills are taught in multiple
disciplines, with different approaches,
expectations and outcomes (for example, critical

thinking means different things in philosophy
and in sociology) (Bers, 2000). While

standardized tests or exit interviews can be used
to assess GER, using papers in a capstone class
appears to be a particularly good means in
terms of: student motivation, costs of the
instrument, and the ability to reflect both
quantitative and qualitative aspects of the
learning (Bers, 2000).

GER capstone classes have been used for many
decades at some institutions. A survey of 707
institutions showed that 549 of them offered one
or more capstone course, but most of these
were discipline capstones, taught by a single
faculty member in the discipline (Henscheid,

Breitmeyer, & Mercer, 2000). The survey also
uncovered the need for a more comprehensive
assessment of the capstone classes.

More recently, assessment has taken center
stage. Nancy Fernandez describes the

assessment-focused culture at CalState Pomona
and how the process has resulted in changes
that improved student learning (Fernandez,
2006). The Pomona model involves an
Integrative General Education Program
culminating in a capstone course. Portland State
developed their capstone model in 1994

(Kerrigan & Jhaj, 2007). Their assessment
involves three types of feedback: a mid-quarter
qualitative feedback session led by a trained

facilitator in class; a quantitative student
evaluation at the end of the term; and a
qualitative survey of students’ perception of
their learning, also at the end of the term.

Southeast Missouri State University assesses
students both at the beginning and at the
completion of their studies, including
longitudinal and across sections comparisons
(Blattner & Frazier, 2004).

Many GER capstone courses must satisfy
multiple sets of requirements: departmental
requirements (because the capstones are usually
housed in an academic department), university

wide requirements (applicable to all GER
capstone courses at a given institution), and
requirements from external accreditation
agencies (Claus & Hawkins, 2007). Most if not all
GER capstone courses tend to include some form
of information literacy (ability to locate and
evaluate information), communication, and

critical thinking skills. The assessment tools used
in the courses include research papers (with an
oral presentation component) or portfolios
(Brock, 2004).

This paper describes goals and achievements of

a GER capstone class built around the
Management Information Systems class at the
University of Alaska Anchorage, in the College of
Business and Public Policy. The class is a core
required class for all non-accounting majors in
the Bachelor of Business Administration
program. Since the class became a GER

capstone, accounting majors are often taking it
to satisfy GER requirements.

First taught as a GER capstone in fall 2006, the
class has been successful in achieving the
intended goals. Assessment is built into the
curriculum, and it is based on student artifacts

that document student performance across a
series of five GER capstone required areas
(described below). Part of the assessment data
is used for AACSB accreditation assessment in
the College, but the data collected encompass a
more extensive set than required for

accreditation. Data collected over the past five
years indicate that a majority of students
perform well across the five GER dimensions.

The paper first introduces the GER capstone
requirements at UAA and describes the
curriculum development process (Section 2).

Section 3 describes how the MIS class fulfills the
GER capstone requirements. In Section 4, we
present assessment data collected over the past

five years, and we discuss student feedback and
future plans. We present conclusions in Section
5.

2. GER CAPSTONE REQUIREMENTS AT THE

UNIVERSITY OF ALASKA ANCHORAGE

University of Alaska Anchorage (UAA) is part of
the State of Alaska public university system.
UAA is the largest independently accredited

Information Systems Education Journal (ISEDJ) 10 (5)
 October 2012

©2012 EDSIG (Education Special Interest Group of the AITP) Page 17

www.aitp-edsig.org /www.isedj.org

university in the state, and it is located in the
largest population center. Anchorage is home to
almost half of the 650,000 citizens of the state,
and is the main hub for transportation, oil and

gas, and health care industries. UAA celebrated
its 50th anniversary in 2004 and offers close to
200 degrees and programs ranging from
certificates to (joint) doctoral degrees. There are
20,000 students enrolled in one or more courses
either at the main campus or at one of the six
community campuses in South-central Alaska.

UAA is an open admission university, enrolling
many first generation college students. About a
third of the students are minorities, many Alaska

Natives from villages across the state. A large
number of students are pursuing a second

career, and many are in the military, taking
classes at UAA during a limited time of
deployment in Alaska. Many students transfer to
UAA from other colleges in or outside the state,
and many transfer from UAA to complete their
degrees elsewhere. UAA is regionally accredited
by the Northwest Commission on Colleges and

Universities (NWCCU).

Curriculum development at UAA is controlled by
faculty. Undergraduate courses are initiated by
faculty members in the departments, and are
then vetted by curriculum committees in the
colleges. The Undergraduate Academic Board

(UAB) reviews and approves undergraduate
curriculum, while the Graduate Academic Board
handles graduate courses and programs.
Ultimately, the Faculty Senate approves all new
courses and programs, as well as changes to
existing ones.

A subcommittee of the UAB is in charge of pre-
screening GER courses, before they are
submitted to the UAB. In late 1990’s, the
subcommittee started working on revising the
GER framework at UAA, partly in response to
requirements from the regional accreditation

body, the NWCCU. The Faculty Senate passed a
motion in late 2002 that a GER integrative
component be built into the new GER

framework. In response to this motion, in March
2004, the UAB subcommittee submitted a
proposal to require a GER capstone for all four-
year programs at UAA. The proposal was

approved in early 2005, and the subcommittee
made available grants for faculty to develop GER
capstone classes.

The development of the GER capstone
framework was guided by four considerations.

First and foremost was the goal of providing an
integrative experience to students. Second,
while the GER were not programmatic in nature,
the capstone lent a programmatic nature to the

GER coursework. Third, the revision was not to
increase the credit requirements for degrees.
Finally, the capstone was intended to provide
assessment data for GER for accreditation.

Before students can register for a GER capstone
class, they must complete their Tier 1 GER

(basic skills) and the Tier 2 (disciplinary
distribution areas). Serving as a culminating
point, GER capstone classes must satisfy at least
four of the five capstone requirements, and at

least three of the four must be specifically
addressed by the course outcomes assessment.

The five capstone requirements are: 1)
knowledge integration, 2) effective
communication, 3) critical thinking and problem
solving, 4) information literacy, and 5)
quantitative perspectives. Such requirements
are common among capstone models,
particularly those of information literacy,

communication and critical thinking, for example
Portland State (Kerrigan & Jhaj, 2007),
Southeast Missouri State University (Blattner &
Frazier, 2004).

Faced with the challenge of developing a GER
capstone course, academic programs often

choose to expand the scope of existing discipline
specific capstone courses to incorporate
additional requirements towards GER
integration, although they may also create new
integrative courses (Hawthorne, Kelsch, &
Steen, 2010). Adapting existing courses is a key

mechanism for introducing GER capstones
without increasing the credit requirements for
degrees. By simply broadening the instructional
goals for the class to meet capstone
requirements, a discipline capstone class can
serve a dual purpose. Some capstone
experiences are for a homogenous group of

majors, “magnets” that demand mastery of the
core of the discipline, while other capstone
courses are interdisciplinary or multidisciplinary

in content and are places where diverse groups
of students arrive to a common “mountaintop,”
in the terminology in (Rowles, Koch, Hundley, &
Hamilton, 2004). The course described in this

paper is a “mountaintop,” a College wide
capstone, as opposed to the departmental MIS
Senior Projects capstone class (the “magnet”).

Information Systems Education Journal (ISEDJ) 10 (5)
 October 2012

©2012 EDSIG (Education Special Interest Group of the AITP) Page 18

www.aitp-edsig.org /www.isedj.org

3. CIS 376 – MANAGEMENT INFORMATION
SYSTEMS AS A GER CAPSTONE

Business administration is one of the five most

popular majors at UAA. Consistent with
university policies, the College of Business and
Public Policy programs has an open admission
policy, but students must satisfy GPA
requirements to move up to upper division
(taking classes at and above the 300 level).
Several programs in the College (including the

BBA) are AACSB accredited. Outcomes
assessment is a key component of AACSB
accreditation, and is based to a large extent on
data collected in the core courses (required for a

majority of the students in the College).

CIS 376, Management Information Systems,
was already one of the core courses in the
Bachelors of Business Administration program at
UAA in 2006. The class was required of all BBA
majors, except for accounting majors who were
required to take an Accounting Information
Systems class. There are three sections of 25-35

students offered in any given semester, and the
class is offered every year in both fall and
spring, and occasionally in summer.

Faculty in the Computer Information Systems
department realized the opportunity they were
facing. CIS 376 was a good candidate for the

first GER capstone class in the College of
Business and Public Policy, before discipline
specific capstone classes could be developed.
Because the class was already required of most
majors in the college, it could accomplish the
GER integration goals without requiring

additional credits to complete the degree. Taking
advantage of one of the curriculum development
grants, faculty modified the class over the
summer of 2005 to meet the GER capstone
requirements. The revised CIS 376 received
Faculty Senate approval in spring 2006 and was
effective for fall 2006.

The redesigned course is intended to be
accessible for the non-MIS majors, while still

challenging for MIS majors. Students are
encouraged to cooperate on projects, but must
submit individual work on assignments. They are
free to share ideas and solutions at the concept

level, as long as they put the concepts in
practice on their own. Faculty have an open door
policy, and help students overcome roadblocks,
guiding them through the projects without
actually pointing the way.

CIS 376 is at the core a typical introduction to
MIS class. Topics include basic information
systems components (hardware, software,
databases, data networks concepts) as well as

the development, acquisition and use of specific
functional or cross-functional information
systems. There are two exams, based on short
answer essay questions and brief case studies.
Weekly multiple choice quizzes about the theory
concepts are delivered and graded online, and
students can retake any quiz (with a different

set of questions) until they master the material.

Many MIS theory concepts lend themselves to
supporting knowledge integration (for example

Moore’s Law relates via economics concepts to
the growth of the internet). The GER capstone

requirements are fulfilled by a set of
assignments designed around this core of MIS
theory. Two types of assignments are
particularly relevant: a research project on
current issues related to MIS, and a series of
hands-on projects where students apply theory
to solving business problems. The mapping from

the course assessment tools to the five GER
capstone requirements is outlined in Table 1
below.

Assessment tool KI COM CT IL Q

P

Exams (2) √

Weekly quiz √ √

Hands-on projects

#1 √ √

#2 √ √

#3 √ √ √

#4 √ √ √

Research projects

Debate √ √ √ √

Website √ √ √

Paper √ √ √ √ √

Table 1. Outcomes assessment mapping
(KI - knowledge integration, COM -

communication, CT - critical thinking, IL -
information literacy and QP – quantitative

perspectives.

The rest of this section outlines the essential
features of the hands-on projects and the

research project, focusing on how they uniquely
highlight the students’ achievements of the five
GER capstone requirements. An example of each
type of hands-on project is included in the
Appendices.

Information Systems Education Journal (ISEDJ) 10 (5)
 October 2012

©2012 EDSIG (Education Special Interest Group of the AITP) Page 19

www.aitp-edsig.org /www.isedj.org

Hands-on projects

There are four hands-on projects during the
semester, spaced 2-3 weeks apart and closely

related to lecture topics, challenging students to
apply concepts and to demonstrate skills
working independently. Each assignment is a set
of 10-12 multiple choice or multiple answer
questions, using an open time and open book
format. Each of the four hands-on assignments
is worth 5% of the final grade. Because of the

test format, the hands-on assignments are
scored automatically online, which allows
students to receive immediate feedback on their
work.

i) Information literacy project

The first project is designed to be relatively
easy, to encourage students and to familiarize
them with the format of the hands-on tests. The
project is about assessing the credibility of an
online business, using a variety of tools (domain
registration data, Better Business Bureau data,

online forums, analysis of published company
policies, etc). A sample test is included in
Appendix 1.

ii) Database project

The second hands-on project is due after the

completion of the chapter on database
management. Students are given a scenario or a
large data set (10,000 records) in a flat file and
are asked questions about organizing the data in
a relational database. For non-MIS majors with
only a rudimentary understanding of database

concepts, this is a very difficult project. In fact,
students find this the most challenging of the
four hands-on projects, which is also reflected in
the lower scores. Along with the other aspects of
the course, this hands-on project has also been
modified over the years to address the low
scores. Because database concepts are so

difficult for non-MIS majors, the only
workaround has been to offer a make-up test,
with a different scenario, which generally leads

to much improved test scores. Revisiting
database concepts in hands-on 3 (below) is
another way to ensure that students get a better
understanding of the topic. A sample test is

included in Appendix 2.

iii) Data mining project

The third hands-on project is due after the
completion of the chapter on business

intelligence. The lectures cover several tools,
including online analytical processing, RFM
(recency, frequency and monetary) analysis and
market basket analysis, and this project is a

rather straightforward application of the
techniques.

As part of the data processing, students may
need to revisit database concepts yet again. For
example, they may need to normalize a flat file
to be able to conduct some of the more complex

queries. If the data set includes records of
transactions with multiple products,
normalization may be required to calculate the
number of transactions for a given sales person.

Although the same goal could be accomplished
with simple SQL statements, the students are

not MIS majors and have not had sufficient
background to carry out such tasks. The
assignment does not require a particular
approach, and students are free to use SQL, but
most students find it easier to normalize the
database (a process they have learned about)
and then use pivot charts on the normalized

database tables.
Having had additional exposure to database
concepts by this point, as well as theoretical
exposure to the data mining techniques,
students typically do well on this project. An in-
class workshop gives students some general
guidelines and an opportunity to ask questions,

especially about the database concepts.
Feedback from graduates is that the skills
learned in this project are directly applicable in
many business jobs. A sample test is in
Appendix 3.

iv) Forecasting and decisions support project

The last hands-on project is typically due at the
very end of the semester, and is less connected
with the lecture. Instead, it is a diverse set of
questions with direct relevance for making
business decisions. The first part of the project

deals with forecasting, with a number of
scenarios of increasing difficulty and having to
do with break even analysis. Progressively,

students must calculate the growth rate that will
keep a company from running out of cash, then
with a cash reserve, and finally with a cash
reserve even in the presence of inflation. A

second component of the project is an
optimization problem, using the Microsoft Excel
package Solver. A final component is a
rudimentary decision support system for
choosing among a set of health insurance plans.
Many students have not yet had to make choices

Information Systems Education Journal (ISEDJ) 10 (5)
 October 2012

©2012 EDSIG (Education Special Interest Group of the AITP) Page 20

www.aitp-edsig.org /www.isedj.org

of this nature, and are not familiar with
deductibles and out of pocket payments.
Although many of the concepts tested in this
assignment are not covered in the lecture, an in-

class workshop gives students the opportunity to
ask clarification questions and provides a
general overview of the problem. A sample test
is in Appendix 4.

Together, the four hands-on projects test
students on four of the five areas of the GER

capstone: knowledge integration, critical
thinking and problem solving, information
literacy, and quantitative perspectives. These
projects are highly structured in the types of

questions students are asked to solve, and
cannot be used to assess the communication

skills. In contrast, the research projects are
open-ended and manage to assess all of the five
areas, including communications.

Research project on current issues in MIS

The research project has three separate

components: an oral presentation (using a
debate format), a website (which is also used as
the presentation tool for the debate) and a
formal research paper. The research project
counts for 25% of the final grade, with 13% for
the paper, 5% for the website and the reminder
for the oral debate.

The topics for the research papers change
regularly to reflect current topics in MIS. Topics
include secondary uses of data, employee
monitoring, using Facebook for screening
potential hires, and mandating subsidies for

broadband access.

Students choose their own topics from the list,
sometimes expecting that there is a “right
answer” to the debate. They soon realize that
there are no definitive answers to the debate
question – and are horrified to learn that they

might have to defend the side of the debate they
do not agree with. For the oral debate, students
must prepare both sides. The side they actually

get to defend is decided by a coin toss, right
before the actual debate.

Students work in pairs on their research

question. They can share sources and exchange
ideas, but must prepare websites and write
research papers independently. Moreover, the
oral debate pits the two students against each
other in front of the class. As mentioned above,
students must prepare both sides of the debate

and they end up debating one side as decided by
a coin toss. The website must include rich
multimedia and must be suitable for
presentation in front of a medium size audience

(25-35), but it must also be structured to allow
for self-paced browsing, guiding the reader and
providing sufficient information for somebody
who has not seen the oral debate.

The research paper must include a balance of
arguments on both sides of the issue, followed

by a critical analysis and a personal position
point, written in the first person. Throughout the
research project, students must choose strong
arguments and must provide evidence from

reputable sources. Papers are rather extensive,
2500-3500 words, and are graded using strict

standards for presentation, formatting and
contents.

To research the topics, students must
demonstrate information literacy skills.
Formulating arguments requires critical thinking
and at times quantitative skills. The three

components of this project (oral debate, website
and paper) make it a heavily communications-
based assignment. As such, the research paper
is uniquely able to assess all five areas of the
GER capstone requirements – but it requires
considerable efforts both on the part of the
students, for research and writing, and on the

part of the instructor, for grading.

4. DISCUSSION

CIS 376 has been taught as a GER capstone
class since fall 2006, but the assessment tools
have evolved. Since spring 2007, the number

and nature of the assessment tools have been
unchanged, allowing a longitudinal comparison
of student achievement levels.

The assessment data (Fig. 1) shows the
percentage of students who achieve a passing
grade (70% or higher) on each type of

assessment. Because tools test various types of
skills, it is possible to infer the overall skill levels

of the students across the GER capstone areas.
Numerical data are included in the table in
Appendix 5.

Over the course of the five years, a majority of

the students (75% or better within the last three
years) achieve passing scores on all of the
assignments (except for the Hands-on 2 on
database management, which is rather
technical, and which is not part of the GER

Information Systems Education Journal (ISEDJ) 10 (5)
 October 2012

©2012 EDSIG (Education Special Interest Group of the AITP) Page 21

www.aitp-edsig.org /www.isedj.org

capstone outcomes). There is a slight trend up in
the scores, although the volatility of the scores
and the relatively low number of data points do
not lend statistical significance to this trend.

Fig. 1. A majority of students achieve
passing scores across the entire spectrum
of assessment instruments. The lowest
curve is for Hands-on #2: Database

concepts.

5. CONCLUSIONS

CIS 376 is a core MIS class required for non-
accounting business majors in the College of

Business and Public Policy at the University of

Alaska Anchorage. The class was converted to a
GER capstone format, by ensuring that
assessment tools track student performance
across five dimensions: 1) knowledge
integration, 2) effective communication, 3)
critical thinking and problem solving, 4)

information literacy, and 5) quantitative
perspectives. Although the class is not required
for accounting majors, many choose to take it as
their GER capstone. Assessment data collected
over the past five years indicate that a majority
of students achieve passing scores (70% or
better) across the five dimensions. Within the

last three years, 75% of students achieved

passing scores on the five GER dimensions.

6. REFERENCES

Abrahams, A. S., & Singh, T. (2010). An Active,

Reflective Learning Cycle for E-Commerce
Classes: Learning about E-commerce by

Doing and Teaching. Journal of Information
Systems Education , 21 (4), 383-390.

Bers, T. (2000). Assessing the Achievement of
General Education Objectives: A College-
Wide Approach. The Journal of General
Education , 49 (3), 182-210.

Blattner, N. H., & Frazier, C. L. (2004, July–
August). Assessing General Education Core
Objectives. Assessment Update , 16 (4), pp.
4-6.

Brock, P. A. (2004, January-February). From
Capstones to Touchstones: Preparative
Assessment and Its Use in Teacher

Education. Assessment Update , 16 (1), pp.
8-9.

Claus, B. A., & Hawkins, S. T. (2007). Indiana
State Introduces Liberal Studies Capstone
Course in FCS. Journal of Family and
Consumer Sciences , 99 (1), 33-37.

Fernandez, N. P. (2006, May-Jun). Integration,
Reflection, Interpretation: Realizing the
Goals of a General Education Capstone
Course. About Campus , 11 (2), pp. 23-26.

Hawthorne, J., Kelsch, A., & Steen, T. (2010,
March 17). Making general education
matter: Structures and strategies. New

Directions for Teaching and Learning , 2010
(121), pp. 23-33.

Henscheid, J. M., Breitmeyer, J. E., & Mercer, J.
L. (2000). Professing the disciplines: An
analysis of senior seminars and capstone
course. Columbia, SC: National Resource
Center for the First-Year Experience and

Students in Transition.

Janicki, T. N., Fischetti, D., & Burns, A. T.
(2007). Incorporating Real World Projects
and Emerging Technologies into One MIS
Capstone Course. Information Systems
Education Journal , 5 (24), 1-8.

Kerrigan, S., & Jhaj, S. (2007, April 1).
Assessing General Education Capstone
Courses: An In-Depth Look at a Nationally

Recognized Capstone Assessment Model.
peerReview , 13-16.

McGann, S., & Canili, M. (2005). Pulling it all
Together: An IS Capstone Course for the

21st Century emphasizing experiential and
conceptual aspects, soft skills and career
readings. Issues in Information Systems , VI
(1), pp. 391-397.

Information Systems Education Journal (ISEDJ) 10 (5)
 October 2012

©2012 EDSIG (Education Special Interest Group of the AITP) Page 22

www.aitp-edsig.org /www.isedj.org

Rowles, C. J., Koch, D. C., Hundley, S. P., &
Hamilton, S. J. (2004, January-February).
Toward a Model for Capstone Experiences:
Mountaintops, Magnets, and Mandates.

Assessment Update , 16 (1), pp. 1-2, 13-15.

Wilson, E., Jones, K., Sullivan, B., Crank-Lewis,
D., Guneyli, V., Zeizer, J., et al. (2008).
General Education Capstone Assessment
Report 2008. Cottleville, MO: St. Charles

Community College.

Editor’s Note:

This paper was selected for inclusion in the journal as the ISECON 2011 Best Paper. The acceptance
rate is typically 2% for this category of paper. This is based on blind reviews from six or more peers,
including three or more former best papers authors who did not submit a paper in 2011.

Information Systems Education Journal (ISEDJ) 10 (5)
 October 2012

©2012 EDSIG (Education Special Interest Group of the AITP) Page 23

www.aitp-edsig.org /www.isedj.org

Appendix 1. Hands-on project #1: Information Literacy

1. According to the www.sellyourmiles.com web
site, the physical address for the company is in

a. Alaska
b. California
c. Florida
d. New York

e. No address is given

2. According to WHOIS information, the
registrant for the www.sellyourmiles.com web
site is

a. John Allen
b. Martin Ferrari

c. Donna Wilson
d. Gabriel Wilson
e. Sell Your Miles, Inc.

3. Search the web site and locate a contact
email address. You may be surprised that the

address is not something@sellyourmiles.com,
but something different, which will point you
towards a different web site. You may verify
that the registrant for this second web site is the
same as for www.sellyourmiles.com. On this
second company web site, locate the Certificate
of Registration from the State government. On

the certificate, locate the official company name:
a. World Wide Travel

b. World Wide Travel, Inc.
c. World Wide Travel Services
d. WWT Consulting
e. WWT, Inc.

4. Do a Google search for BBB and the state
where the registrant of the two web sites is
located. On the list of Google results, locate the
BBB office that services the city where the
registrant is located. At that web site, do a
search for the company name you found in #3

above. The company ID on the BBB site is:
a. 13042635
b. 40000104
c. 13058553
d. 13074883

e. 13142441

5. According to the BBB site, the company has
had a BBB record since

a. 2/1/2000
b. 10/20/2000
c. 4/24/2006
d. 4/12/1975
e. No date is available

5. The company rating on the BBB site above is
a. A
b. B
c. C
d. D
e. F

6. According to the BBB web site, this company
rating is

a. An exemplary rating. This means that
nothing in our files causes us to have any doubt
about the company’s reliability.

b. An excellent rating. A company with

this rating may not rate higher because of a
greater number of rate-lowering factors, but we
do not consider them to be factors that would
likely adversely affect consumer transactions.

c. A very high rating. A company with
this rating would not have a significant number

of complaints or other considerations that could
pose a problem to consumers.

d. A good rating that still implies
reputability. The rating may relate to length of
time in business, a past problem that’s been
corrected, or something else that does not cause
problems for consumers. We believe a company

with this rating would generally conduct
business and respond to any complaints

satisfactorily.
e. We strongly question the company’s

reliability for reasons such as that they have
failed to respond to complaints, their advertising
is grossly misleading, they are not in compliance

with the law’s licensing or registration
requirements, their complaints contain especially
serious allegations, or the company’s industry is
known for its fraudulent business practices.

7. Search now on the BBB web site for the

business associated with the website
www.sellyourmiles.com (you might need to try
different search types to make sure you are
using the correct name). According to the web
site

a. The business is listed and has a better
rating than the company you searched for in #4.

b. The business is listed and has the
same rating as the company you searched for in
#4.

c. The business is listed and has a lower
rating than the company you searched for in #4.

d. The business is listed, but not rated.
e. The business is not listed.

Information Systems Education Journal (ISEDJ) 10 (5)
 October 2012

©2012 EDSIG (Education Special Interest Group of the AITP) Page 24

www.aitp-edsig.org /www.isedj.org

8. According to the www.sellyourmiles.com web
site, selling miles is

a. Legal in all 50 states
b. Legal in most of the US states

c. Legal in few of the US states
d. Legal in only one state
e. Illegal

9. Do an internet search and read about the
legality of selling miles, then answer the
following:

a. Selling miles is prohibited by federal
laws

b. Selling miles is prohibited by state
laws in most states

c. Selling miles is legal, but not in as
many states as the site advertises

d. Selling miles is legal in most US
states, but prohibited by other means

e. Selling miles is legal and a totally
legitimate transaction

10. Based on your findings so far, a reputable
business in need of travel arrangements should

a. Use this site with confidence, any time
b. Use the site only for domestic (US)

travel
c. Use the site only to travel to and from

states where the service is legal
d. Use a similar service, but from a more

reputable business with a higher BBB rating
e. Avoid using the services as well as the

web site

Appendix 2. Hands-on project #2: Database Management

The second hands-on project deals with database design.

You are managing a small school for airline pilots and you need to keep track of aircraft airtime (for
maintenance schedules) and pilot flight hours (for certification). For simplicity of the problem, each
aircraft can only accommodate exactly one pilot (but cannot fly without a pilot). All pilots are certified

to fly on any of the aircraft you have. You are designing a database to manage this data.

Start by laying out an E-R diagram based on the requirements above. Then answer the questions
below.

1. Which of the following should be tables in the
database? (check all that apply)

a. Pilots
b. Aircraft
c. Total aircraft airtime
d. Flight durations
e. Flights

2. Which of the following would be an

appropriate primary key for the Pilots table?
(check all that apply)

a. First name
b. Last name, First name
c. Weight
d. SSN

e. Flight time

3. Which of the following would be an
appropriate primary key for the Aircraft table?
(check all that apply)

a. Aircraft type (model)
b. The combination of aircraft model and

serial number
c. Aircraft weight
d. Aircraft owner
e. Automatically generated unique key

4. What is the most appropriate relationship

between pilots and flights (think about actual
facts, not about database tables)?

a. One to one
b. One pilot to many flights
c. One flight to many pilots
d. Many pilots to many flights
e. There is no relationship

5. How would you accomplish the relationship in
#4 above?

a. Use a foreign key in the Pilots table.
The foreign key is the primary key of the Flights
table.

b. Use a foreign key in the Flights table.
The foreign key is the primary key of the Pilots
table.

c. No need to do anything, because
there is no relationship.

d. Use an intersection table between
Pilots and Flights.

e. Pilots and Flights go in the same
table, because this is a one-one relationship.

Information Systems Education Journal (ISEDJ) 10 (5)
 October 2012

©2012 EDSIG (Education Special Interest Group of the AITP) Page 25

www.aitp-edsig.org /www.isedj.org

6. What is the most appropriate relationship
between pilots and aircraft (think about actual
facts, not about database tables)?

a. One to one, because there can be

only one pilot per aircraft
b. One pilot to many aircraft (one pilot

will fly on many aircraft, in turn)
c. One aircraft to many pilots (many

pilots will fly on any one aircraft, in turn)
d. Many pilots to many aircraft (many

pilots, each one will fly on many aircraft)

e. There is no relationship

7. How would you accomplish the relationship in
#6 above?

a. Use a foreign key in the Pilots table.
The foreign key is the primary key of the Aircraft

table.
b. Use a foreign key in the Aircraft table.

The foreign key is the primary key of the Pilots
table.

c. No need to do anything, because
there is no relationship.

d. Use an intersection table between

Pilots and Aircraft.
e. Pilots and Aircraft go in the same

table, because this is a one-one relationship.

8. Which of the following fields can be part of
the Pilots table? (check all that apply)

a. Pilot name

b. Flight duration
c. Aircraft ID for the flight
d. Pilot age

e. Pilot weight

9. What is the best way to track pilot flight time
(the total number of hours a pilot has flown)?

a. Use a field in the Pilots table, and
update this field after each flight

b. Use a field in the Flights table, and set
up a query to calculate total time

c. Use a field in the Flights table and
update this after each flight

d. Use a field in the intersection table of

Pilots and Flights
e. Set up a separate table with the Pilot

Flight Time

10. You change your mind about the
requirements, and decide that you need to

accommodate multiple pilots per aircraft in your
database design. In fact you discover that the
number of pilots could be very high – a whole
group might take off at the same time on one
plane, and take turns piloting while up in the air.
What changes do you need to make to
accommodate this?

a. Easy, you do not need to make any
changes to accommodate multiple pilots.

b. You need to add another field in the
Flights table.

c. You need to add another field in the
Pilots table.

d. You need to add one or more tables.

e. You cannot accommodate such a
request, no matter what you do.

Appendix 3. Hands-on project #3: Data Mining

The third hands-on project deals with data mining. You will need to process data into information that
might be useful in making business decisions.

The file “Spring 2009.txt” contains data about purchase transactions for a small Alaskan company. The
fields are separated by tabs, and contain in order, the transaction year, month and day, then ID of the
salesperson who made the sale, the ID of the customer who made the purchase, the ID of the
transaction, the product ID and the sales price. The questions below involve either revenues

generated (the sum of the sales prices) or volumes sold.

This packet includes two files (see below):
“Spring 2009.txt” is the data set
“Data mining hands-on.ppt” is a file with directions on setting up your queries

In answering the questions, you might find it useful to import the data in a database, and to run some
queries to help you get to the answers. You might also need to use a spreadsheet to process the
results from the database queries, although you can also do that with a hand calculator. In getting

answers to most of the questions, you might find using pivot tables or pivot charts as helpful.

Information Systems Education Journal (ISEDJ) 10 (5)
 October 2012

©2012 EDSIG (Education Special Interest Group of the AITP) Page 26

www.aitp-edsig.org /www.isedj.org

You are not required to submit any of the files you used, but only to answer the questions. As with
previous hands-on projects, you can only submit the answers one time. Answers are omitted for some
questions, to save space; the numerical answers include a list of ten randomly generated possible

answers, to reduce the chance of a random guess.

1. What type of relationship is there between
sales persons and customers, based on the data
in the file?
a. 1:1
b. 1:N

c. N:M
d. Cannot specify based on the data in the file
e. It depends on the user’s point of view

2. Which customer generated the highest total
revenue over the entire transactions window?

a. Customer 31
b. Customer 32
c. Customer 33
d. Customer 34
e. Customer 35

3. What is the value of the highest average

revenues per transaction among all customers?

4. Which customer is closest to a 513 in the RFM
analysis?

5. Which sales person should be encouraged to
share best practices with the others?

6. Which is the best month of the year in terms

of total revenues?

7. What is the support value for the two
products that are the best candidates for

bundling (and should be marketed together)?

8. What is the lowest support value, for the two
products that are most likely to be substitutes
for each other?

9. What is the best selling product (highest
volume)?

10. For individual customer-salesperson
relationships, what is the largest number of
items any customer purchased from any one
salesperson?

Appendix 4. Hands-on project #4: Decision Support

CIS 376 – Management Information Systems
Hands-on project -- part 4

The fourth hands-on project deals with business forecasting and decisions support systems. You are

encouraged to create a spreadsheet to answer the questions below. You do not need to submit the
spreadsheet.

It is December 2010. You are planning to start a small airline in bush Alaska. The grand opening is
January 2011.

You have $250,000 startup capital. You have fixed payments to make for your airplanes, staff and
office space, at $80,000 per month. Your variable costs are $120 per passenger and you charge an
average of $180 per passenger.

You expect to have 800 passengers in January 2011 and you expect a uniform rate of increase in this

number, some X % month to month. Set up a spreadsheet so that you can calculate your cash
balance at the start and end of each month, given the number of passengers for that month. Link your

cells to allow you to specify the month to month growth rate X% in a single cell.

Answers are omitted for some questions, to save space; the numerical answers include a list of ten
randomly generated possible answers, to reduce the chance of a random guess.

1. In any given month, how many passengers do
you need to be profitable? (to make enough

money during that month just to cover your
expenses for the month)

Information Systems Education Journal (ISEDJ) 10 (5)
 October 2012

©2012 EDSIG (Education Special Interest Group of the AITP) Page 27

www.aitp-edsig.org /www.isedj.org

2. If you start with 800 passengers in January
and the growth rate X is zero (no growth), what
is the first month at the end of which you will
have a negative cash balance?

3. Calculate the smallest rate of increase in the
number of passengers per month X, to make
sure you do not run out of cash at any time (you
always end up with some cash left at the end of
each month). You might want to use goal seek
(try various starting values for X to help goal

seek to converge).

4. Calculate the rate of increase in the number
of passengers per month X if each month you

must maintain a cash reserve (at the end of the
month) of at least 10% of the current month’s

expenses.

5. Redo the previous question if the inflation
rate is at 1% per month (assume that all your
expenses increase 1% per month).

6. Faced with high demand on one of your
routes, you charter a larger airplane for a one-
time flight. You are able to sell first class tickets
at $1200 per person (but will only be able to sell
at most 10 tickets), economy tickets at $400 per
person or you can carry cargo for $1.20/lb.

Each first class passenger comes with 600 lbs of
weight (luggage, passenger and in-flight meals)
and each economy passenger weighs in at 300
lbs (including luggage, passenger and in-flight
meals). According to FAA specifications, the
aircraft can carry no more than 25,000 lbs,

including both passengers and the cargo weight.

Additionally, you need to figure out space
limitations on board. Each first class seat takes
30 sq. ft. of space and each economy seat takes
13 sq. ft. You can pile up cargo 50 lbs/sq. ft. The
total floor space in the plane is 1000 sq. ft.,

which needs to accommodate all the passengers
and the cargo. For simplicity, you do not need to
have full rows of seats (i.e., you could have 17

seats on the whole plane) and do not need to
worry about aisle space.

Use solver to figure out how many passengers

and how much cargo you can carry to maximize
your revenue for the flight. Make sure you
consider all the conditions you need for solver.
The program does not understand the realities of
life :).

How many pounds of cargo will you need to
carry to achieve this maximum?

7. You also need to purchase insurance for your

employees. The three options available are given
in the following table.

Plan A: Monthly charge: $30, Deductible $1300,
Out of pocket maximum $5000
Plan B: Monthly charge: $60, Deductible $500,
Out of pocket maximum $2000

Plan C: Monthly charge: $150, Deductible $200,
Out of pocket maximum $750

Employees may elect to participate in any one of

the three plans, or to opt out of insurance
totally. Employees who select a health plan pay

the monthly charges for all the twelve months
per year; no fractions of a year are allowed.

We use the term “medical care expenses” for the
amount billed by the medical providers. This
amount is paid in part by the patient, with the
balance covered by the insurance. “Patient

costs” are the charges incurred by the patient
(which include monthly charges and the
patient’s portion to the medical providers’ bill).

As employees incur medical expenses, they pay
for part of the medical care and the insurance
pays for the balance. Given a certain cost of

medical care expenses, the relative share of the
employee and the insurance company are as
described below. The employee must pay for the
full cost of the medical care until the expenses
exceed the Deductible. For the medical care
expenses in excess of the Deductible, the plan

pays for 80% of the expenses, and the
employees are responsible for the remaining
20%. Finally, once the expense incurred by the
employee reaches the Out of Pocket, the plan
pays for 100% of the medical charges. The Out
of Pocket charge does not include the Monthly
Charges, nor the Deductible. Both the deductible

and the out of pocket amounts are for the year;
at the end of the year, the patient needs to start
over and meet the deductible and out of pocket

anew.

If the employee selects Plan B, what is the
maximum amount of patient costs they will

spend on health care by the end of the year
(including Monthly Charges and their portion of
the medical care, not covered by insurance)?

Information Systems Education Journal (ISEDJ) 10 (5)
 October 2012

©2012 EDSIG (Education Special Interest Group of the AITP) Page 28

www.aitp-edsig.org /www.isedj.org

8. How much do the medical care expenses need
to be (at least) for the employee to have to pay
the maximum figure, as in the question above?

9. At what cost of medical care is the employee
paying the same amount whether using
insurance (the lowest cost plan) or paying for
medical care entirely on her own? You might
want to use goal seek for this question.

10. An employee expected the cost of medical

care for the following year to be $7,000. Based
on this assumption, the employee chose the plan
with the lowest expenses for that level of
medical care. If the actual expenses are in fact

$9,000 at the end of the year, this choice of plan
might not be the best anymore. How much

worse off is the employee because of the error in
estimating medical expenses? (what is the
difference between what the employee would
have paid under the best plan and what she is
actually paying in the scenario above?)

Information Systems Education Journal (ISEDJ) 10 (5)
 October 2012

©2012 EDSIG (Education Special Interest Group of the AITP) Page 29

www.aitp-edsig.org /www.isedj.org

Appendix 5. Assessment data 2007-2011

Semester Enrollment
Debate
presentation

Research
paper

Hands-on
#1:
Information
literacy

Hands-
on #2:
Database
concepts

Hands-
on #3:
Data
mining

Hands-
on #4:
Decision
support

Spring
2007 43 90.70% 65.12% 90.70% 60.47% 83.72% 55.81%

Spring
2008 25 88.00% 72.00% 96.00% 52.00% 64.00% 52.00%

Spring
2009 67 74.63% 77.61% 100.00% 67.16% 83.58% 88.06%

Spring
2010 28 89.29% 85.71% 92.86% 71.43% 92.86% 78.57%

Fall 2010 26 100.00% 84.62% 92.31% 53.85% 80.77% 84.62%

Spring
2011 25 96.00% 84.00% 100.00% 68.00% 76.00% 80.00%

Table A.5. Assessment data for all five years CIS 376 was taught as a GER capstone with a consistent
set of assessment tools. The numbers indicate the percentage of students who achieved 70% or better

on each assessment tool.

Information Systems Education Journal (ISEDJ) 10 (5)
 October 2012

©2012 EDSIG (Education Special Interest Group of the AITP) Page 30

www.aitp-edsig.org /www.isedj.org

Is Student Performance on the Information

Systems Analyst Certification Exam Affected
By Form of Delivery of Information Systems

Coursework?

 Wayne Haga
haga@mscd.edu

Abel Moreno

morenoa@mscd.edu

Mark Segall
segall@mscd.edu

Department of Computer Information Systems
Metropolitan State College of Denver

Denver CO 80217

Abstract

In this paper, we compare the performance of Computer Information Systems (CIS) majors on the
Information Systems Analyst (ISA) Certification Exam. The impact that the form of delivery of

information systems coursework may have on the exam score is studied. Using a sample that spans
three years, we test for significant differences between scores obtained on three of the areas of the
ISA exam by CIS majors who completed the coursework via classroom delivery with those who
completed the coursework via online delivery. Results from the study are analyzed and conclusions
discussed. Opportunities for further study are proposed.
Keywords: online delivery, Information Systems Analyst Certification Exam, Core Information System
Areas

1. INTRODUCTION

Third-party feedback is a fairly unbiased option
for the assessment of academic programs. Our
CIS program has been using the ISA exam

(McKell et al 2005) for assessing our program
outcomes and objectives for several years.
While helping us meet the internal assessment
expectations for programs offered at our
institution, the ISA exam results are also used in
our ABET (Accreditation Board for Engineering

and Technology) accreditation process. Further,

students may benefit from the exam score as
those scoring fifty percent or higher may attain
professional certifications (ICCP 2011). As in the
case at most institutions of higher learning, our

CIS curriculum is delivered in a traditional
classroom setting and, with a few exceptions, in
an online format. Given the relevance that the
ISA exam has in our program, we want to
explore whether or not the type of delivery has
an impact on the ISA exam score. The paper is

Information Systems Education Journal (ISEDJ) 10 (5)
 October 2012

©2012 EDSIG (Education Special Interest Group of the AITP) Page 31

www.aitp-edsig.org /www.isedj.org

organized as follows. In the next section, we
describe the ISA exam and its relationship to the
Information Systems (IS) curriculum as required
by ABET (2007). The next section describes the

curriculum areas being considered and the
study’s methodology. Results are presented
next. In the last section, results are discussed
and conclusions offered.

2. THE INFORMATION SYSTEMS ANALYST

EXAM

An important benefit from using the ISA exam
for assessment purposes is that the exam
content maps to the IS2002 model curriculum

for undergraduate Information Systems
education (Gorgone et al 2003). Further, there is

a defined linkage between the IS2002 model
curriculum learning units and the six IS core
areas defined by IS curriculum ABET (2007)
accreditation guidelines [Landry et al 2006], i.e.
hardware and software, modern programming
language, data management, networking and
telecommunications, analysis and design and

role of IS in organizations [ABET 2007]. Thus,
ISA exam scores are useful for: 1) meeting
institutional assessment requirements, 2) ABET
accreditation of our program, and as indicated in
the previous section 3) offering our students an
opportunity to attain professional certifications.

The ISA exam is jointly administered by the
office of the Institute for Certification of
Computing Professionals (ICCP) and the Center
for Computing Education Research (CCER) – a
division of the ICCP Education Foundation. The
ISA exam has been designed for graduating

seniors from 4-year undergraduate Information
Systems degree programs. A 50 percent or
higher score in the approximately 3-hour long
ISA examination (can be split into two 105
minute exams), plus an undergraduate degree,
qualifies an individual to receive the title of ISA-
Practitioner. A 70 percent or higher score is

specified as ISA-Mastery level. A holder of the
ISA certification is automatically enrolled into
the ICCP Recertification program. When a

student takes this examination at our College,
they are given the option of paying for the
credential right after the score is received and
the examination is passed (50 percent or

higher). The certificate is mailed to the student
based on the ICCP receiving confirmation
directly from our College of the student having
graduated successfully from our CIS program.
(ICCP 2011)

The exam-taking mechanics is as follows. The
student first registers for the exam and receives
a password. The exam is delivered over the
internet to a proctored testing site. The exam

requires about three hours to complete and
includes 258 questions. The exam score is
reported upon completion of exam. Table 1
shows a summary of exam results for our
institution over the three-year period considered
in this study (see appendix).

3. IMPACT OF TYPE OF DELIVERY ON ISA
EXAM SCORES

Online delivery of courses has advantages and

disadvantages. Working students can take an
online course at times that are convenient to

them, however online courses can be more
difficult as seen by their higher dropout rates.
Attrition rates are generally higher in courses
delivered online. Terry (2001) reported higher
attrition rates in Finance and Statistics online
MBA courses (37%) versus Campus courses
(17%). The dropout rate for one online MBA

program as 43% compared to 11% for the
campus based program (Patterson and
McFadden 2009).

Online delivery is not always viewed favorably
by students. Davis et al (2010) report that only
37% of students gave high rates of effective or

vary effective to “pure online” courses,
compared to 59% to “hybrid” and 76% for “on-
ground with online supplements”. There is also
the question of whether all students are suited
to succeed in online courses. For example, “Mid-
range” students typically earn grades 10-15%

lower in online courses (Marold and Haga 2003).

As indicated previously, most of our program is
offered in an online format. We decided to
investigate whether or not the type of delivery of
the coursework has any impact on the ISA exam
score. A sample of 131 students was used in our

study over a three-year period. The average ISA
exam score for the sample was 48.2 with a
standard deviation of 12.3. The average student

age was 30.1. The male/female ratio was
68%:32%.

Characteristics of our courses delivered online

are as follows. Students complete similar or
identical assignments as students taking the
same course in a traditional classroom setting.
Online students take all of their tests on
campus.

http://www.iseducation.org/
http://www.iseducation.org/

Information Systems Education Journal (ISEDJ) 10 (5)
 October 2012

©2012 EDSIG (Education Special Interest Group of the AITP) Page 32

www.aitp-edsig.org /www.isedj.org

Of the six IS core areas defined by IS curriculum
ABET (2007) accreditation guidelines, we offer
online versions of courses in the areas of
modern programming language, data

management, and networking and
telecommunications, and thus our study will be
focused only on those areas.

4. RESULTS

The authors first analyzed the overall ISA score

compared to the total number of CIS courses the
student completed online. Figure 1 shows a
scatter plot of this comparison. A positive
correlation of .267 (p-value=.002) indicates that

students’ overall ISA score actually increased
with more classes taken online. The equation is

ISA score = 45.4 + 2.00 number online (R2 =
7.1%).

A second analysis was run on the overall ISA
score with just the required core classes in our
CIS program. The core classes would logically be
the ones that would have the largest impact on

the ISA exam since the core classes cover
required concepts for the IS 2002 model
curriculum on which the ISA exam is based. Of
the seven required core CIS classes, only five
are offered online.

Figure 2 shows a scatter plot of the student’s

composite ISA score versus the number of core
CIS courses taken online. Again, there was a
positive correlation, which increased slightly to
.271 (p-value=.002) indicating that students
overall ISA score also increased with more of the
core classes taken online. The equation is ISA =

46.5 + 3.28 number core online (R2 = 7.3%).

The analysis was next broken down by ISA exam
sub-scores. For each sub-score, a t-test was
run to determine if taking the course covering
the majority of the material for that area was
taken online or in the classroom. As indicated in

the previous section, only the modern
programming language, data management, and
networking and telecommunications sub-scores

were analyzed as the department does not offer
online versions of courses in the other three ISA
exam subcategories. These three courses are
also required for the CIS major.

For the Programming Language sub-score, there
were 12 students that completed our CIS 3145 –
Business Application Development with Visual
Basic course online, and 59 that completed the
classroom version. The sample size is

considerable smaller for this test. This can be
attributed to the fact that prior to the latest
major curriculum revision, students had a choice
of several classes to meet their programming

requirement. Currently all students are required
to take CIS 3145 - Visual Basic as part of the
core. This course also tends to have a lower
success rate and since students that did not
successfully complete the course in the first
attempt were again removed from the analysis,
this likely contributed to the smaller sample size.

Table 2 summarizes the results. The online
students mean was over six points higher than
the classroom students, but the difference again

was not statistically significant.

Table 2. Programming languages sub-score
analysis

Delivery N Mean St dev. t-test

Classroom 59 40.7 13.5 t= -1.05

p-val=.317 Online 12 47.2 20.8

For the ISA Data Management sub-score, there
were 18 students that completed CIS 3060 –

Database Management Systems online, and 91
that completed the classroom version. Students
that did not successfully complete the course in
the first attempt were removed from the
analysis. Table 3 summarizes the results. The

online students mean was over 3 points higher
than the classroom students, but the difference

was not statistically significant.

Table 3. Data Management sub-score
analysis

Delivery N Mean St dev. t-test

Classroom 91 47.1 14.5 t= -1.12
p-val.=.273 Online 18 50.6 11.7

For the ISA Networking sub-score, there were
18 students that completed CIS 3230 –
Networking and Telecommunications Systems
online, and 90 that completed the classroom

version. Students that did not successfully
complete the course in the first attempt were

again removed from the analysis. As shown in
Table 4, the online students mean was over six
points higher than the classroom students, but
the difference was still not statistically
significant.

Information Systems Education Journal (ISEDJ) 10 (5)
 October 2012

©2012 EDSIG (Education Special Interest Group of the AITP) Page 33

www.aitp-edsig.org /www.isedj.org

Table 4. Networking sub-score analysis

Delivery N Mean St dev. t-test

Classroom 90 40.6 18.0 t= -1.30
p-val.
=.205

Online 18 47.2 19.8

5. CONCLUSIONS

Based on the results obtained, no significant
difference was observed between the ISA exam
scores of those students who completed the
coursework online and those who completed the

coursework in a traditional classroom setting.

This is an important preliminary finding on the
comparability of online versus regular course
delivery. We effectively used the ISA exam to
show that student outcomes are being met with
both delivery methods.

However, we could establish that there seems to
be a small, but significant positive relationship
between the number of courses taken by a
student in an online format and his/her overall
ISA exam score. This could be an indication that
the skills needed to succeed in online courses

are also useful for success in Information
Systems.

O’Neil (2009) discusses the student

characteristics in an online environment. This
author used an 18 question checklist to compare
students in three groups of students taking

online courses: Seniors, Freshmen, and
Freshmen in a “First-year Experience Campus”.
The last group is considered an ‘unprepared’
group. The unprepared group was more likely to
say No to the questions:
 “I am not intimidated by using technology

for learning”,

 “I am an independent learner”, and
 “I easily understand what I read”.
Both Freshmen groups were more likely to
respond no to the questions:
 “I am a self-starter”
 “I am open to working in an un-structured

setting”

Seniors with more experience taking classes in
general, and online courses in particular, will
perform well in online courses because they
have the skills to do so.

Student in our department can take online or
regular classes and will self-select the type of
course they prefer. Thus the students with the

skill to do well in an online course, independent,
self-starters, able to read and learn in un-
structured environments, and not intimidated by
technology, should also do very well on the ISA

exam.

Future studies can look at additional factors that
lead to success in CIS programs and online
courses, such as overall skill levels as measured
by GPA scores, age, professional experience,
motivation and learning styles. We can also look

at the performance in the specific courses and in
the corresponding ISA core area scores as they
relate to the online and regular classroom
delivery modes.

6. ACKNOWLEDGEMENTS

We would like to thank Jeffery Landry, Harold
Pardue, and Bart Longenecker for assistance
with the ISA data.

7. REFERENCES

ABET Computing Accreditation Commission,
(2007). Criteria For Accrediting Computing
Programs. Approved March 17, 2007, ABET,
Inc., Baltimore, Maryland. Retrieved June 6,
2011 from http://www.abet.org

Davis, G., Kovacs, P., Scarpino, J., and Turchek, J.
(2010). Determining the Effectiveness of Various
Delivery Methods in an Information
Technology/Information Systems Curriculum.
Information Systems Education Journal, 8 (32).

Gorgone, J., Davis, G., Valacich, J., Topei, H.,
Feinstein, D., and Longenecker, H. (2003).
Model Curriculum and Guidelines for
Undergraduate Programs in Information
Systems, Database for Advances in
Information Systems, Winter 34 (1).

Institute for Certification of Computing
Professionals (ICCP) Information System
Analyst Certification. (2011). Retrieved June
6, 2011 from http://www.iccp.org/#8

Landry, J., Pardue, H., Reynolds, J., and
Longenecker, H. (2006). IS 2002 and

Accreditation: Describing the IS Core Areas
in Terms of the Model Curriculum.
Information Systems Education Journal, 4
(21).

Marold, K., & Haga, W. (2003). The emerging
profile of the on-line learner: Relating course
performance with pretests, GPA, and other

measures of achievement. Proceedings of

http://www.abet.org/
http://www.iccp.org/#8

Information Systems Education Journal (ISEDJ) 10 (5)
 October 2012

©2012 EDSIG (Education Special Interest Group of the AITP) Page 34

www.aitp-edsig.org /www.isedj.org

the Information Resource Management
Association (IRMA) Conference (pp. 248-
251). Idea Group Publishing.

McKell, L., Reynolds J., Longenecker H., Landry

J., Pardue H. (2005). Information Systems
Analyst (ISA): A Professional Certification
Based on the IS2002 Model Curriculum, The
Review of Business Information Systems,
Summer (9:3), 19-24.

O’Neil, T.D. (2009). The success of the
unprepared student in the distance
education classroom in higher education.
Proceeding ISECON, V26, §2324.

Patterson, B., McFadden, C. (2009). Attrition in
Online and Campus Degree Programs.
Online Journal of Distance Learning
Administration. 12(2).

Terry, N. (2001). Assessing Enrollment and

Attrition Rates for the Online MBA. T H E

Journal, 28(7), 64-68.

Information Systems Education Journal (ISEDJ) 10 (5)
 October 2012

©2012 EDSIG (Education Special Interest Group of the AITP) Page 35

www.aitp-edsig.org /www.isedj.org

Appendices and Annexures

Table 1

MSCD Exam Summary

Core Area # of Items All Schools MSCD

Hardware and Software 10 41.8 47.3

Modern Programming

Language

12 40.9 44.8

Data Management 44 46.0 51.2

Networking and

Telecommunications

12 45.1 45.3

Analysis and Design 108 47.5 51.2

Role of IS in

Organizations

72 52.0 56.3

Figure 1. ISA score versus Number CIS courses taken online (r=.267, p=.002)

number online

IS
A

 s
c
o

re

9876543210

80

70

60

50

40

30

20

10

Scatterplot of ISA score vs number online

Information Systems Education Journal (ISEDJ) 10 (5)
 October 2012

©2012 EDSIG (Education Special Interest Group of the AITP) Page 36

www.aitp-edsig.org /www.isedj.org

Figure 2. ISA score versus Number core CIS courses taken online (r=.271, p=.002)

number core online

IS
A

543210

80

70

60

50

40

30

20

10

Scatterplot of ISA vs number core online

Information Systems Education Journal (ISEDJ) 10 (5)
 October 2012

©2012 EDSIG (Education Special Interest Group of the AITP) Page 37

www.aitp-edsig.org /www.isedj.org

CIS Program Redesign Driven By IS2010 Model:

A Case Study

Ken Surendran
ksurendran@semo.edu

Department of Computer Science

Suhair Amer

samer@semo.edu
Department of Computer Science

Dana Schwieger

dschwieger@semo.edu
Department of Accounting

Southeast Missouri State University

Cape Girardeau, MO 63701-4799, USA

Abstract

The release of the IS2010 Model Curriculum has triggered review of existing Information Systems (IS)
programs. It also provides an opportunity to replace low enrollment IS programs with flexible ones
that focus on specific application domains.

In this paper, the authors present a case study of their redesigned Computer Information Systems
(CIS) program that comes into effect in Fall 2012. Of the four tracks in the program, two are aimed
at students interested in two diverse application domains: Business Administration and Graphics
Communications (Multimedia). The authors describe the context and design constraints in choosing
the tracks, as well as the process used in designing their flexible CIS program with consideration made

for ABET accreditation. They also discuss how well the core courses in the redesigned CIS program
fare against the IS2010 Model recommendations. Further, for the CIS Business track, they illustrate
how the courses collectively satisfy the IS Body of Knowledge recommended in the Model document.
In addition, they map the domain-related courses in that track onto the different levels of a two-
dimensional learning taxonomy to help design the assessments in those courses. They also provide

an outline of the Multimedia track they developed using the same process.

Keywords: IS2010 Model, Flexible IS Program, IS Tracks, Intersecting courses, Learning Taxonomy,
IS BOK

1. INTRODUCTION

To identify solutions to the current credibility
crisis in the IS discipline, Firth et al. (2011)

developed six propositions. One of the most

poignant of the six being that “the credibility of
the IS discipline lies in the design and delivery of
excellent courses and curriculum.” According to
Dick et al. (2007), declining student enrolment

contributes significantly to the current crisis that

mailto:ksurendran@semo.edu
mailto:samer@semo.edu
mailto:dschwieger@semo.edu

Information Systems Education Journal (ISEDJ) 10 (5)
 October 2012

©2012 EDSIG (Education Special Interest Group of the AITP) Page 38

www.aitp-edsig.org /www.isedj.org

IS departments face. The IS2010 Model (Topi et
al., 2010) is the latest set of curriculum
guidelines that educational institutions can use
in designing their IS Programs. It may not,

however, get us through the crisis completely
without the other complementing initiatives to
address the issue in a holistic fashion. The
IS2010 Model acknowledges the broader scope
of the IS discipline by allowing the curricula to
go beyond the schools of business and
management to attract more IS students

interested in different application domains. In
this case study, we discuss two IS tracks
designed with the IS2010 curriculum guidelines
in mind: Business and Graphics

Communications. The new CIS program, to be
implemented in Fall 2012, also has two other

tracks (IT Services and System Development)
which are not discussed in this paper.

In Software Engineering, contributors describe
the body of knowledge by indicating the levels of
understanding using Bloom’s taxonomy
(Bourque & Dupuis, 2001). We use a two-

dimensional cognitive model adaptation of
Bloom’s Model (Anderson & Krathwohl, 2001) for
mapping the knowledge levels of CIS business
track courses.

In section 2, we briefly review the structure and
characteristics of the IS2010 Model as well as

Anderson and Krathwohl’s Cognitive Taxonomy.
In section 3, we summarize the process of our
CIS program redesign. We then discuss the
local factors that influenced our CIS program
redesign in section 4. In section 5, we discuss
the structure of the new CIS program with four

tracks and the design details for two IS tracks.
In section 6, we verify how these courses meet
the IS2010 curriculum guidelines and map the
CIS business track courses onto the knowledge
elements recommended in the IS2010 model.
We also apply Anderson and Krathwohl’s
Cognitive Taxonomy to those courses for

determining appropriate assessments. In the
conclusion section, we emphasize the
opportunity that exists in enhancing the CIS

programs with newer tracks in different
application domains.

2. LITERATURE REVIEW

Among the five disciplines under computing
(Computer Science (CS), Computer Engineering
(CE), Information Systems (IS), Information
Technology (IT) and Software Engineering (SE)),
the IS discipline is most concerned with

organizations (JTFCC, 2005) and application
systems in various domains that enable the
organization to function, succeed, and comply
with legal and regulatory requirements (Agresti,

2011). The crux of the IS discipline is in the
value provided by the application of the
technology rather than the technical
components. With the variety, number, and
demand for strategic application of domain-
centric applications rapidly increasing, declining
enrollments in IS programs and related

computing disciplines is of serious concern (Dick
et al. 2007). To improve enrollments, Firth et
al. (2008) suggested revising the focus of those
courses, early in the IS program, to focus more

on IS than on CS or IT. Some institutions have
already redesigned their IS curricula (e.g., Koch,

Van Slyke, Watson, Wells, & Wilson, 2010;
McGann, Frost, Matta & Huang, 2007) to address
the recruitment problems. In this context, we
recognize the value of the new IS2010 model
curriculum in addressing enrollment issues
through application beyond business domains.

IS2010 Curriculum Recommendations

Based upon periodic reviews, the IS Curriculum
Task Force came up with the current IS2010
model curriculum (Topi et al., 2010) that is
flexible, domain-independent and well
structured. The IS2010 model curriculum cuts

across the usual departmental silos by allowing
the inclusion of any application domain (i.e.,
going beyond schools of management and
business).

IS2010 specifies a set of structured outcome

expectations starting with high-level IS
capabilities which are translated into three
categories of knowledge and skills:
foundational, IS- specific and domain
fundamentals. With just seven core courses
addressing the high-level IS capabilities, this
model offers flexibility for designing IS programs

with several tracks emphasizing various
application domains. It provides catalog
descriptions and learning objectives for the core

and elective courses as well as a mapping for
the depth of knowledge metrics for these
courses along with the IS Body of Knowledge.

Cognitive Taxonomy

In 1956, Benjamin Bloom published a learning
taxonomy consisting of cognitive (mental),
affective (emotions/ feelings), and psychomotor
(physical skills) domains focusing on the

Information Systems Education Journal (ISEDJ) 10 (5)
 October 2012

©2012 EDSIG (Education Special Interest Group of the AITP) Page 39

www.aitp-edsig.org /www.isedj.org

cognitive domain (Bloom, 1956). Anderson and
Krathwohl (2001) revisited Bloom’s taxonomy
with intentions of updating, revising and
“…refocusing education’s attention on the value

of the original Handbook…” and assisting
educators “…as they struggle with problems
associated with the design and implementation
of accountability programs, standards-based
curriculums and authentic assessments (p.
XX1).” (See Figure 1.)

Figure 1 - Anderson & Krathwohl’s

Cognitive Model

Anderson and Krathwohl noted that, “The
revision emphasizes the use of the Taxonomy in
planning curriculum, instruction, assessment,
and the alignment of these three (2001, p 305).
Thus, this model is well structured to use as a

guideline for evaluating ABET accreditation
standards. The revision represents a significant
shift from Bloom Taxonomy’s primary focus on
assessment to the teaching process where
faculty can use the model to classify and identify
project objectives.

Similar to Bloom’s Model, students’ levels of
learning progress from a state of memorization
of facts, to eventual application of concepts in a
distinct functional domain. However, unlike
Bloom’s single dimension taxonomy, Anderson
and Krathwohl’s (2001) framework is

represented by a two dimensional table
consisting of carefully defined categories of

knowledge and cognitive processes. The
“Knowledge” dimension is divided into four
categories: factual knowledge, conceptual
knowledge, procedural knowledge, and
metacognitive knowledge. The “Cognitive

Process” dimension provides a means of
assessing the retention and transfer of
knowledge and is described through six
categories of processes illustrated in Figure 1.
The “Retention” dimension is most closely
aligned with the basic “Remember” level of the

model. The “Transfer” of knowledge gains
progressively more depth as the tasks involved
move from “Understand” to “Create.” The
following breakdown provides a brief description

of each of the categories of knowledge and their
associated cognitive process dimension in
parentheses.

Factual knowledge (Remember level) is the
basic form of knowledge described whereby a
student becomes familiar with a discipline and

its technical vocabulary. The associated
cognitive processes focus upon the retention of
concepts through recognizing and recalling
relevant knowledge from long term memory.

Elements of the next three knowledge transfer

categories can be found in differing degrees
throughout the remaining levels of the cognitive
taxonomy (Figure 1). The process classification,
(in parentheses) is determined by the task being
applied.

Conceptual knowledge (Knowledge transfer)

describes a systems-type concept in looking at
the “interrelationships among the basic
elements.”

Procedural knowledge (Knowledge transfer)
focuses upon appropriately applying knowledge
to solve a subject matter specific issue.

Metacognitive knowledge (Knowledge
transfer) is essentially an awareness of what one
knows: strategic knowledge, self-knowledge,
and knowledge of the cognitive demands for a
task.

When designing our IS tracks, we considered the
different levels of Anderson and Krathwohl’s
(2001) Cognitive Model. Next we explain our
redesign process. Later in section 5, we apply
Anderson and Krathwohl’s two-dimensional
model for courses in one of the CIS tracks.

3. REDESIGN PROCESS

The intention of our CIS redesign was to select
application domains having viable minors and
intersecting courses. The first step required
assigning a coordinator for managing the team

effort and delivering the end product. The CIS
team utilized an iterative process for the
program redesign which involved:

 Setting basic criteria for the program
such as alignment with model curricula.

Information Systems Education Journal (ISEDJ) 10 (5)
 October 2012

©2012 EDSIG (Education Special Interest Group of the AITP) Page 40

www.aitp-edsig.org /www.isedj.org

 Identifying CIS program outcomes that
reflected the department’s program
educational objectives.

 Setting limits on the number of new

courses with consideration made for
teaching load constraints.

 Identifying viable tracks having courses
intersecting with computing by
contacting program coordinators in
various departments in the University.

 Structuring the program architecture to

serve as a baseline design.
 Utilizing existing courses, and involving

faculty members for developing new (or
redesigning) courses in their respective

areas of expertise.
 Liaising with all stakeholders such as the

Registrar’s Office to ensure the program
met all the university-wide
requirements.

 Revising the architecture and designs
based on internal and external reviews
and feedback.

The whole exercise took over a semester. The
coordinator was given some release time to
manage this redesigning exercise. The IS2010
gave a framework for structuring the program.
The existing program outcomes were modified to
suit tracks other than business and to allow for
possible future ABET accreditation.

The design considered the following constraints:
keep the number of newly developed courses to
a minimum; make use of existing courses; and
identify courses that could be shared among the
IS Core courses, foundational and university

required courses and domain fundamental
courses. As a result, seven new courses were
created. One section will be offered for each
course per year and added to the teaching load.
Intersecting courses, linking IS with application
domains, were also identified.

In the next section, we discuss the rationale for
selecting the tracks. The local context played a
major role in limiting the number of tracks to

four.

4. CIS REDESIGN: IDENTIFYING TRACKS

Our CS department, located in the College of
Science, offers two programs, CS and CIS. The
present CIS program shares several courses
with the CS program. The program’s intent has
been to provide a generalized curriculum in the
applied aspects of computing or informatics

(Duben et al., 2006). Although the CIS program
addressed the domain fundamentals of IS2010
(by requiring a minor or another major), it
lacked intersecting courses applying the

concepts to specific domains. In view of our
course load constraints, the domains, already
having such intersecting courses, are good
candidates for CIS tracks. Next we explain how
the local context played a role in choosing the
tracks for CIS redesign.

Application Domains

Because computers are used in every discipline,
we can have, theoretically, a CIS track for every

field of study. The consideration of application
domains (as tracks within CIS) will vary from

institution to institution, depending on the
programs offered and the availability of
intersecting courses. Initially, we considered the
following academic domains as program tracks:
Business, Multimedia /Graphic Arts, Healthcare,
Education, Law/Security, and Science.

Local Context

The redesigned CIS program was intended for
students wishing to study either the application
of computers in a chosen domain or an area of
specialization within the computing discipline.
At our institution, a track in Business

Administration helps fill the gap created by the
Fall 2011 termination of the MIS program
housed in the AACSB-accredited Business
School. Digital Art and Graphic Communications
have several intersecting courses, thus also
providing a strong option. With their

overlapping courses with the CS core curriculum,
Science and Mathematics are also natural
candidates for domain specific tracks. However,
since our CS program requires 12-credit hours of
science courses and additional mathematics
courses, students with an aptitude in
Mathematics and Science may most likely

consider majoring in CS rather than CIS.
Further, we wish to avoid CIS competing with CS
for enrollment. We are also considering

developing tracks in Healthcare, Education, and
Law/Security. Since many application domains
require new intersecting courses, only four
tracks, which offer the greatest potential to

attract students, will be initially offered.

CIS Tracks

Students choosing the CIS program will be
encouraged to choose a track pertaining to an

Information Systems Education Journal (ISEDJ) 10 (5)
 October 2012

©2012 EDSIG (Education Special Interest Group of the AITP) Page 41

www.aitp-edsig.org /www.isedj.org

application domain or an area of specialization
within computing. The authors’ university does
not offer separate programs in IT and SE so two
specialization tracks in these two computing

disciplines were developed:

1. Business (includes a minor in Business
Administration)

2. Multimedia (includes a minor in Graphic
Communications Technology)

3. IT Services (includes a minor in Computer

Networking)
4. Software Development (some other minor

or specialization in a computing area such
as web or game development)

All four tracks have a common core of IS

courses discussed in the next section. Each of
the first three tracks has a specific minor. In the
fourth track, a student chooses a minor other
than those three or additional courses relating to
system development. To illustrate the broader
scope of the IS2010 Model, we confine our
discussions to the Business track and its

modified application to the Multimedia track. To
begin, we discuss the architecture of the CIS
program.

5. REVISED CIS PROGRAM

The total credit-hour requirements for our CIS

program stands at 124 (41 at three credit hours
and 1 at one credit hours) as distributed in Table
1.

CIS Architecture

Our institution requires every undergraduate
program to include 17 general education
(University Study) courses. Since the CIS core
utilizes two of these courses, the program
requires 45 credit-hours of courses toward
foundational knowledge and skills. Each of
these courses addresses some of the generic

student learning outcomes including:

 Demonstrate capabilities for critical

thinking, reasoning, and analyzing.
 Demonstrate effective communication

skills.
 Demonstrate the ability to integrate the

breadth and diversity of knowledge and
experience.

 Demonstrate the ability to make informed,
intelligent value decisions.

These general education courses represent the
foundational courses referenced in the IS2010
model. The redesigned CIS program also has
courses in domain fundamentals and courses

that intersect the domains and computing. In
the following, we provide the details of the CIS
program architecture.

Table 1: CIS Architecture

Category Credit hours

University Studies 45

CIS Major 55–58

 Core 40

 Supplemental 15-18

Additional

Requirements

21 – 24

 Mathematics 6

 Minor or advised
courses

15-18

Total 124

CIS Core

In a recent study examining the alignment of

current IS programs with the IS2010 model,
Apigian and Gambill (2010) reported that only
four of the seven IS2010 core courses
(Fundamentals of Information Systems, Data
and Information Management, IT Infrastructure,

and Systems Analysis and Design) are in 80%
(or more) of the current IS programs. Our CIS

program includes these courses as well as a
capstone project course that helps entwine the
learning experiences of these courses, and
others, as the students prepare to enter the
workforce.

We split the IS courses into two groups:
common Core and track-specific Supplemental.
The additional requirements include track
specific courses, which could be for a minor in
the chosen domain.

 In Table 2, we list the 14 CIS core courses and

map 11 of them onto the IS2010 Model. The

numbers under the IS2010 Model column
correspond to the order in which the core and
the sample electives are listed on page 35 of the
IS2010 Model document (Topi et al., 2010).
Each is a three credit hour course except for,
CS495, a one credit hour senior seminar. The

Discrete Structure course is included for
addressing one of the knowledge areas in
computing. The Senior Seminar course focuses
upon social and ethical issues in computing.

Information Systems Education Journal (ISEDJ) 10 (5)
 October 2012

©2012 EDSIG (Education Special Interest Group of the AITP) Page 42

www.aitp-edsig.org /www.isedj.org

The Capstone Experience is a project course that
consolidates the various knowledge and skills
learned in other courses. A zero-credit hour

(IS003) Information System Assessment is also
required but not listed in Table 2.

CIS Supplement to Core

The (five or six) CIS supplement courses differ
according to track. Track specific courses

prepare students to meet the technology needs
of problems in that discipline (ABET, 2011). For
application domain tracks, such as Business and
Multimedia, intersecting courses are included

under the CIS supplement. These are discussed
later for the Business and Multimedia tracks.

For the IT Services and System Development
tracks, additional relevant CS courses are
included.

Table 2: Mapping of CIS Core Courses on
IS2010 Model

Course Name IS2010
Model

IS175 Computer Information
Systems – I

Core - 1

IS275 Computer Information
Systems – II

Core- 3 &
Elective- 3

IS340 Information

Technology

Core- 5

IS375 Database and
Information Systems

Core- 2

IS445 Systems Analysis &
Design

Core- 6

IS448 IS/IT Project
Management

Core- 4

IS575 IS/IT Strategy and
Management

Core-7 &
Elective- 6

IS130 Application

Development – I

Elective- 1

IS245 Web Development and
Security

Electives– 1
& 6

IS320 Human Computer

Interaction

Elective- 4

IS330 Application
Development - II

Elective- 1

CS245 Discrete Structure

CS495 Senior Seminar

UI450 Capstone Experience

Business Track

The Business track prepares students planning
for a career involving application of computers in

all areas of business administration. This track
replaces MIS (no longer available at our
institution) with greater technical content. The
supplemental courses are listed in Table-3.

Table 3: Supplements - Business Track

Course Name

AC330 Accounting Information Systems

IS360 Mobile Application development

IS440 Web Design for
Electronic Commerce

IS465 Management Support Systems

MK555 Internet Marketing

Multimedia Track

The Multimedia Computing track is for
developing skills required for implementing
multimedia designs using computers. The
supplemental requirements include courses from
Art as well Computer Science as shown in Table
4.

Table 4: Supplements - Multimedia Track

Course Name

AR104 Design Foundations

AR323 Art & New Technology

IS360 Mobile Application development

IS440 Web Design for Electronic

Commerce

IS465 Management Support Systems

IT Services

The IT Services track is centered on a minor in
Computer Networking. This track was developed
for students considering a career in IT services,
such as infrastructure development or support.
The supplement requires CS courses in
programming, operating systems, and data
communications.

System Development

The system development track has built-in
flexibility to cater to changing demands in the
field. It is oriented toward students who are

interested in applying computers in a domain
outside those offered through the other CIS
program tracks or in a specialized computing
area such as web computing or game
development. The supplement requires courses
in programming, operating systems, and mobile
applications development. Students will take 15

Information Systems Education Journal (ISEDJ) 10 (5)
 October 2012

©2012 EDSIG (Education Special Interest Group of the AITP) Page 43

www.aitp-edsig.org /www.isedj.org

hours of domain related or CS/IS courses, as
advised by faculty, towards their goal (e.g., web
computing, game development).

6. DETAILED CASE EXAMPLE-
BUSINESS TRACK

In this section, we provide comprehensive
details for the Business track in view of its
historical significance. In the next section, we
also provide design details pertaining to the

Multimedia track – an alternative to the Business
track.

Design

As indicated in Table 1, the Business CIS track

requires 124 credit-hours of study (41 three
credit hour courses plus the one credit-hour
CS495). This includes the 15 foundational
(University Studies) courses, 14 CIS core
courses (excluding the zero-credit assessment
course), five supplemental courses, two
Mathematics courses, and five courses towards a

minor in Business (see Table 3).

Three high-level IS capabilities are described in
in the IS2010 curriculum model (Topi et al.,
2010, pp 16) IS Specific, Foundational, and
Domain Fundamentals. It is possible that some
of the courses intersect more than one capability

sector. Also, in order to stay within the overall
credit-hour requirements, courses are designed
in such a way that they are shared among the
Foundational and Core requirements.

Table 5: Business Minor (Business Track)

Course Name

AC221 Principles of Accounting I

AC222 Principles of Accounting II

EC225 Principles of Macroeconomics

FI361 Financial Management

MG301 Principles of Management

MK301 Principles of Marketing

Figure 2 shows the course mapping by capability
sectors for the CIS-Business Track. Excluding

the IS003 (zero-credit hour), all 41 courses
(indicated in Figure 2) are required to complete
the CIS-Business track major. Courses located
within the “Foundational and University
Requirements” circle address the requirements
of the program as well as graduation
requirements for the University. Within the

Business Track circle, we indicate the courses

required to obtain a minor in Business and the
courses that intersect the IS and Business
domains.

Figure 2: Courses for CIS Business Track

Figure 2 also shows the courses that intersect IS
and the application domain which were not in

the earlier CIS program. For reasons of credit-
hour efficiency, two of the Foundational courses
(IU 309 – Technical Writing and IU315 - Cyber
Ethics) are shared with the IS Core. In addition,
the Foundational course (EC215
Macroeconomics) is shared with the Business
Domain while the capstone experience and

Applied Calculus (MA139) intersect all three.

Verification

Our redesign process reformulated the program
outcomes, while retaining the overall format of

other programs in the department, to reflect the
applied nature of CIS in a variety of domains.
Verification of these outcomes depends on the
learning outcomes of the courses. The courses
in the redesigned CIS match, as shown in Table
2, the core and some of the elective courses of
the IS2010 Model. Course descriptions in the

IS2010 model guided the design of the courses
in our CIS core as well as some electives.

While this is only a high-level verification, it sets

the direction in describing the actual courses
meeting the knowledge elements stated under
the IS Body of Knowledge: General computing,

IS specific, Foundational, and Domain-related
(Topi et al., 2010 Appendix-4 pp 81-84). Table
6 maps the courses in the Business Track
(Figure 2) having the potential to address the
various knowledge elements in the above four
knowledge areas. Similar mappings could be

Information Systems Education Journal (ISEDJ) 10 (5)
 October 2012

©2012 EDSIG (Education Special Interest Group of the AITP) Page 44

www.aitp-edsig.org /www.isedj.org

administered for other tracks to assist in refining
course descriptions.

Table 6: Knowledge Area Mapping

General Computing Knowledge Areas

Programming
Fundamentals

IS130, IS330, IS360

Algorithms &
Complexity

CS245, MA139, MA223

Architecture &
Organization

IS340

Operating Systems IS340

Net Centric
Computing

IS340, IS440, IS339

Programming

Languages

IS130, IS330, IS360

Graphics & Visual
Computing

IS130, IS330

Intelligent Systems IS 465

Information Systems Specific
Knowledge Areas

IS Management &
Leadership

IS275, IS575, IS440

Data & Information
Management

IS575, IS375, IS465

Systems Analysis
& Design

IS445

IS Project
Management

IS448

Enterprise
Architecture

IS275, IS175

User Experience IS320

Professional Issues
in Information
Systems

IS439

Foundational Knowledge Areas

Leadership &
Communication

IU309, Literary & Oral
Expression Categories

Individual &
Organizational
Knowledge Work

Capabilities

UI450, CS495, IU315

Domain-related Knowledge Areas

General models of
the domain

AC221, MG301,
MK301, FI361, EC215

Key specialization
within the domain

AC222, AC330, MK555,
EC225

Evaluation of
performance with
the domain

IS003

Depth of Knowledge Metrics

In addition to the knowledge areas, the depth of
knowledge achieved through the various courses

using appropriate assessments must also be
addressed. Throughout the educational process,
students are expected to progress through their
courses of study, from that of acquiring factual

knowledge and skills, to ultimately applying
those resources to a given situation.

Several learning models have been designed to
help faculty evaluate and design courses that
will aid in assessment and progression. Such
models are beneficial for evaluating courses in

light of college, program and accreditation
considerations. Bloom’s Taxonomy was used in
the development of the IS2010 model in
addressing knowledge metrics (Topi et al., 2010

pp. 78-80). Anderson and Krathwohl furthered
Bloom’s model to not only assist with

assessment, but to also help in the identification
and classification of project objectives. In the
next section, we apply Anderson and
Krathwohl’s model to the Business Track courses
(Figure 2) from both learning and assessment
perspectives. (See Appendix.)

Application of a Cognitive Taxonomy to
Business Domain Courses

As described in Section 2 and for assessment
purposes, Anderson and Krathwohl (2001)
suggest that courses falling into the
“Remember” Cognitive Process Dimension could

be assessed through prompt-based recognition
tools. Assessments for the “Knowledge
Transfer” levels from “Understanding” through
“Create” require the students to progressively
apply their knowledge to new situations. At the
“Apply” level, the assessments could require

students to determine and apply the necessary
procedure to solve a problem or situation.
Assessments used at the “Analyze” level could
require students to distinguish relevant from
irrelevant facts before finding a solution. For the
“Evaluate” level, students could be asked to
make judgments based upon criteria and

standards. Using these definitions, we examine
the business track courses and then discuss the
assessment options.

The junior level Accounting Information System
course (AC330) focuses upon domain-specific
fundamentals addressing data security and

transaction cycle concepts. The course focuses
upon the first three dimensions of Anderson and
Krathwohl’s learning taxonomy as students gain
factual knowledge about the field, learn new
applications, and then analyze and apply their

Information Systems Education Journal (ISEDJ) 10 (5)
 October 2012

©2012 EDSIG (Education Special Interest Group of the AITP) Page 45

www.aitp-edsig.org /www.isedj.org

knowledge to projects within the course. (See
Appendix.)

Mobile Application Development (IS360),

currently under development, will correspond
with the first three dimensions of the learning
taxonomy. Students will first gain factual
knowledge about designing and coding
applications for mobile resources and then apply
their knowledge throughout the course in the
development of small mobile apps.

The Web Design for Electronic Commerce course
(IS440) covers all of the dimensions of the
Anderson and Krathwohl’s taxonomy. Students

learn techniques, languages, and tools for
building Web pages and finally analyze a client’s

Web site needs and design and create a site to
fulfill those needs.

The Management Support Systems course
(IS465) focuses on the last three dimensions of
the learning taxonomy. Students gain factual
knowledge regarding system design and design

tools, however, the focus of the course is in
evaluating a business process and creating the
design models associated with developing a
system for that process.

The Internet Marketing course (MK555)
introduces students to the strategic application

of Internet technologies to a business’ marketing
plan. Students examine the characteristics and
behaviors of Internet shoppers and the effect
that web content has upon their buying
behaviors. The course focuses on the first three
dimensions of the Anderson and Krathwohl’s

learning taxonomy model as students gain
factual marketing knowledge and then apply
their knowledge through the analysis of Internet
content and resources.

The capstone course (UI450) is taken by
students in all CS/CIS tracks. In this

experiential learning course, students apply their
accumulated knowledge and skills as they work
for a client to analyze, design and develop an IT

solution for the client’s specific need. The focus
of this course is on the last dimensions of the
learning model.

The Applied Calculus (MA139) and Elementary
Probability and Statistics (MA223), provide a
broad mathematical foundation applicable to
multiple majors. Due to the general nature of
these courses, they are not included in the
analysis.

Each of the business domain courses, especially
Internet Marketing, contains an element of
gaining and remembering factual knowledge.
Most of the courses conclude with the students

applying their knowledge through a project-type
assessment. This is especially true for the
capstone experience course where students
design and develop a project for an external
client. Thus, in assessing students’ levels of
learning throughout the program, it appears that
the assessment instruments should progress

from that of fact-based definitional tools to those
of development, evaluation, and application.

6. MULTIMEDIA TRACK:

AN ALTERNATE DOMAIN

Since our objective is to consider domains
beyond Business, we applied the same process
for designing a CIS track to Multimedia.
Students are required to minor in Graphics
Communication Technology (See Table 6). In
addition, five other courses are included in this
track (see Table 4).

Table 6: Graphics Communication

Technology Minor

Course Name

GM180 Intro. To Industrial Graphics

GM200 Vector & Bitmapped Graphics

GM282 Vector and Text Graphics

GM380 3D Modeling and Animation

GM386 Interactive Multimedia &
Animation

GM480 3D Animation Pipeline

Here, students take two Art courses for
developing artistic design skills. The core CIS
courses provide the necessary computing
concepts that help prepare students for lifelong
learning (as new technologies emerge) (Walker,
2010).

The courses shared between the three High-level
IS capabilities are shown in Figure 3. Excluding
the IS003 (zero-credit hour), all 41 courses

(indicated in Figure 3) are required to complete
the CIS-Multimedia track major. The Art & New

Technology course is an intersecting course with
Design Foundation as a prerequisite. For
reasons of course load efficiency, Photography
Fundamentals – PG284 is a shared Foundational
course.

Information Systems Education Journal (ISEDJ) 10 (5)
 October 2012

©2012 EDSIG (Education Special Interest Group of the AITP) Page 46

www.aitp-edsig.org /www.isedj.org

Figure 3: Courses for CIS Multimedia Track

The verification for this track will be similar to
the one shown in Table -6, except for domain

related knowledge areas. Here, the courses with
GM and AR prefixes will map for general models
of the domain and key specification areas within
the domain. We can also apply the Anderson
and Krathwohl’s cognitive taxonomy to
Multimedia domain courses.

7. CONCLUSION

The IS2010 model provides opportunity for
designing a flexible IS program reaching out to
all possible application domains. Walker (2010)

noted that, although local resources, limitations,

and priorities will influence programmatic
elements, essentially all CS programs attempt to
build problem-solving skills, from vision to
implementation, to assist in IT solution
development for people in diverse fields. Thus,
institutions will adapt the IS2010 model to suit
their local context.

In this case study, the authors describe a
flexible CIS program at their institution that has
been approved to start in Fall 2012. This
program utilizes the IS2010 model to reach out
to multiple knowledge domains. Four tracks
were chosen to suit their local conditions. The

redesign’s architecture offers considerable

flexibility in terms of adding new tracks. This is
achieved through (1) having a supplemental
component to the IS core that allows inclusion of
appropriate intersecting courses to bridge
computing with application domains and (2)

requiring a minor in the application domain or
having a mechanism for faculty to advise a set
of relevant courses in an area of specialization.

The program’s core courses were examined
through the frameworks of the IS2010 model
and Anderson and Krathwohl’s. cognitive model.
These mappings aid in choosing the appropriate

topics for, and designing appropriate
assessments in, program courses. The
presented design process and the concept of
tracks in application domains serves as a case
study that is based on the IS 2010 Model. In
addition, the mapping techniques, using a
cognitive model, can be applied to courses in

various tracks for matching course objectives
with appropriate assessment techniques with
consideration made for ABET accreditation.

Our general process can be replicated by other
universities. We utilized a case study approach,

explained in Section 3, for our redesign
initiative. We addressed the important higher
level issues -such as program objectives,
accreditation intentions - at the very beginning.
Creating a baseline program architecture that is
agreed upon by all department members is
crucial. Involving all of the faculty members and

consulting all of the stakeholders (including the
Registrar) helps in speeding program approval.
Another key step is identifying domains that
have intersecting courses with computing. If
there are no constraints, it is possible to develop
intersecting courses jointly with domain-specific
departments. Context will dictate the choice of

tracks.

One of the recent CIS revisions (Pauli et al.,
2010) has five categories of specializations
(Software Development, Web Development,
Business Analysis, Infrastructure Analysis and

Change Management). It is encouraging to note
that they have realized growth in enrollment
through their CIS revision. We expect similar
results as three of their specializations are
considered in our CIS redesign. Such aims to
address, in part, the crisis through which the IS
discipline is currently undergoing. Extending IS

beyond the Business domain through additional
IS minors should attract more students from
other majors. However, the results of these

program modifications are yet to be realized at
the authors’ institution as the foundation for
change is being set into place.

8. ACKNOWLEDGEMENT

An exercise of this nature is not possible without
the support of all the faculty members in the
department of Computer Science at Southeast

Information Systems Education Journal (ISEDJ) 10 (5)
 October 2012

©2012 EDSIG (Education Special Interest Group of the AITP) Page 47

www.aitp-edsig.org /www.isedj.org

Missouri State University. The program design
presented here is a departmental effort.

9. REFERENCES

ABET(2009).

http://www.abet.org/Linked%20Documents
UPDATE/Criteria%20and%20PP/C001%2010
-11%20CAC%20Criteria%2011-16-09.pdf
Accessed on April 28, 6 & 13, 2011.)

ABET (2011). Criteria for Accrediting Computing

Programs
http://www.abet.org/uploadedFiles/Accredit
ation/Accreditation_Process/Accreditation_D
ocuments/Current/cac-criteria-2012-

2013.pdf (Accessed on January 3, 2012.)
Agresti, W. W. (2011). Toward an IT Agenda.

Communications of the Association for
Information Systems, 28(17), 255-276.

Anderson, L. W. & Krathwohl, D. R. (Eds.)
(2001). A Taxonomy for Learning, Teaching,
and Assessing: A Revision of Bloom's
Taxonomy of Educational Objectives. Allyn &
Bacon. Boston, MA: Pearson Education

Group.
Apigian C. H., Gambill, S. E., (2010). Are We

Teaching the IS2009* Model Curriculum?,
Journal of Information Systems Education,
21(4), 411-420.

Bloom, B.S. (Ed.) (1956). Taxonomy of
Educational Objectives, the classification of

educational goals - Handbook I: Cognitive
Domain New York: McKay.

Bourque, P., and Dupuis, R. (Eds) (2001). Guide
to the Software Engineering Body of
Knowledge. IEEE CS Press, Los Alamitos, CA.

Dick, G., Granger, M., Jacobson, C., & van

Slyke, C. (2007). Where Have All the
Students Gone? Strategies for Tackling
Falling Enrollments AMCIS 2007
Proceedings. Paper 334.

Duben, A. J, Naugler, D. R., & Surendran K.
(2006). Agile Computing Curricula.
Information Systems Education Journal,

4(53), http://isedj.org/4/53/ ISSN: 1545-
679X.

Firth, D., Lawrence, C., & Looney, C. A. (2008).
Addressing the IS Enrollment Crisis: A 12-

step Program to Bring about Change through
the Introductory IS Course.
Communications of the Association for
Information Systems, 23(2), 17-36.

Firth, D., King, J., Koch, H., Looney, C. A.,
Pavlou, P., & Trauth, E. M. (2011).
Addressing the Credibility Crisis in IS.

Communications of the Association for
Information Systems, 28(13), 199-212.

JTFCC (2005) ―The Overview Report‖, Joint

Task Force for Computing Curricula, Sept.,

Association for Computing Machinery, New
York, NY.

Koch, H., Van Slyke, C., Watson, R., Wells, J.;

and Wilson, R. (2010). Best Practices for
Increasing IS Enrollment: A Program
Perspective. Communications of the
Association for Information Systems,
26(22). 477-492.

McGann, S. T., Frost, R. D., Matta, V., & Huang,

W. (2007). Meeting the Challenge of IS
Curriculum Modernization: A Guide to
Overhaul, Integration, and Continuous
Improvement. Journal of Information
Systems Education, 18(1), 49-62.

Pauli, W. E., Halverson, T., McKeown, J., (2010).
The 2010 CIS Baccalaureate Degree

Compared with IS2010 Guidelines. ISECON
2010 Proceedings, Paper 1396.

Topi. H., Valacich, J. S., Wright, R. T., Kaiser,
K., Nunamaker, J. F., Sipior, J. C., & de
Vreede, G. J. (2010). IS 2010: Curriculum
Guidelines for Undergraduate Degree
Programs in Information Systems.

Communications of the Association of
Information Systems, 26(18), 360-429.

Walker, H. M. (2010). Eight Principles of an
Undergraduate Curriculum. ACM Inroads.
1(1), 18-20.

http://www.abet.org/Linked%20DocumentsUPDATE/Criteria%20and%20PP/C001%2010-11%20CAC%20Criteria%2011-16-09.pdf
http://www.abet.org/Linked%20DocumentsUPDATE/Criteria%20and%20PP/C001%2010-11%20CAC%20Criteria%2011-16-09.pdf
http://www.abet.org/Linked%20DocumentsUPDATE/Criteria%20and%20PP/C001%2010-11%20CAC%20Criteria%2011-16-09.pdf
http://isedj.org/4/53/

Information Systems Education Journal (ISEDJ) 10 (5)
 October 2012

©2012 EDSIG (Education Special Interest Group of the AITP) Page 48

www.aitp-edsig.org /www.isedj.org

Appendix: Anderson and Krathwohl’s Taxonomy Table

C
o

u
r
s
e

#

Course Name The Cognitive Process
Dimension

R
e
m

e
m

b
e
r

A
p

p
ly

A
n

a
ly

z
e

E
v
a
lu

a
te

C
r
e
a
te

AC330 Accounting Information Systems X X X
IS360 Mobile Application Development X X X
IS440 Web Design for Electronic Commerce X X X X X
IS465 Management Support Systems X X X
MK555 Internet Marketing X X X
UI450 Capstone Experience X X X

Information Systems Education Journal (ISEDJ) 10 (5)
 October 2012

©2012 EDSIG (Education Special Interest Group of the AITP) Page 49

www.aitp-edsig.org /www.isedj.org

Problem Solving Frameworks for Mathematics

and Software Development

Kirby McMaster
kmcmaster@weber.edu

CSIS Dept, Fort Lewis College

Durango, CO 81301, USA

Samuel Sambasivam
ssambasivam@apu.edu

CS Dept, Azusa Pacific University
 Azusa, CA 91702, USA

Ashley Blake

ablaketx@hotmail.com
Scribblin' Sisters

Houston, TX 77094, USA

Abstract

In this research, we examine how problem solving frameworks differ between Mathematics and
Software Development. Our methodology is based on the assumption that the words used frequently
in a book indicate the mental framework of the author. We compared word frequencies in a sample

of 139 books that discuss problem solving. The books were grouped into three categories: Traditional
Math, Applied Math, and Software Development. We obtained a list of the most frequent words in
each category, and used these lists to describe three problem solving frameworks. Applied Math uses
models and algorithms to solve problems. Traditional Math is more concerned with proving
theorems. In the Software Development framework, customers provide the problem, and models and
algorithms are used to create a software solution. Our findings have relevance in the development of

approaches for teaching problem solving in Mathematics and Software Development courses.

Keywords: problem, solution, framework, model, algorithm, mathematics, software.

1. INTRODUCTION

A monkey and a banana are placed in a room.
The monkey desires the banana, but the banana
is high overhead. The room also contains a box.
If the monkey moves the box and climbs on it,
the banana can be reached. This is one version
of a classic problem solving situation in Artificial
Intelligence (Bratko, 2001).

Scientific activities that demonstrate problem
solving have been performed for centuries.

Archimedes was able to determine if a king's
crown was solid gold. Newton developed
Calculus, anecdotally to explain why an apple fell
on his head. Attributes of problem solving have
been studied in fields such as Psychology,
Medicine, Warfare, Management, and
Engineering.

Information Systems Education Journal (ISEDJ) 10 (5)
 October 2012

©2012 EDSIG (Education Special Interest Group of the AITP) Page 50

www.aitp-edsig.org /www.isedj.org

One issue often mentioned is whether problem
solving can be expressed in terms of a single set
of general principles, or if unique processes are
required in different knowledge domains. In this

paper, our primary focus is on problem solving
in Mathematics (Math) and Software
Development (SD). Does a single framework for
problem solving apply to Math and SD, or do
these academic disciplines solve problems in
different ways?

Problem Solving in Math

Mathematics encompasses a large number of
subject matter areas, such as Algebra, Calculus,

Geometry, Differential Equations, and Number
Theory. Within these areas, there are different

levels of emphasis on problem solving and
theorem proving. In his classic book How to
Solve It, Polya (1945) promotes methods of
solving problems in Math:

Studying the methods of solving problems, we
perceive another face of mathematics. Yes,
mathematics has two faces; it is the rigorous science
of Euclid, but it is also something else. Mathematics
presented in the Euclidean way appears as a
systematic, deductive science; but mathematics in
the making appears as an experimental, inductive
science. Both aspects are as old as the science of
mathematics itself.

Almost fifty years later, Velleman (1994) wrote a
book called How to Prove It, in which he
discusses the same two faces of mathematics,
but with a preference for constructing proofs:

This textbook will prepare students to make the
transition from solving problems to proving theorems
by teaching them the techniques needed to read and
write proofs.

The priority in each Math field can be on solving
Math problems, or it can be on using Math to
solve real world problems. Polya's book and
Velleman's book spend most of their coverage
on solving (or proving) Math problems. Several

current Math books on problem solving provide
students with techniques to help them compete

in Math exams, such as the Mathematical
Olympiads (Zeitz, 2006; Andreescu & Gelca,
2008). These books focus almost entirely on
solving Math problems, not real world problems.

On the other hand, the recent book entitled How
to Solve It: Modern Heuristics by Michalewicz

and Fogel (2004) leans toward the use of Math

to solve real world problems. Books on
Statistics and Operations Research are often
obligated to deal with real world problems. This
is especially true for Applied Statistics, with its

attention to the collection and analysis of real
world data.

Given the diversity of content and form within
Math, it seems reasonable to expect that more
than one mathematical framework could be
applicable to problem solving. A framework for

solving problems is not equivalent to a
framework for proving theorems. Also, a
framework for solving Math problems might
differ from a framework for solving real world

problems.

Problem Solving in Software Development

Software Development has rapidly evolved into
an extensive discipline that attempts to solve a
variety of computation and communication
problems. Coursework areas include
Programming, Operating Systems, Databases,

Networks, Software Engineering, and Electronic
Commerce.

The earliest use of computers to perform
repetitive calculations could be considered a
form of problem solving. The field of Artificial
Intelligence has specifically targeted problem

solving in software. An early example is the
General Problem Solver program for proving
theorems, developed by Newell, Shaw, and
Simon (1959). Current versions of Microsoft
Excel have a Solver add-in that can search for
solutions to a wide range of numerical problems.

Over a decade ago, IBM developed the Deep
Blue computer system to play chess, and
reached the Grand Master level. Recently, IBM's
Watson computer competed on the TV game
show Jeopardy and defeated two human
champions.

Some areas of computing are more explicit
about their desire to solve problems, especially

topics which are heavily dependent on Math.
Software Development areas such as
Programming, Database, and Software
Engineering solve problems with less reliance on

Math. Most SD students prefer to be exposed to
as little Math as possible in their courses.

We do not expect to find a single problem
solving framework that is appropriate for all of
Software Development. SD areas may share

Information Systems Education Journal (ISEDJ) 10 (5)
 October 2012

©2012 EDSIG (Education Special Interest Group of the AITP) Page 51

www.aitp-edsig.org /www.isedj.org

some features of the Math frameworks, but each
SD field contains domain-specific concepts that
are difficult to combine into a common
framework.

Plan of this Research

In this paper, we examine how problem solving
frameworks differ between Math and Software
Development. Measurement of mental concepts
is always difficult. Our methodology is based on

the assumption that the words people use are
suggestive of their mental state. In particular,
we assume that words used frequently in a book
indicate the mental state, or framework, of the

author.

Certainly, a framework is more than a list of
words. A framework must provide a way to
combine the words into a unified "whole".
However, we need the individual words to
describe the relevant concepts that form the
overall framework.

In this study, we compare word frequencies in a
sample of Math and SD books that discuss
problem solving. After organizing the books into
subject matter categories, we list the most
frequent words in each category. We then
synthesize these results to propose a problem
solving framework for each book category. Our

findings have relevance in the development of
approaches for teaching problem solving in Math
and SD courses.

2. METHODOLOGY

The methodology used to examine problem

solving frameworks is described in this section.
The methodology involved the following steps:

1. Choose a broad sample of Mathematics and
Software Development books.

2. Record frequencies for words used often in

the books.

3. Convert nouns, verbs, adjectives, and

adverbs to a consistent form.

4. Transform the word frequencies to make data
from different books comparable.

5. Combine synonyms into word groups.

6. Determine the most frequent word groups in
each category of books.

Sampling

By design, a wide variety of Math and SD books
were sought for our sample. We needed books

for which we could determine word usage
frequencies. Because we did not have full text
files, we selected books from the Amazon web
site that included a concordance (a list of
frequently used words). Our need for a
concordance hindered our ability to obtain a
random sample of books. However, Amazon

does provide a concordance for many of its
books, so we were able to get a diverse sample.
The majority, but not all, of our sample books
are suitable for use as college textbooks.

Books were chosen from three broad categories:

1. Traditional Math (TRM) includes books in
fields such as Algebra, Analysis, Geometry,
Number Theory, and Topology, along with some
Probability and Statistics books. Books with the
word Theory in the title were usually placed in
this category. For example, the book entitled
"Course in Probability Theory" was classified as

Traditional Math.

2. Applied Math (APM) includes books with the
words Applied, Computational, Numerical, or
Engineering in the title. For example, the book
with the title "Applied Engineering Mathematics"
was classified as Applied Math. This category

also contains Operations Research and

Simulation books, along with Probability and
Statistics books that are more applied than
theoretical.

3. Software Development (SD) includes books
on Object-Oriented Programming (OOP),
Database (DB), and Software Engineering (SE).

These books are used in core SD courses that
teach students how to design and implement
software systems.

Our complete sample consisted of 53 Traditional
Math books, 59 Applied Math books, and 110
Software Development books. The SD sample

contained 36 OOP books, 37 DB books, and 37

SE books. The total number of books in the
sample was 222.

Data Collection

The Amazon concordance for a book provides a

list of the 100 most frequently used words.
These concordances screen out many (but not
all) common English words, such as "the" and
"of". For each concordance word, we recorded

Information Systems Education Journal (ISEDJ) 10 (5)
 October 2012

©2012 EDSIG (Education Special Interest Group of the AITP) Page 52

www.aitp-edsig.org /www.isedj.org

the book code, word, and frequency. Frequency
is the actual number of times the word occurs in
the book.

Convert Words to a Consistent Form

One problem with using words to infer an
author's framework is that words can take more
than one form. For example, nouns and verbs
may be singular or plural. Verbs can have
various tenses. Adjectives and adverbs can

have related syntax. To alleviate this problem,
we converted many words to a consistent form.
We did not want the relative frequency of a word
to depend on the particular form an author

favored. The following types of word
conversions were performed:

1. Convert plural nouns to singular form
("elements" becomes "element").

2. Make verbs refer to plural subjects ("exists"
becomes "exist").

3. Change verbs to present tense ("defined"
becomes "define", "solving" becomes
"solve").

4. Remove endings such as "al" and "ly" from
some adjectives and adverbs
("computational" becomes "computation",
"finitely" becomes "finite").

Transform Frequencies

Word frequencies were rescaled (or
standardized) to allow comparisons between
books of different lengths. We rescaled word
frequencies within a concordance as follows:

1. We removed all words that are in the list of
Top 100 Common English Words (Fry, 1993).

Fortunately, Amazon had already removed
most of these Top 100 words. Otherwise, we
would have had few words left to analyze.

2. For the remaining (approx. 90) words, we
calculated the average word frequency for
the concordance.

3. We then restated each individual word

frequency (Freq) relative to the average
frequency (avgFreq) using the formula:

StdFreq = (Freq / avgFreq) * 100

With this calculation, a standard frequency
(StdFreq) score of 100 represents the
transformed frequency for the "average
word" in the reduced concordance. A word

with a StdFreq value of 300 would appear

three times as often as the average
concordance word in the same book.

Combine Synonyms into Word Groups

A special complication with assembling words
into frameworks is that different words can have
similar meanings. When relevant, we combined
two or more synonyms into a concatenated word
group. For example, algorithm and method
became algorithm/method. We applied this step

after standardizing the word frequencies
(StdFreq) because we wanted the average
frequency for a concordance to be based on
individual words. When synonyms are combined

into word groups, the StdFreq score for the
group is the sum of the StdFreq scores of the

words in the group.

3. PROBLEM SOLVING BOOKS

The primary approach in this study of problem
solving frameworks in Mathematics and Software
Development was to examine frequently used

words in our sample of books. But which books
in the sample discuss problem solving? Polya's
"How to Solve It" is certainly a candidate.
However, only four books in our sample contain
the words problem and/or solve in the title.
Instead, we chose to focus on books that include

problem or solution/solve in their concordances.

We assumed that these books would be more
likely to involve problem solving, even though
these words are often used in other contexts.

Table 1: Math and SD Books by Category

Category

All

Books

Problem
Books

Problem+
Solution
Books

APM 59 53 48

TRM 53 26 13

SD
(OOP)
(DB)

(SE)

110
(36)
(37)

(37)

60
(12)
(17)

(31)

8
(2)
(0)

(6)

Total 222 139 69

Starting with a sample of 222 Math and SD
books, the number of concordances containing
the word problem is 139. This initial constraint
removes one-third of our sample. If we then
eliminate books that do not include solution or
solve in their concordances, the remaining

Information Systems Education Journal (ISEDJ) 10 (5)
 October 2012

©2012 EDSIG (Education Special Interest Group of the AITP) Page 53

www.aitp-edsig.org /www.isedj.org

sample has only 69 books--about 1/3 of our
original sample.

The main difficulty with limiting our analysis to

these 69 "problem + solution" books is that the
reduction does not apply equally to all book
categories. Table 1 summarizes how the book
counts are reduced in each category as we
successively apply the problem and solution
filters.

Requiring Applied Math concordances to contain
the solution keyword in addition to problem is
not an issue. The resulting sample has 48 of the
53 problem books. The drop is more precipitous

for Traditional Math (from 26 to 13 books) and
Software Development (from 60 to 8 books).

Note that none of the Database books and only
2 of the Programming books include both
keywords in their concordances.

Many authors of Traditional Math are more
concerned with proofs than with problem
solving. This can partially explain the reduced

number of books in this category that contain
solution or solve, but it doesn't explain the
remarkably small number of Software
Development books that mention solutions.

Problem solving is an important part of Software
Development, as stated by McConnell (2004):

Problem solving is the core activity in building
computer software.

Programming, Database, and Software

Engineering books use an alternative
terminology for problem solving. From a
Software Development perspective,
requirements define the problem, and software
is the solution. Programs and databases are
essential components of the solution. The goal
of Software Engineering is to effectively build

software systems that meet customer
requirements.

Because of the extreme sample size reduction

that would result from requiring both problem
and solution to be concordance words, we

decided to impose the less restrictive constraint
that only problem must be in the concordance.
Figure 1 shows the resulting sample of 139
books used in the analysis that follows.

Across the three book categories, the average
standard frequency (avgStdFreq) for the word

problem varies widely. For the 53 Applied Math

concordances that contain problem, the
avgStdFreq of 281.1 indicates that this word
occurs almost three times as often as an
average concordance word. At the other

extreme, in 60 Software Development books,
problem occurs less often (94.0) than an
average concordance word.

Figure 1: "Problem" frequency by Category.

4. PROBLEM SOLVING FRAMEWORKS

This section describes how we obtained the

words that form the problem solving frameworks

for each category. We looked for words that are
used frequently within each book and
consistently across books in the same category.
Given a category (e.g. Applied Math) and a
word in at least one of the concordances, we
calculated the number of books containing that

word, plus the avgStdFreq for the word. We
retained the words that appear in most of the
category books and had a high avgStdFreq.

Our principal methodology decision was the
choice of cutoff points for number of books and
avgStdFreq. After some trial and error, we set

the minimum number of books at 70% of the
sample size. For the 53 APM books, 70% is 37

books (rounded). For avgStdFreq, we chose a
cutoff point of approximately 150, with some
judgment reserved for words near this point.

To qualify as a framework word, we wanted

most of the books in the category to agree on
the importance of the word. Some words had a
high frequency, but appeared in only a few of
the books. For example, the word simulation
appears in 8 Applied Math books, with an

0

50

100

150

200

250

300

Books 53 26 60

Frequency 281.1 133.3 94.0

APM TRM SD

Information Systems Education Journal (ISEDJ) 10 (5)
 October 2012

©2012 EDSIG (Education Special Interest Group of the AITP) Page 54

www.aitp-edsig.org /www.isedj.org

avgStdFreq of 219.7. This word is important in
those 8 books, but is not used regularly
throughout the Applied Math category.

Other words appear in most books, but with low
frequencies. For example, the word result
appears in 44 APM concordances, but the
avgStdFreq value is a below-average 88.1. Of
passing interest, this word could be considered a
synonym for solution.

Applied Math Framework

Using the methodology explained in the
preceding paragraphs, we generated a list of the

10 most frequent words and word groups for
Applied Math books. This list is presented in

Table 2. We include the word group
set/element, even though its frequency value is
slightly below 150.

Table 2: Most frequent words in
Applied Math books (N=53).

Word Group Books
Avg

StdFreq

problem 53 281.1

algorithm/method 47 280.5

function 50 248.1

solution/solve 48 239.9

value/variable 52 250.9

model/modeling 38 227.7

equation/inequality 43 220.0

system 47 173.2

point/line 52 161.8

set/element 48 146.7

The most frequent word is problem. It is not
surprising that this word is in all of the APM
books, since this condition was used to generate
the sample. What is unusual is that the

frequency of problem and solution/solve is

relatively high in this category. This suggests
that the framework for Applied Math does
emphasize problem solving.

The word groups model/modeling and

algorithm/method describe this category's
approach to solving real world problems. Models
are used to abstract relevant aspects of the real
world problem. Algorithms describe the
computational effort needed to obtain a solution.

The Applied Math framework includes several
widely-used mathematical objects--function,
variable, equation, point, line, and set. These
words appear frequently in most of the Applied

Math books. However, other familiar Math
concepts, such as matrix, polynomial, and
vector do not appear in this general framework.
These domain-specific words are in the
concordances of some Applied Math books, but
absent from many others.

Traditional Math Framework

Repeating the same methodology used for
Applied Math, we obtained a list of the 12 most

frequent words and word groups for Traditional
Math books. The list is shown in Table 3. We

include the word group definition/define in this
list, since its avgStdFreq value is almost 150.

Table 3: Most frequent words in
Traditional Math books (N=26).

Word Group Books
Avg

StdFreq

point/line 19 411.6

theorem/lemma/corollary 25 326.8

function 25 278.5

proof/prove 23 258.7

let 26 228.9

set/element 26 225.1

value/variable 20 197.3

show/shown 24 181.9

hence/thus/therefore 26 172.1

follow/following 24 163.3

equation/inequality 21 163.1

definition/define 23 149.3

The most frequent word group is point/line,
which appears in 19 (73%) of the Traditional
Math books. Points and lines--along with

functions, sets, variables, and equations--are
Math objects that are also in the Applied Math
framework, but with different frequencies.

Two high-frequency word groups are theorem/
lemma/corollary and proof/prove. This reveals

that the primary goal of Traditional Math is
proving theorems. The words model and
algorithm are not part of this framework.

Information Systems Education Journal (ISEDJ) 10 (5)
 October 2012

©2012 EDSIG (Education Special Interest Group of the AITP) Page 55

www.aitp-edsig.org /www.isedj.org

Instead, this framework prefers the use of logic
to solve Math problems.

Not everyone agrees that theorem proving is

equivalent to solving problems. Concerning the
"problem of proving things", Michalewicz and
Fogel (2004) state:

... if you ask someone to find some solution to a
problem, they'll typically find this much easier than if
you had asked them to prove something about the
solution, even when the two tasks are exactly the
same mathematically.

For example, which of the following statements

require problem solving?

1. Find the largest prime number less than 100.
2. Prove that 97 is the largest prime number

less than 100.

Which task is more difficult? Are the tasks

equivalent mathematically?

We could take the view that, in Traditional Math,
the problem is to verify or refute a theorem.
The proof or counterexample is the solution.

The remaining words in the Traditional Math
framework--such as let, show, hence, follow,
and define--are common terminology used in
stating theorems and expressing proofs.

Software Development Framework

The Software Development category includes
books on Object-Oriented Programming,
Database, and Software Engineering. Table 4
lists 9 of the most frequent word groups for this
category.

The top four word groups are object/class,

system, data, and program/code. The
framework formed by these words is very
different from the frameworks for the two
preceding categories of books. The word groups
problem and solution/solve do not appear on

this list. However, model/modeling,

algorithm/method, and system are shared with
Applied Math.

This is the only framework that includes the real
world concept data. Note that no Math objects
are on this list.

Table 4: Most frequent words in
Software Development books (N=60).

Word Group Books
Avg

StdFreq

object/class 50 412.6

system 54 293.1

data 57 243.5

program/code 54 219.2

process/processing 48 211.9

user/client/customer 48 200.1

model/modeling 49 190.9

algorithm/method 44 182.7

design 46 151.1

Several common Software Development
concepts that almost made the list include

software, requirement, and development. These
words have high frequencies, but are not in
enough books (< 42) to qualify for this
framework.

The Software Development framework uses
models and algorithms to design software

systems that integrate programs, data, and
users.

5. COMPARING FRAMEWORKS

In the previous section, we presented problem
solving frameworks for three book categories in

Mathematics and SD. The frameworks are
described by of lists of words used frequently in
Applied Math, Traditional Math, and Software
Development books. The frameworks are not
independent, since some words appear on more
than one list.

Mathematical Frameworks

The Applied Math and Traditional Math
frameworks share 5 word groups that represent

widely used mathematical objects--set, function,
variable, equation, and point/line. The

remaining words indicate the different nature of
the two frameworks. The Applied Math list
includes the words problem, solution, model,
algorithm, and system, which describe an
approach for solving problems in real world
systems. The Traditional Math list includes the
words definition, theorem, and proof, along with

several common terms used in presenting

Information Systems Education Journal (ISEDJ) 10 (5)
 October 2012

©2012 EDSIG (Education Special Interest Group of the AITP) Page 56

www.aitp-edsig.org /www.isedj.org

theorems and proofs. The emphasis in this
framework is on solving mathematical problems
through the use of logic.

Software Development and Applied Math

The Software Development framework presents
a different approach to problem solving. This
list includes model, algorithm, and system from
Applied Math, and adds terms that are used in
the software development process. In

particular, design, class, program and data are
highlighted. In this framework, users supply the
problem, and the completed software product
represents the solution. Thus, Software

Development combines important Applied Math
methods with specific components of the final

system.

The relationships between the three frameworks
are summarized visually in the Appendix. This
figure is a Venn diagram that displays the
frameworks as overlapping sets of word groups.
No word group appears in all three sets.

Moreover, Traditional Math and Software
Development have no words in common.

6. DOMAIN-SPECIFIC FRAMEWORKS

We have described the commonalities and

differences in the problem solving frameworks

for the three book categories. Within each
category, several subfields, or domains, are
represented. Each of the main frameworks are
based on concepts that apply to most of the
books in the category. Domain-specific concepts
are masked at this level of analysis.

The number of books in each area of Applied
Math and Traditional Math is relatively small, so
the ability to make domain-specific comparisons
is limited. We do highlight the Operations
Research framework within Applied Math.

The Software Development book sample covers
three domains--Programming, Database, and

Software Engineering. Word lists for each of
these domains are presented below.

Operations Research Domain

The Applied Math (APM) sample includes 7 books
on Operations Research (OR). The top word
groups for the OR books, including domain-
specific (New) words, are listed in Table 5.

The OR books present a classic variation of the
Applied Math framework. OR includes six
essential Applied Math word groups--problem,
solution/solve, model/modeling,

algorithm/method, value/variable, and system.
All but algorithm/method have higher average
frequencies in the OR domain than in the larger
sample of Applied Math books.

The OR framework shares program/code with
Software Development. It also adds

condition/constraint and cost, which are
important in optimization problems.

Table 5: Most frequent words in

Operations Research books (N=7).

Word Group Books
Avg

StdFreq
vs.

APM

problem 7 443.1 281.1

model/modeling 7 376.5 227.7

value/variable 7 357.9 250.9

solution/solve 7 324.3 239.9

system 6 272.1 173.2

algorithm/method 7 223.7 280.5

program/code 6 198.4 SD

condition/constraint 7 191.1 New

cost 7 178.4 New

Programming Domain

The Software Development sample includes 12
books on Programming (OOP). The top word
groups for the OOP books, including one
domain-specific word, are presented in Table 6.

Table 6: Most frequent words in

Programming books (N=12).

Word Group Books
Avg

StdFreq
vs.
SD

object/class 12 674.9 412.6

program/code 12 340.7 219.2

algorithm/method 11 330.9 182.7

value/variable 11 192.4 Math

type 10 186.1 New

set/element 11 170.3 Math

function 9 164.0 Math

Information Systems Education Journal (ISEDJ) 10 (5)
 October 2012

©2012 EDSIG (Education Special Interest Group of the AITP) Page 57

www.aitp-edsig.org /www.isedj.org

The top three Programming word groups--
object/class, program/code, and algorithm/
method--are shared with Software Development.
These word groups have much higher

frequencies in this domain than for the general
SD framework.

The single new Programming word is (data)
type. Three other word groups are borrowed
from the Math frameworks. The word model is
not included in this list because it appeared in

the concordances of only 4 OOP books.

Database Domain

The Software Development sample includes 17
Database (DB) books. The top word groups for

the DB books are shown in Table 7.

Table 7: Most frequent words in
Database books (N=17).

Word Group Books
Avg

StdFreq
vs. SD

data 17 473.7 243.5

object/class 14 445.0 412.6

relation/table 17 360.6 New

database 17 334.9 New

system 17 213.0 293.1

user/client/customer 14 208.4 200.1

query 14 201.8 New

model/modeling 17 201.7 190.9

attribute/column 16 177.0 New

set/element 13 161.2 Math

The Database framework includes four new
concepts--database, relation/table, query, and
attribute/column. Not surprisingly, these words
indicate an emphasis on relational databases.
The word data has a much higher frequency in
the DB domain than in the Software

Development framework. Also, exactly one

Math word group (set/element) is on this list.

Software Engineering Domain

The Software Development sample includes 31

Software Engineering (SE) books. The top word
groups for the SE books are shown in Table 8.

New SE domain-specific words include software,
project, requirement, development, and product.

For most of the word groups shared with the
Software Development framework, the average
frequency for the SE books is close to the value
for the larger SD sample. The likely reason for

this similarity is that SE books comprise over
half the sample of SD books.

Two exceptions are object/class and system. In
the Programming and Database books, the
frequency of object/class is substantially higher
than in the SE books. This pattern is reversed

for system.

Table 8: Most frequent words in
Software Engineering books (N=31).

Word Group Books
Avg

StdFreq
vs. SD

software 31 402.4 New

system 30 363.8 293.1

process/processing 31 277.8 211.9

object/class 24 262.5 412.6

project 27 243.0 New

requirement 28 242.6 New

program/code 28 219.4 219.2

user/client/customer 27 218.9 200.1

development 31 208.6 New

model/modeling 28 189.1 190.9

product 23 174.0 New

design 30 168.8 151.1

data 28 157.4 243.5

7. SUMMARY AND CONCLUSIONS

The general objective of this study was to
examine how problem solving frameworks differ
between Mathematics and Software

Development. Our approach assumes that
words used frequently in a book indicate the
mental framework of the author.

We started with a sample of 222 books drawn
from three categories: Traditional Math, Applied
Math, and Software Development. We chose

books that had an Amazon concordance that
lists the 100 most frequently used words.
Because this research involved problem solving,
we eliminated books that did not include
problem in their concordances, leaving us with
139 books for further study.

Information Systems Education Journal (ISEDJ) 10 (5)
 October 2012

©2012 EDSIG (Education Special Interest Group of the AITP) Page 58

www.aitp-edsig.org /www.isedj.org

We modified the concordance words to
compensate for syntactic differences in nouns,
verbs, adjectives, and adverbs. We also

standardized the word frequencies in each book
to make books of various lengths comparable.
Finally, we collected words having similar
meanings into word groups. Then we generated
a list of the most frequent words and word
groups in each book category. Based on these
lists, we described problem solving frameworks

for the categories.

Our results indicate that the frameworks for
Traditional Math and Applied Math are

fundamentally different. Applied Math uses
models and algorithms to solve real world

problems. Traditional Math is more concerned
with theorems and proofs, with the application
of logic to solve Math problems.

The Software Development framework shares an
emphasis on models and algorithms with Applied
Math, but includes many domain-specific

features. Problem solving in Software
Development is aimed at creating a successful
software product. The methodology involves the
design of models and algorithms for programs
and data. Often these models and algorithms
are represented visually rather than
mathematically, before being implemented in

software.

Our findings suggest ways to teach problem
solving in Traditional Math, Applied Math, and
Software Development courses. In Traditional
Math courses, the instructor should introduce an

appropriate amount of rigor in theorem proving,
consistent with the level of the course. Math
majors eventually acquire the mental fortitude
to appreciate well-crafted theorems and proofs.

For Applied Math (e.g. Engineering) courses,
students prefer to solve real world problems

("story problems") using abstract models and
computational algorithms. When presented,
proofs can be more informal and descriptive.

For Software Development courses, problems
are expressed in terms of models and algorithms
that can be used to create software solutions.

Here, the nature of the problem and the solution
depend on the application. Programming
courses involve models for software
architecture, as well as ways to specify
algorithms. Database courses spend more time
on data models, along with query algorithms

written in non-procedural SQL. The framework
for Software Engineering courses must include
the entire life cycle of programming, database,
and management activities that lead to the final

system.

Computational thinking enthusiasts (Wing,
2006) seem to promote algorithms and
computation at the expense of modeling.
Conversely, in a recent article on abstract
thinking, Kramer (2007) gives greater emphasis

to modeling and abstraction:

Modeling is the most important engineering
technique; models help us to understand and analyze
large and complex problems.

Teachers of Software Development courses
should provide students with substantial
exposure to both models and algorithms during
the journey from user problems to the eventual
software destination.

8. REFERENCES

Andreescu, T., and Gelca (2008), R.
Mathematical Olympiad Challenges (2nd ed).
Birkhäuser Boston.

Bratko, I. (2001). Prolog Programming for
Artificial Intelligence (3rd ed). Addison-

Wesley.

Fry, E., et al (1993). The Reading Teacher's Book
of Lists (3rd ed). Center for Applied Research
in Education.

Kramer, J. (2007). Is abstraction the key to
computing? CACM, Vol 50, No 4.

McConnell, S. (2004). Code Complete (2nd ed).
Microsoft Press.

Michalewicz, Z., and Fogel, D. (2004). How to
Solve It: Modern Heuristics (2nd ed).
Springer.

Newell, A.; Shaw, J.C.; Simon, H.A. (1959).
Report on a general problem-solving

program. Proceedings of the International
Conference on Information Processing.

Polya, G. (1945). How To Solve It. Princeton
University Press.

Velleman, D. (1994). How to Prove It: A
Structured Approach. Cambridge University
Press.

Information Systems Education Journal (ISEDJ) 10 (5)
 October 2012

©2012 EDSIG (Education Special Interest Group of the AITP) Page 59

www.aitp-edsig.org /www.isedj.org

Wing, J. (2006). Computational thinking.
CACM, Volume 49, No. 3.

Zeitz, P. (2006). The Art and Craft of Problem
Solving (2nd ed). Wiley.

Information Systems Education Journal (ISEDJ) 10 (5)
 October 2012

©2012 EDSIG (Education Special Interest Group of the AITP) Page 60

www.aitp-edsig.org /www.isedj.org

9. APPENDIX

Information Systems Education Journal (ISEDJ) 10 (5)
 October 2012

©2012 EDSIG (Education Special Interest Group of the AITP) Page 61

www.aitp-edsig.org /www.isedj.org

The Learning and Productivity Benefits to

Student Programmers from Real-World
Development Environments

Justin C. W. Debuse

jdebuse@usc.edu.au

Meredith Lawley
mlawley1@usc.edu.au

Faculty of Business,

University of the Sunshine Coast

Maroochydore DC, Australia

Abstract

Existing research and practice in software development environments shows no clear consensus on
the most appropriate development tools to use; these may range from simple text editors through
teaching-oriented examples to full commercial integrated development environments (IDEs). This

study addresses this gap by examining student perceptions of two development environments at
opposite ends of the complexity spectrum. The results, gathered over several years using students at

a range of experience levels, suggest that complex commercial IDEs are appropriate for programming
education, even for entry-level students. Indeed, they offer a range of features that may improve the
understanding and productivity of students. However, given the greater simplicity of simple text
editors and potential for students to become overly dependent upon the support mechanisms provided
by IDEs, teaching IDEs in combination with simple text editors appears to offer an ideal combination
to maximize learning opportunities and student employability.

Keywords: integrated development environment, IDE, programming, learning, teaching

1. INTRODUCTION

A key challenge for ICT educators is to teach

underlying concepts, such as structured analysis

and data modelling (Tastle & Russell, 2003), so
that students have transferable skills and deep
understanding. However, the employment
market demands specific skills such as ASP
(Colomb, Death, Brown, & Clarkson, 2001) or
Java (Liu, Liu, Lu, & Koong, 2003), and a

compromise must therefore be found between
technology-specific details and fundamental
principles. Programming courses must strike
this balance not only for the language but also

the development environment. For example,
the popular Java language can be taught using a
range of environments, from a command line

interface and text editor through a simple

teaching-oriented integrated development
environment (IDE) to a complex commercial
IDE. The selected environment must fulfil a
number of different and potentially conflicting
criteria: employment market demand, learning
support and ease of use.

The demand by employers appears highest for
text editors (Russell, 2005a), although users
show preference for using IDEs (Computerworld,

Information Systems Education Journal (ISEDJ) 10 (5)
 October 2012

©2012 EDSIG (Education Special Interest Group of the AITP) Page 62

www.aitp-edsig.org /www.isedj.org

2005; Russell, 2005a). Learning support is high
in teaching-oriented systems such as BlueJ,
which have been found to assist student
understanding of the object-oriented paradigm

(Van Haaster & Hagan, 2004) and allow unusual
topic orderings to be used (Murray, Heines,
Moore, Trono, Kolling, Schaller, & Wagner,
2003). However, commercial IDEs such as
JBuilder can also offer considerable teaching and
learning support (Liang, 2005).

The ease of use of a development environment
is likely to be affected by its complexity.
Indeed, the complex nature of commercial IDEs
has been used to justify using teaching-oriented

alternatives (Kölling, Quig, Patterson, &
Rosenberg, 2003), and may explain the high

popularity of text editors for education (Russell,
2005a) and low usage of CASE tools for
application development at both undergraduate
and postgraduate levels (Chinn, Lloyd, & Kyper,
2005). However, there appears to be no clear
consensus on whether IDE usability should be
criticised (Kline, Seffah, Javahery, Donayee, &

Rilling, 2002; Murray et al., 2003; Reis &
Cartwright, 2004; Seffah & Rilling, 2001) or
praised (Dujmovic & Nagashima; Murray et al.,
2003), and students have not shown a
preference for specific development
environments (Russell, 2005a). Programming
textbooks show similar dissent; examples exist

that use commercial IDEs such as JBuilder
(Liang, 2004), teaching-oriented IDEs (Barnes &
Kolling, 2008), text editors (Farrell, 2003), or
allow educators to choose between a text editor
and IDE (Liang, 2009).

The impact of development environments upon
student learning and understanding from a
formative perspective is one of the least studied
areas of IDE research (Gross & Powers, 2005).
Existing studies, particularly those which
measure student performance directly (Kordaki,
2010; Vogts, Calitz, & Greyling, 2008), have

examined the educational suitability of IDEs to
only a limited level of granularity; for example,
Kordaki (2010) examines different development

environments across broad areas such as the
quality of students’ code, rather than the
features of the environments in detail. Further,
although educational IDEs appear to yield

improvements in student understanding (Rigby
& Thompson, 2005; Van Haaster & Hagan,
2004; Xinogalos, Satratzemi, & Dagdilelis, 2006)
and programming performance (Kordaki, 2010;
Vogts et al., 2008), they require room in the
syllabus to be found for students to convert to

real world environments, which is unlikely to
prove easy (Xinogalos et al., 2006).

This study therefore attempts to extend existing

work to a finer level of granularity, in order to
clarify the selection of development
environments for programming education by
determining whether the learning support and
ease of use of an environment for which
significant employment market demand exists
are sufficiently strong for it to be successfully

used without going through the intermediate
step of using a teaching-oriented IDE. The
environment used is Borland’s
JBuilder/Together, one of the object-oriented

analysis and design market leaders (Blechar,
2004) and now incorporated into the popular

Eclipse environment. The students examined
are from a single regional university and thus
likely to have greater requirements for learning
support and ease of use than their metropolitan
equivalents. Moreover, the students are
examined at three stages in their programming
education to determine the performance of the

environment across a range of experience levels.

2. METHOD

The commercial IDE examined within this study
was JBuilder from Borland; this was supplied
within the teaching laboratories and used to

deliver lectures and tutorials. Programming
students were studied from 2005 to 2008;
during 2007 JBuilder was incorporated into the
Eclipse system, which offered very similar
functionality. Students were surveyed across
the three groups described below, to allow

differences between programmers across a
range of experience levels to be investigated.

Group 1: Introductory Java Programming

The first group of students took an introductory
course in Java programming, held during

semester 2 each year from 2005 to 2008.
Students’ attitudes to the IDE were surveyed
using an instrument adapted from (Hede, 2005);

the 2008 version is presented within Appendix 2.
The first section established their prior
knowledge of programming and IDEs, using
questions adapted from (Russell, 2005b). The

section included items determining whether
JBuilder and Java were the most commonly used
development environment and language, to
confirm that students met the requirements of
the study.

Information Systems Education Journal (ISEDJ) 10 (5)
 October 2012

©2012 EDSIG (Education Special Interest Group of the AITP) Page 63

www.aitp-edsig.org /www.isedj.org

The second section investigated the complexity
of JBuilder, since this drawback of commercial
IDEs has been used to justify using teaching-
oriented IDEs for education (Kölling et al.,

2003). The statements in Table 1, labelled JBA,
were used to assess how this affected students,
both when they began learning to use JBuilder
and once they had become proficient in using it;
the available responses ranged from five
(strongly agree) through three (neutral) to one
(strongly disagree). Statement JBA1 is similar

to the learnability scale from the Software
Usability Measurement Inventory (SUMI)
(Kirakowski & Corbett, 1993), described by
(Kline et al., 2002). However, Kline et al.

(2002) also cite a minimum sample size of 50
subjects to be confident of the results (Nunnally

& Bernstein, 1994). This exceeds the current
student numbers for the courses examined
within this paper, and so SUMI scales were not
used. Statements JBA3 to JBA6 were instead
added to the questionnaire to cover the missing
SUMI scales of affect, helpfulness, efficiency and
control respectively.

The instrument also included questions, labelled
JBB, to measure how aspects of the IDE
improved or impaired understanding of the
course concepts and productivity in producing its
required deliverables. Five point Likert scales
were again used, with one set (labelled A)

determining the effect on understanding and a
second (labelled B) measuring the effect on
productivity; however, unlike the previous
scales, the values ranged from 5 (strong
improvement) through 3 (no effect) to 1 (strong
impairment), together with 0 (if they have never

used the feature or respond that this is not
applicable). The IDE aspects investigated are
shown in Table 2; some were adapted from
(Dujmovic & Nagashima; Russell, 2005a;
Storey, Michaud, Mindel, Sanseverino, Damian,
Myers, German, & Hargreaves, 2003), and
features absent from the university Java

programming courses were excluded. The
instrument has some overlap with Russell's
(2005b) survey, although it examines the IDE

aspects at a greater level of detail.

Preliminary results from this study suggested
that students may become over-reliant upon the

support mechanisms offered by JBuilder. The
course examined was therefore revised after its
2005 intake to use a text editor (Programmers
Notepad) initially, followed by JBuilder, rather
than using JBuilder throughout. The second
survey and its successors thus contained

additional questions: PNA, which applied the
complexity statements in Table 1 to the text
editor rather than JBuilder; PNB, which
investigated similar IDE aspects to those listed

within Table 2, but aimed at the text editor
rather than JBuilder (with a corresponding
reduction in the number of aspects due to the
more limited functionality of the text editor);
and JBPN, adapted from (Russell, 2005b), which
determines which environment students would
have preferred to use to learn programming,

together with which environment they would
rather currently program with (the JBPN
questions were administered in a separate
survey during 2006 but incorporated into the

main survey from 2007 onwards).

Group 2: Intermediate Java Programming

The second group of students took an
intermediate level follow-on from the
introductory Java programming course taken by
group 1, held during semester 1 from 2006 to
2008. The course taken by group 1 was a

prerequisite for the course taken by this group;
a number of students from group 1 would
therefore subsequently join group 2. For
example, 68% of the students who took the
intermediate course during 2006 had previously
taken the introductory course during 2005. The
group 1 instrument was applied for the group 2

students with minor modifications corresponding
to their differing course enrolments.

Group 3: Architecture & Systems
Integration

The third group of students took a capstone
architecture and systems integration course in
semester 2 2005, where programming skills
were applied to systems integration tasks, using
JavaScript and the Notepad text editor. The
survey was only administered in 2005, and used
an adaptation of the group 1 instrument which

was modified to reflect different course
enrolments and the use of Notepad in place of
Programmers Notepad; further, section PNB

(IDE aspects) was omitted due to the limited
functionality of Notepad.

Analysis of Results

Missing values were identified as such when the
data was entered and excluded from calculations
on a pairwise basis; this means that the
response for a student was only excluded from a
calculation if data required by that calculation

Information Systems Education Journal (ISEDJ) 10 (5)
 October 2012

©2012 EDSIG (Education Special Interest Group of the AITP) Page 64

www.aitp-edsig.org /www.isedj.org

was missing. Responses of zero for the IDE
aspect statements were also treated as missing,
as this value represented that the statement
was not applicable or that the respondent had

never used the feature. If a respondent
indicated that they had not used a development
environment but then proceeded to respond to
items regarding the environment then these
responses were excluded and treated as
missing. Similarly, for each aspect statement
there are two questions, covering understanding

and productivity; if a response to either of these
questions indicated that the aspect was never
used or was not applicable then both were
treated as missing data.

Hypothesis Testing

The results of the survey within this study were
used for hypothesis testing, using a similar
approach to that described in (Debuse, Lawley,
& Shibl, 2007, 2008; Stevens & Jamieson,
2002). For the complexity assessment
statements (labelled JBA and PNA), two

hypotheses were formed; the first was that
respondents agreed with the statement and the
second was that respondents disagreed. Such
an approach was used in place of a single
hypothesis since responses could indicate
agreement, neutrality or disagreement; thus, a
hypothesis based on agreement may fail to hold,

but this does not necessarily indicate
disagreement. Specifically, for the first
hypothesis to hold, the response must be
greater than three; this equates to a response
above ‘Neutral’, which may be high enough to
equate to ‘Tend to Agree’ or ‘Strongly Agree’.

For the second hypothesis to hold, the response
must be three or less; this equates to a
response of ‘Neutral’, ‘Tend to Disagree’ or
‘Strongly Disagree’. The 95% confidence
interval for the mean response value was
computed, and its lower and upper bounds were
used to test the first and second hypotheses

respectively. For example, consider lower and
upper bounds for the 95% confidence interval
for the mean response to statement JBA1 of 3.4

and 5.1 respectively. Such values would cause
the first hypothesis for JBA1 to be accepted,
since 3.4 is greater than three, and the second
to be rejected, since 5.1 is greater than three.

Such a result would lead to the conclusion that
respondents agreed with JBA1.

Similar hypotheses were formed and tested for
the aspect statements (labelled JBB and PNB).
For each aspect, two hypotheses were again

formed; the first was that it had improved
respondents’ understanding of the course
concepts and the second was that it had
impaired them. A third and fourth hypothesis

were similarly formed for each aspect; these
concerned its improvement or impairment
respectively to respondents’ productivity. The
lower end of the 95% confidence interval of the
mean response to the understanding scale had
to exceed three for the first hypothesis to hold;
for the second, the upper end had to be three or

less. Similarly, lower and upper ends of the
95% confidence interval of the mean response
to the productivity scale were calculated. If the
lower exceeded three then the first hypothesis

held; an upper value of three or less caused the
second hypothesis to hold.

3. RESULTS

The total responses received across all surveys
totalled 167; the breakdown of these, together
with key demographic information, hypotheses
and preferred development environments are

presented in the following sections.

Demographics

Table 3 shows that all groups represent junior
programmers, with at most one to three years’
experience. Group 1 are the most junior, with

responses being mainly less than one year
rather than the one to three years for groups 2
and 3. All groups apart from 3 report JBuilder
as the IDE used; the majority of groups used
JBuilder the most. The JBuilder environment is
thus very familiar to the students, and all groups

had the most programming experience in Java.

The demographics thus suggest that the
students examined meet the requirements of
this study, namely junior programmers at
differing points in their programming education,
with experience in Java and JBuilder.

Hypotheses

The left half of Table 4 shows the hypotheses
that held for each group; hypothesis 1 (H1)
holding is denoted by 1, and hypothesis 2 (H2)
holding is denoted by 2. An empty cell shows

that neither hypothesis held; nor does NA show
that the hypothesis was tested for the specified
year.

The right half of Table 4 summarises the total
number of times that hypotheses 1 and 2 held

Information Systems Education Journal (ISEDJ) 10 (5)
 October 2012

©2012 EDSIG (Education Special Interest Group of the AITP) Page 65

www.aitp-edsig.org /www.isedj.org

across all groups, along with the percentage of
non-NA groups for which hypotheses 1 and 2
held; these summaries are also given for group
1 across all years together with group 2 across

all years. Grey denotes rows for which
hypothesis 1 holds for every group examined,
and bold denotes rows for which hypothesis 1
holds for no group examined.

The Notepad results for group 3 are not included
in the table as they were only recorded for a

single group. For these PNA statements,
hypothesis 1 held for statements PNA1 and
PNA2; hypothesis 2 held for PNA4.

Table 4 suggests that, for some JBuilder aspects
(denoted by grey rows, starting at aspect

JBB1A), every group examined found them to
yield understanding and/or productivity benefits.
Of these aspects, the following yielded both
understanding and productivity benefits:

 Automatic bracket/brace matching
 Automatic code formatting

 Automatic completion of words in
programs

 Display of parameter lists
 Automatic code colouring
 Automatic syntax error reporting
 Code audit warnings
 Breakpoint / line by line execution in

debugging
 Variable value viewing / modification in

debugging

The remainder of the aspects for which every
group examined reported benefits yielded

productivity but not understanding
improvements:

 Automatic creation of program code
 Automatic generation of Javadoc

comments
 Display of line numbers

There was no universal agreement on any other
area of JBuilder or Programmers Notepad, but

one area of Programmers Notepad (PNB4A – the
benefit of case conversion within Programmers
Notepad to understanding) was not perceived to
give understanding/productivity benefits within

any group. Further, respondents disagreed with
one of the Programmers Notepad utility / ease of
use statements (PNA4 – Programmers Notepad
gives me assistance in its use) in one group,
although they agreed with this within another.

The results can also be analysed in terms of
totals over all group 1 students compared to
totals over all group 2 students. In addition to
the grey cells noted above (which will have

100% hypothesis 1 coverage for both these
groups), these groups have 100% hypothesis 1
agreement for the following statements relating
to JBuilder:

 Automatic program code creation
improves understanding (group 1 and

group 2)
 Code creation wizards improve

productivity (group 1 only)
 Sync edit tool, which allows all instances

of a variable name to be changed by
editing a single instance of the name,

improves understanding and productivity
(group 1 only)

 Line number display improves
understanding (group 1 and group 2)

 Automatic Javadoc creation improves
understanding (group 1 and group 2)

 Javadoc integration improves

understanding and productivity (group 2
only)

 The automatic link between Java and
UML improves understanding (group 1
only)

Further, group 1 has 100% agreement with

hypothesis 1 for the following statements
relating to Programmers Notepad:

 Learning to use Programmers Notepad is
straightforward

 Programmers Notepad automatic code

colouring improves productivity
 Programmers Notepad display of line

numbers improves understanding and
productivity

Items for which no agreement was shown over
the group 1 and/or group 2 groups, in addition

to PNB4A described above, are:

 I feel I am in control of JBuilder when I

use it (group 2 only)
 The automatic Java/UML link improves

understanding and productivity (group 2
only)

 Once you have learned to use
Programmers Notepad then producing
Java software with it is straightforward
(group 2 only)

 Using Programmers Notepad is
enjoyable (group 2 only)

Information Systems Education Journal (ISEDJ) 10 (5)
 October 2012

©2012 EDSIG (Education Special Interest Group of the AITP) Page 66

www.aitp-edsig.org /www.isedj.org

 Programmers Notepad gives me
assistance in its use (group 2 only)

 The amount of time and effort required
to perform tasks in PN is low (group 2

only)
 Programmers Notepad bookmarks

improve understanding and productivity
(group 2 only)

 Programmers Notepad display of line
numbers improves productivity (group 2
only)

Summarising the differences between groups 1
and 2, it appears that the two have similar views
regarding JBuilder, with differences in terms of

100% agreement only occurring for a small
number of items. Differences are more extreme

for Programmers Notepad, with only group 1
having some items which were agreed with
across all years, and only group 2 having some
items for which agreement was not found for
any year. The group 1 students therefore
appear much more positively disposed towards
Programmers Notepad than group 2.

The most experienced programmers (group 3)
were more positively disposed towards text
editors than group 2, finding Notepad easy to
use and produce Java software with, although
unsurprisingly they did not find it supportive.
However, they also found JBuilder to be easy to

produce software with, and found it enjoyable
and supportive to use. Further, the majority of
the features of JBuilder proved to be useful to
both their understanding and productivity.

Development Environment Preferences

Table 5 shows that there is no consensus across
all groups in terms of the preferred environment
to learn programming, although all but one
prefer a combination of JBuilder and
Programmers Notepad. All groups preferred to
use JBuilder to do programming now (one of

these was multi-modal).

4. DISCUSSION

The results suggest that students perceive
considerable benefits from a real-world
integrated development environment (IDE) such

as JBuilder, which represents their preferred
option for programming; however, a
combination of text editor and IDE appear to be
preferable for learning purposes. Students’
responses overall are very positive for almost all
areas examined within this study; the only

negative responses were for case conversion and
support within the text editor. All three groups
of students appeared not to believe that any of
the surveyed JBuilder IDE aspects impaired their

understanding of course concepts or
productivity. Indeed, the majority of the
JBuilder aspects examined were found to
improve productivity and/or understanding by all
groups, and every item was present in at least
one group.

A text editor appears particularly appealing to
the group 1 students, particularly in terms of its
reduced complexity; the more experienced
group 2 students appear to be less positively

inclined towards it, although the most
experienced group (3) appeared to view such

systems more favourably. However, the groups
have similar views regarding JBuilder, and a
number of its features in areas such as
debugging and simple code writing support
appear to yield understanding and productivity
benefits across all groups and years. Further,
features such as more sophisticated code writing

support appear to have universal benefit, but
only in terms of productivity; this is unsurprising
given the potential for such support to deny
students the opportunity to learn how to create
code.

The most experienced programmers (group 3)

were more positively disposed towards text
editors than group 2, finding Notepad easy to
use and produce Java software with, although
unsurprisingly they did not find it supportive.
However, they also found JBuilder to be easy to
produce software with, and found it enjoyable

and supportive to use.

The preference for simplicity by entry level
students is unsurprising given the documented
unsuitability of professional IDEs for teaching
given their complexity (Reis & Cartwright,
2004). Complicated aspects of the Java

language may also prove distracting (Reis &
Cartwright, 2004); this may explain why many
students in this find automated code creation to

improve their understanding, since at a
conceptual level the language complexities may
impair learning.

The results contain a number of points of
interest. Firstly, despite the study being held at
a regional university, at which student quality is
unlikely to be higher than at metropolitan
centres, the respondents did not find the
JBuilder IDE complex; indeed, both the novice

Information Systems Education Journal (ISEDJ) 10 (5)
 October 2012

©2012 EDSIG (Education Special Interest Group of the AITP) Page 67

www.aitp-edsig.org /www.isedj.org

and experienced programmers found it
straightforward to produce software with, and
the novices found JBuilder easy to learn. This
may be partially explained by the approach used

to teach the programming courses at the
university, with JBuilder being covered
extensively throughout lectures, tutorials and
the course text.

The overall status of JBuilder as the preferred
environment for students to use currently

matches existing research (Russell, 2005a). The
results also overlap with those testing a visual
programming language, where most students
perceived improvements in their understanding

and found the environment helpful (Collins &
Fung, 2002). The results of Kline et al. (2002),

who found that experienced programmers
viewed their IDE as helpful and efficient, also
support this study. However, unlike this study
their programmers did not find the IDE easy to
learn. Further, the preferred option identified
within this study of combining a text editor and
IDE for learning is unsurprising given the lack of

consensus in existing research on whether text
editors or IDEs would be preferred for training
purposes (Russell, 2005a).

It is surprising that the majority of the IDE
aspects examined were found to improve
understanding and/or productivity, with

debugging support being particularly useful; this
contradicts existing research suggesting that
integrated debugging is the least useful feature
for both learning and production programming
(Russell, 2005a). Other popular features such
as automated code completion and Javadoc

integration also proved unpopular (Russell,
2005a), although the popularity of areas such as
bracket matching and syntax highlighting is
supported by existing research (Russell, 2005a).
Further, these results are supported by studies
indicating that over 85% of user requirements
are satisfied by current IDEs, with JBuilder

offering the best performance (Dujmovic &
Nagashima), and that the JBuilder debugging
support is useful for teaching (Liang, 2005;

Murray et al., 2003). Similarly, the BlueJ
development environment has also improved
students' understanding of object-oriented
concepts (Van Haaster & Hagan, 2004);

correspondingly, the educational IDE objectKarel
yielded improvements in students’ perceptions
of their understanding (Xinogalos et al., 2006),
and students using the LECGO for C educational
IDE programmed more successfully than using a
non-teaching environment or pencil and paper

(Kordaki, 2010). Students’ performance using
the SimplifIDE educational plug IDE improved
the programming performance of students
compared to a professional IDE; their

understanding, measured by assessment grades,
was only superior using the educational IDE for
weaker students (Vogts et al., 2008). The Gild
educational plug in for Eclipse, when compared
to Eclipse, appears to improve students’
perceptions of their understanding but not their
programming performance or productivity (Rigby

& Thompson, 2005). Improvements in students’
perceptions of their understanding have also
been attributed to the Eclipse IDE (Hanks,
2006).

A study examining actual usage data for the

Eclipse IDE across 41 Java software developers
using the Mylar Monitor plug-in (Murphy,
Kersten, & Findlater, 2006) gave strong support
for the automatic program word completion that
was found to be so important to understanding
and productivity; the developers used such
completion as often as popular editing

commands such as copy and paste. The
importance of debugging identified within this
study was also supported (Murphy et al., 2006).
Further, the sync edit tool, which was
particularly popular with entry-level
programmers within this study and allows all
instances of a variable name to be changed by

editing a single instance of the name, was part
of the most popular refactoring command
(rename), which was used by all respondents
(Murphy et al., 2006).

The study has a number of limitations. Firstly,

although students are surveyed at three
different points in their education, the longer
term effects of the IDE are not examined.
Secondly, the most experienced group of
students do not use JBuilder within their course;
however, over half of them have used JBuilder,
although many of these will be relying on

memories of past courses. Thirdly, the study is
restricted to a single organisation and single
example of each tool. This approach, though

used in a number of existing studies (Collins &
Fung, 2002; Kordaki, 2010; Xinogalos et al.,
2006), restricts the extent to which the results
can be generalised, since specific details such as

courses, tools and student demographics may
contribute to the results, particularly as IDEs are
presented very positively to students within the
programming courses of this study; this does
however offer the advantage of limiting potential
confounding effects from areas such as

Information Systems Education Journal (ISEDJ) 10 (5)
 October 2012

©2012 EDSIG (Education Special Interest Group of the AITP) Page 68

www.aitp-edsig.org /www.isedj.org

instructor or syllabus variations. Fourthly, any
development environment that is successfully
used by students will have a positive effect on
their understanding, and the sequential usage of

the two environments examined means that
they will impact upon students at different
learning stages. Finally, the study examines
only students’ perceptions rather than actual
usage data. Although student perceptions of
software usability and its effects on their own
productivity would be unlikely to give inaccurate

responses, understanding has the potential to be
more problematic. This is because students’
perceptions of their own understanding may not
correlate well with their actual levels; also, the

surveys query students’ understanding of course
concepts without giving details of the specific

learning outcomes and course objectives to
which such concepts relate, which gives the
potential for weaker students to not realise that
they have missed certain concepts; the
objectives will also not be the same across all of
the courses. However, the overall approach is
not unusual, with a number of existing studies

measuring student perceptions of understanding
(Collins & Fung, 2002; Hanks, 2006; Rigby &
Thompson, 2005; Xinogalos et al., 2006).
Further, although weaker students have
demonstrated a tendency to overrate
themselves compared to educators, no
consistent over or underrating has been found

(Boud & Falchikov, 1989); indeed, a weak
positive correlation has been found between
student self assessment and educator
assessment (Falchikov & Boud, 1989), and a
review of existing work suggests that in the
majority of studies the number of cases where

student and staff marks agreed outnumbered
those where they disagreed (Boud & Falchikov,
1989). Moreover, the number of development
environment features for which understanding is
examined is too large to feasibly investigate
directly.

5. CONCLUSIONS

This study has highlighted a number of areas of

importance for software development education.
It appears that university students can learn
introductory programming using a complex
commercial IDE, without requiring the

intermediate step of using an educational
environment. Moreover, most of the IDE
aspects improve their understanding and/or
productivity. However, some of these
mechanisms can deny students the opportunity
to learn key programming skills that

environments with limited support require. This
suggests that the use of a text editor in addition
to a complex IDE would be an ideal combination
to maximize learning and future employment

opportunities. However, institutional constraints
such as the availability of IT service department
support clearly need to be taken into account if
such approaches are to be adopted.

Future research may determine how students’
perceptions of the utility of IDE features

correlate with their actual usage data, and
where the perceived benefits translate into
actual performance enhancements.

6. REFERENCES

Barnes, D. J., & Kolling, M. (2008). Objects
First with Java (4th ed.). Prentice Hall /
Pearson.

Blechar, M. (2004). Market Details for OOA&D
Tools, Update for 2005. Gartner Research.

Boud, D., & Falchikov, N. (1989). Quantitative
studies of student self-assessment in higher

education: a critical analysis of findings.
Higher education, 18(5), 529-549.

Chinn, S. J., Lloyd, S. J., & Kyper, E. (2005).
Contemporary Usage of CASE Tools in U. S.

Colleges and Universities. Journal of
Information Systems Education, 16(4), 429-
436.

Collins, T. D., & Fung, P. (2002). A visual
programming approach for teaching
cognitive modelling. Computers &
Education, 39(1), 1-18.

Colomb, R., Death, B., Brown, A., & Clarkson, A.
(2001). Trends in Computing Jobs - 2001.

Retrieved 13 May, 2003, from
www.itee.uq.edu.au/~colomb/Jobs-Anal-
2001.html

Computerworld (2005). Computerworld
Development Survey gives nod to C#.
Retrieved 30 August, 2005, from
http://www.computerworld.com/developmen

ttopics/development/story/0,10801,100542,
00.html

Debuse, J., Lawley, M., & Shibl, R. (2007). The
Implementation of an Automated
Assessment Feedback and Quality Assurance

Information Systems Education Journal (ISEDJ) 10 (5)
 October 2012

©2012 EDSIG (Education Special Interest Group of the AITP) Page 69

www.aitp-edsig.org /www.isedj.org

System for ICT Courses. Journal of
Information Systems Education, 18(4), 491-
502.

Debuse, J., Lawley, M., & Shibl, R. (2008).

Educators’ perceptions of automated
feedback systems. Australasian Journal of
Educational Technology, 24(4), 374-386.

Dujmovic, J., & Nagashima, H. Evaluation of
IDE's for Java Enterprise Applications.
Retrieved 15 August, 2005, from
http://www.seas.com/downloadUNReg/IDE6

p.pdf

Falchikov, N., & Boud, D. (1989). Student self-
assessment in higher education: A meta-
analysis. Review of Educational Research,
59(4), 395-430.

Farrell, J. (2003). Java Programming (2nd ed.).

Course Technology, Boston, Massachusetts.

Gross, P., & Powers, K. (2005). Evaluating
assessments of novice programming
environments. Paper presented at the First
international workshop on Computing
education research.

Hanks, B. (2006). Using Eclipse in the

classroom. Journal of Computing Sciences in
Colleges, 21(3), 118-127.

Hede, A. (2005). Personal Communication.

Kirakowski, J., & Corbett, M. (1993). SUMI:
The Software Measurement Inventory.
British Journal of Educational Technology,
24(5), 210-212.

Kline, R., Seffah, A., Javahery, H., Donayee, M.,
& Rilling, J. (2002, September 3-6).
Quantifying Developer Experiences via
Heuristic and Psychometric Evaluation.
Paper presented at the IEEE Symposia on
Human Centric Computing Languages and

Environments, Arlington, VA.

Kölling, M., Quig, B., Patterson, A., &
Rosenberg, J. (2003). The BlueJ system
and its pedagogy. Journal of Computer
Science Education, Special issue on Learning
and Teaching Object Technology, 13(4).

Kordaki, M. (2010). A drawing and multi-

representational computer environment for

beginners’ learning of programming using C:
Design and pilot formative evaluation.
Computers & Education, 54(1), 69-87.

Liang, Y. (2004). Introduction to Java

Programming with JBuilder (3rd ed.).
Prentice Hall.

Liang, Y. (2005). Learning Java Effectively with
JBuilder. In Introduction to Java
Programming (7th ed.).

Liang, Y. (2009). Introduction to Java
Programming, Comprehensive (7th ed.).

Prentice Hall.

Liu, X., Liu, L., Lu, J., & Koong, K. (2003). An
Examination of Job Skills Posted on Internet
Databases: Implications for Information
Systems Degree Programs. Journal of
Education for Business, 78(4), 191-196.

Murphy, G. C., Kersten, M., & Findlater, L.
(2006). How Are Java Software Developers
Using the Eclipse IDE? IEEE Software, 23(4),
76-83.

Murray, K., Heines, J., Moore, T., Trono, J.,
Kolling, M., Schaller, N., & Wagner, P.
(2003). Panel on Experiences with IDEs and

Java Teaching: What Works and What
Doesn't. Paper presented at the ACM SIG
CSE 8th International Conference on
Innovation and Technology in Computer
Science Education, Thessaloniki, Greece.

Nunnally, J., & Bernstein, I. (1994).
Psychometric Theory (3rd ed.). McGraw-Hill,

New York.

Reis, C., & Cartwright, R. (2004). Taming a
professional IDE for the classroom. Paper
presented at the SIGCSE technical
symposium on Computer Science Education.

Rigby, P. C., & Thompson, S. (2005). Study of

novice programmers using Eclipse and Gild.
Paper presented at the OOPSLA workshop on
Eclipse technology eXchange.

Russell, J. (2005a). Do the benefits of learning
Java using an IDE outweigh the in-depth
understanding gained by learning with a text
editor only? MSc Thesis, University of

Liverpool.

Information Systems Education Journal (ISEDJ) 10 (5)
 October 2012

©2012 EDSIG (Education Special Interest Group of the AITP) Page 70

www.aitp-edsig.org /www.isedj.org

Russell, J. (2005b). MSc Student Survey: Do
the benefits of using an IDE to learn Java
outweigh the understanding gained by
learning with a text editor only. Retrieved

30 August (from Google cache dated 27
February), 2005, from
http://www.jeremyrussell.co.uk/studentsurv
eyquestion.jsp

Seffah, A., & Rilling, J. (2001). Investigating
the Relationship between Usability and
Conceptual Gaps for Human-Centric CASE

Tools. Paper presented at the IEEE
Symposium on Human-Centric Computing
Languages and Environments, Stresa, Italy.

Stevens, K., & Jamieson, R. (2002). The
Introduction and Assessment of Three
Teaching Tools (WebCT, MindTrail, EVE) into

a Post Graduate Course. Journal of
Information Technology Education, 1(4),
233-252.

Storey, M., Michaud, J., Mindel, M., Sanseverino,
M., Damian, D., Myers, D., German, D., &
Hargreaves, E. (2003). Improving the
Usability of Eclipse for Novice Programmers.

Paper presented at the Object-Oriented
Programming, Systems, Languages and

Applications (OOPSLA), Anaheim, California,
USA.

Tastle, W., & Russell, J. (2003). Analysis and
Design: Assessing Actual and Desired Course

Content. Journal of Information Systems
Education, 14(1), 77-90.

Van Haaster, K., & Hagan, D. (2004, June).
Teaching and Learning with BlueJ: an
Evaluation of a Pedagogical Tool. Paper
presented at the Information Science +
Information Technology Education Joint

Conference, Rockhampton, QLD, Australia.

Vogts, D., Calitz, A., & Greyling, J. (2008).
Comparison of the effects of professional and
pedagogical program development
environments on novice programmers.
Paper presented at the Annual research

conference of the South African Institute of
Computer Scientists and Information
Technologists on IT research in developing
countries.

Xinogalos, S., Satratzemi, M., & Dagdilelis, V.
(2006). An introduction to object-oriented
programming with a didactic microworld:

objectKarel. Computers & Education, 47(2),
148-171.

Information Systems Education Journal (ISEDJ) 10 (5)
 October 2012

©2012 EDSIG (Education Special Interest Group of the AITP) Page 71

www.aitp-edsig.org /www.isedj.org

Appendix 1: Tables

Table 1. Complexity assessment statements

Statement Description

JBA1 Learning how to use JBuilder is straightforward.

JBA2 Once you have learned how to use JBuilder then producing Java software with it is
straightforward.

JBA3 Using JBuilder is enjoyable.

JBA4 JBuilder gives me assistance in its use.

JBA5 The amount of time and effort required to perform tasks using JBuilder is low.

JBA6 I feel I am in control of JBuilder when I use it.

Table 2. IDE Aspects

Aspect Description

JBB1 Automatic code formatting.

JBB2 Automatic completion of words within programs.

JBB3 Parameter list display

JBB4 Automatic creation of code such as missing curly brackets.

JBB5 Code creation wizards for tasks such as class creation.

JBB6 An editing mode that allows all instances of a variable name to be changed by editing a
single instance of the name.

JBB7 Integrated help system.

JBB8 Automatic code colouring.

JBB9 Line numbering.

JBB10 Automatic syntax error reporting.

JBB11 Code audit warnings.

JBB12 Deprecation warnings

JBB13 Debugging support through breakpoints and line-by-line execution.

JBB14 Debugging support through viewing and modifying variable values.

JBB15 Automatic bracket matching.

JBB16 Automatic generation of Javadoc comments.

JBB17 Javadoc integration through automatic creation and view of HTML associated with Javadoc

comments

JBB18 Automatic two-way links between UML diagrams and their associated program code.

Information Systems Education Journal (ISEDJ) 10 (5)
 October 2012

©2012 EDSIG (Education Special Interest Group of the AITP) Page 72

www.aitp-edsig.org /www.isedj.org

Table 3. Mode responses to demographics (percentage giving mode response in brackets)

Year 2005 2006 2007 2008

Group 1 3 2 1 1a 2 1 2 1

N 10 16 10 31 24 19 22 8 27

How much
programming
experience do
you currently
have (years)?

<1
(50%)

1-3
(69%)

1-3
(60%)

1-3
(35.5%)

<1
(33.3%)

1-3
(52.6)

<1
(50%)

<1
(37.5%),
1-3
(37.5%)
ie
bimodal

<1
(48.1%)

Which
Integrated
Development
Environments
(IDEs) have
you used?

JBuilder
(90%)

A text
editor
(75%)

JBuilder
(100%)

JBuilder
(93.5%)

JBuilder
(100%)

JBuilder
(94.7%)

JBuilder
(90.9%)

JBuilder
(87.5%)

JBuilder
(96.3%)

Which
Integrated
Development
Environment
(IDE) do you
use the most?

JBuilder
(80%)

JBuilder
(50%)

JBuilder
(100%)

JBuilder
(77.4%)

JBuilder
(87.5%)

JBuilder
(94.7%)

JBuilder
(63.6%)

JBuilder
(37.5%),
Eclipse
(37.5%)
ie
bimodal

Eclipse
(51.9%)

Which
programming
language do
you have the
most
experience in?

Java
(70%)

Java
(75%)

Java
(100%)

Java
(80.6%)

Java
(75%)

Java
(78.9%)

Java
(72.7%)

Java
(75%)

Java
(77.8%)

aThis survey of the preferred environment was run separately to the rest of the survey during 2006

Information Systems Education Journal (ISEDJ) 10 (5)
 October 2012

©2012 EDSIG (Education Special Interest Group of the AITP) Page 73

www.aitp-edsig.org /www.isedj.org

Table 4. Results of hypotheses (grey denotes rows for which hypothesis 1 holds for every group examined and bold denotes

rows for which hypothesis 1 holds for no group examined)

Hypotheses holding for each aspect (1 & 2 denote hypothesis number;

empty cells and NA denote no hypothesis holding and no testing
respectively)

Summary data for hypotheses holding for each aspect

Year 2005 2006 2007 2008

Group 1 3 2 1 1a 2 1 2 1 H1total H2 total H1%b H1 total (1)c H1 total (2)c H1% (1)c H1% (2)c

JBA1 1 1 NA 1 1 4 0 50 3 1 75 33.33

JBA2 1 1 1 NA 1 1 5 0 62.5 3 1 75 33.33

JBA3 1 1 NA 1 1 4 0 50 2 1 50 33.33

JBA4 1 1 NA 1 1 1 1 6 0 75 3 2 75 66.67

JBA5 NA 1 1 2 0 25 1 1 25 33.33

JBA6 1 NA 1 2 0 25 1 0 25 0

JBB1A 1 1 1 1 NA 1 1 1 1 8 0 100 4 3 100 100

JBB1B 1 1 1 1 NA 1 1 1 1 8 0 100 4 3 100 100

JBB2A 1 1 1 1 NA 1 1 1 1 8 0 100 4 3 100 100

JBB2B 1 1 1 1 NA 1 1 1 1 8 0 100 4 3 100 100

JBB3A 1 1 1 1 NA 1 1 1 1 8 0 100 4 3 100 100

JBB3B 1 1 1 1 NA 1 1 1 1 8 0 100 4 3 100 100

JBB4A 1 1 1 NA 1 1 1 1 7 0 87.5 4 3 100 100

JBB4B 1 1 1 1 NA 1 1 1 1 8 0 100 4 3 100 100

JBB5A 1 1 NA 1 1 1 5 0 62.5 3 2 75 66.67

JBB5B 1 1 1 1 NA 1 1 1 7 0 87.5 4 2 100 66.67

JBB6A 1 1 1 1 NA 1 1 1 7 0 87.5 4 2 100 66.67

JBB6B 1 1 1 1 NA 1 1 1 7 0 87.5 4 2 100 66.67

JBB7A 1 1 NA 1 1 1 5 0 62.5 3 1 75 33.33

JBB7B 1 1 NA 1 1 1 5 0 62.5 3 1 75 33.33

JBB8A 1 1 1 1 NA 1 1 1 1 8 0 100 4 3 100 100

JBB8B 1 1 1 1 NA 1 1 1 1 8 0 100 4 3 100 100

JBB9A 1 1 1 NA 1 1 1 1 7 0 87.5 4 3 100 100

JBB9B 1 1 1 1 NA 1 1 1 1 8 0 100 4 3 100 100

JBB10A 1 1 1 1 NA 1 1 1 1 8 0 100 4 3 100 100

JBB10B 1 1 1 1 NA 1 1 1 1 8 0 100 4 3 100 100

JBB11A 1 1 1 1 NA 1 1 1 1 8 0 100 4 3 100 100

JBB11B 1 1 1 1 NA 1 1 1 1 8 0 100 4 3 100 100

JBB12A 1 1 NA 1 1 1 1 6 0 75 3 2 75 66.67

JBB12B 1 1 NA 1 1 1 1 6 0 75 3 2 75 66.67

JBB13A 1 1 1 1 NA 1 1 1 1 8 0 100 4 3 100 100

JBB13B 1 1 1 1 NA 1 1 1 1 8 0 100 4 3 100 100

JBB14A 1 1 1 1 NA 1 1 1 1 8 0 100 4 3 100 100

JBB14B 1 1 1 1 NA 1 1 1 1 8 0 100 4 3 100 100

JBB15A 1 1 1 1 NA 1 1 1 1 8 0 100 4 3 100 100

JBB15B 1 1 1 1 NA 1 1 1 1 8 0 100 4 3 100 100

JBB16A 1 1 1 NA 1 1 1 1 7 0 87.5 4 3 100 100

JBB16B 1 1 1 1 NA 1 1 1 1 8 0 100 4 3 100 100

JBB17A 1 1 NA 1 1 1 1 6 0 75 3 3 75 100

JBB17B 1 1 1 NA 1 1 1 6 0 75 2 3 50 100

JBB18A 1 1 NA NA NA 2 0 33.33 2 0 100 0

JBB18B 1 1 NA NA NA 2 0 33.33 1 0 50 0

PNA1 NA NA NA 1 NA 1 1 1 4 0 80 3 1 100 50

PNA2 NA NA NA 1 NA 1 2 0 40 2 0 66.67 0

PNA3 NA NA NA NA 1 1 0 20 1 0 33.33 0

PNA4 NA NA NA NA 2 1 1 1 20 1 0 33.33 0

PNA5 NA NA NA NA 1 1 0 20 1 0 33.33 0

PNA6 NA NA NA 1 NA 1 1 3 0 60 2 1 66.67 50

PNB1A NA NA NA 1 NA 1 1 3 0 60 2 1 66.67 50

PNB1B NA NA NA 1 NA 1 1 3 0 60 2 1 66.67 50

PNB2A NA NA NA 1 NA 1 0 20 1 0 33.33 0

PNB2B NA NA NA 1 NA 1 2 0 40 2 0 66.67 0

PNB3A NA NA NA 1 NA 1 1 3 0 60 2 1 66.67 50

PNB3B NA NA NA 1 NA 1 1 3 0 60 2 1 66.67 50

PNB4A NA NA NA NA 0 0 0 0 0 0 0

PNB4B NA NA NA 1 NA 1 1 3 0 60 2 1 66.67 50

PNB5A NA NA NA 1 NA 1 1 3 0 60 2 1 66.67 50

PNB5B NA NA NA 1 NA 1 1 3 0 60 2 1 66.67 50

PNB6A NA NA NA 1 NA 1 1 3 0 60 2 1 66.67 50

PNB6B NA NA NA 1 NA 1 1 3 0 60 2 1 66.67 50

PNB7A NA NA NA 1 NA 1 1 3 0 60 2 1 66.67 50

PNB7B NA NA NA 1 NA 1 1 3 0 60 2 1 66.67 50

PNB8A NA NA NA 1 NA 1 1 3 0 60 2 1 66.67 50

PNB8B NA NA NA 1 NA 1 1 1 4 0 80 3 1 100 50

PNB9A NA NA NA 1 NA 1 1 3 0 60 3 0 100 0

PNB9B NA NA NA 1 NA 1 1 1 4 0 80 3 1 100 50
a This survey of the preferred environment was run separately to the rest of the survey during 2006. b The percentage of non-NA groups for which

hypothesis 1 holds. c Groups 1 and 2 are denoted (1) and (2) respectively.

Information Systems Education Journal (ISEDJ) 10 (5)
 October 2012

©2012 EDSIG (Education Special Interest Group of the AITP) Page 74

www.aitp-edsig.org /www.isedj.org

Table 5. Mode responses to system preference questions (percentage giving mode
response in brackets)

Year 2006 2007 2008

Group 1 2 1 2 1

If you had
free choice,
which

development
environment
would you
prefer to have
used to learn
programming?

Both JBuilder
and
Programmers

Notepad
(45.8%)

JBuilder
only
(42.1%)

Both JBuilder
and
Programmers

Notepad
(18.2%)

Both JBuilder
and
Programmers

Notepad
(25%)

Both JBuilder
and
Programmers

Notepad
(29.6%)

If you had
free choice,

which
development
environment
would you

prefer to use
to do
programming
now?

JBuilder only
(66.7%)

JBuilder
only

(52.6%)

JBuilder only
(22.7%)

JBuilder only
(12.5%),

Both JBuilder
and
Programmers
Notepad

(12.5%),
Textmate
(12.5%)

JBuilder only
(37%)

Information Systems Education Journal (ISEDJ) 10 (5)
 October 2012

©2012 EDSIG (Education Special Interest Group of the AITP) Page 75

www.aitp-edsig.org /www.isedj.org

Appendix 2: Group 1 Survey Instrument (2008)

Note: the labeling used in this survey has been modified within the paper to improve readability; for
example, B1 corresponds to JBA1 within the paper

Information Systems Education Journal (ISEDJ) 10 (5)
 October 2012

©2012 EDSIG (Education Special Interest Group of the AITP) Page 76

www.aitp-edsig.org /www.isedj.org

Information Systems Education Journal (ISEDJ) 10 (5)
 October 2012

©2012 EDSIG (Education Special Interest Group of the AITP) Page 77

www.aitp-edsig.org /www.isedj.org

Information Systems Education Journal (ISEDJ) 10 (5)
 October 2012

©2012 EDSIG (Education Special Interest Group of the AITP) Page 78

www.aitp-edsig.org /www.isedj.org

Information Systems Education Journal (ISEDJ) 10 (5)
 October 2012

©2012 EDSIG (Education Special Interest Group of the AITP) Page 79

www.aitp-edsig.org /www.isedj.org

Information Systems Education Journal (ISEDJ) 10 (5)
 October 2012

©2012 EDSIG (Education Special Interest Group of the AITP) Page 80

www.aitp-edsig.org /www.isedj.org

Information Systems Education Journal (ISEDJ) 10 (5)
 October 2012

©2012 EDSIG (Education Special Interest Group of the AITP) Page 81

www.aitp-edsig.org /www.isedj.org

Information Systems Education Journal (ISEDJ) 10 (5)
 October 2012

©2012 EDSIG (Education Special Interest Group of the AITP) Page 82

www.aitp-edsig.org /www.isedj.org

Systems Analysis and Design:

Know your Audience

Bryan A. Reinicke

reinickeb@uncw.edu

Information Systems and Operations Management
University of North Carolina Wilmington

Wilmington, North Carolina 28403, USA

Abstract

Systems analysis and design (SAD) classes are required in both Information Systems and Accounting

programs, but these audiences have very different needs for these skills. This article will review the
requirements for SAD within each of these disciplines and compare and contrast the different
requirements for teaching systems analysis and design to both audiences. These observations are
based on both literature on the subject, and the authors personal experience with teaching SAD to
these two audiences.

Keywords: Systems Analysis and Design, Curriculum, Education

1. INTRODUCTION

Based on the IS model curriculum, systems
analysis and design is a core course in the
Information Systems curriculum (Topi, Valacich,
Wright, Kaiser, Nunamaker, Sipior & de Vreede,

2010). SAD is also a required course in many
Accounting programs, particularly for Accounting
Information Systems or Audit concentrations
(Badua, 2008; Daigle, Hayes & Hughes, 2007).
While these courses could nominally be the
same, and may be taught from the same
textbook, there are distinct differences in the

needs of these two audiences on the subject of
SAD. Making this more difficult, SAD is
frequently hard to convey as a subject to
information systems students (Clyde & Crane,

2003; Chen, 2006), and attempting it with two
different audiences compounds this problem.

The observations and comparisons in this paper
are based both on the authors’ experience with
teaching SAD in both curriculums as well as
research into the area. It is the intention of this
paper to assist other faculty in avoiding some of
the problems encountered by the author when
teaching what is nominally the same material to

different audiences.

The paper is structured as follows: First, the

presentation of SAD concepts in the IS
curriculum is examined. Then, the same is done
for SAD in the accounting curriculum. This is
followed by a discussion of the commonalities

between the two curriculums. Next a discussion
of the differences and potential problems
created by these differences is examined.
Finally, some concluding thoughts are
presented.

2. SYSTEMS ANALYSIS AND DESIGN IN

INFORMATION SYSTEMS

Systems Analysis and design courses are
required for Information systems majors, based

on the model IS curriculum (Topi, et al., 2010).
The IS model curriculum notes that the SAD
course “…discusses the processes, methods,

techniques and tolls that organizations use to
determine how they should conduct their
business, with a particular focus on how
computer-based technologies can most
effectively contribute to the way business is
organized” (p 51, Topi, et al., 2010).

mailto:reinickeb@uncw.edu

Information Systems Education Journal (ISEDJ) 10 (5)
 October 2012

©2012 EDSIG (Education Special Interest Group of the AITP) Page 83

www.aitp-edsig.org /www.isedj.org

The 2010 IS model curriculum lists 13 specific
learning objectives for SAD courses within the
undergraduate IS curriculum (p51, Topi, et al.,
2010). There is a great deal of latitude given to

schools on how to meet these learning
objectives to allow flexibility on how the goals
are met and which tools are used in classes.

The guidelines do note that the SAD course
should focus on the process of analyzing and
documenting business processes and then

converting these into systems requirements and
design specifications. The methods and
approaches used are left up to the individual
institutions, but the guidelines state that it is

important for students to be exposed not only to
the Systems Development Life Cycle (SDLC), but

to Object Oriented (OO) design using the unified
process and Unified Modeling Language (UML)
and to agile development methodologies as well.

The core SAD course is recommended for
Application developers, business process
analysis, project managers, User interface

designers and web content managers (Topi,
Valacich, Kaiser, Nunamaker, Sipior, deVreede &
Wright, 2007). These jobs cover a wide range of
professional areas that IS students may find
themselves working in, particularly immediately
after graduation.

The key concerns for IS students in this course
is to master the skills required for them to
become competent in the requisite skills to
prepare them for the jobs listed above and, of
course, to pass the course so that they can
graduate.

3. SYSTEMS ANALYSIS AND DESIGN FOR

ACCOUNTING

SAD courses for accounting have a slightly
different set of standards. First, it is not a
required course in all undergraduate Accounting

curriculums. Rather, it is addressed in
Accounting Information Systems programs
(Badua, 2008) or in Masters programs (Masters

of Science in Accounting or MSA), which many
students take to meet the requirements of the
Certified Public Accountant (CPA) exam for
education

(http://www.aicpa.org/BecomeACPA/Licensure/R
equirements/Pages/default.aspx). In addition,
MSA students are not being trained as
developers, nor will they necessarily have any
development training or experience. Instead,
these students are generally training for careers

in auditing and control. Because of this, the
focus of the course will be slightly different for
these students. However, there are a number of
studies that have pointed to the importance of

increasing the IS skills of accounting majors
(Daigle et al., 2007).

Because of these differences, the key concerns
of accounting students in SAD courses differ
from those of the IS students in similar courses.

Pass the CPA exam
The primary concern for most accounting
students, and virtually all MSA students, is to
pass the CPA exam. This is not an easy task,

and the focus of the CPA exam does not help
with the course content for SAD.

There is very little on the CPA exam that would
cover the concepts in a SAD course (Gleim,
2009). Accountants, after all, are not
developers, but they are likely to act as business
analysts and, of course, as systems auditors.

Some of the commonalities and differences
caused by the differences in expectations
between the two programs are discussed in the
following sections.

4. COMMONALITIES

Clearly, despite the differences between the IS
and Accounting majors, there are a number of
similarities in the requirements between these
two. There is also an overlap in the types of
jobs that the students could be looking into, as
MSA students who have followed a system/audit

style track could very easily find themselves in
the role of a business process analyst or
systems consultant.

The discussion of the commonalities is
structured based on the learning objectives from
the IS model curriculum (Topi, et al., 2010), the

American Institute of CPAs (AICPA) core
competencies (Daigle et al., 2007) and the
authors’ observations having taught courses in

both curriculums. Even though these areas are
of common concern, there may be differences in
the way they need to be addressed to the
different student groups. Those differences are

addressed in the next section of the paper.

The first area of common concern between the
curriculums is understanding the needs of the
business and how these might be addressed by
information systems. This is a skill required by

Information Systems Education Journal (ISEDJ) 10 (5)
 October 2012

©2012 EDSIG (Education Special Interest Group of the AITP) Page 84

www.aitp-edsig.org /www.isedj.org

business analysts, and these are positions that
could be filled by students from either area. In
fact, the ability to leverage technology is listed
as one of the AICPA core competencies for

accounting students (Daigle et al., 2007).

The second common area is the process of
initiating, prioritizing and assessing the
feasibility of information systems projects. Each
group of students would bring different
strengths to this process based on their training,

but it is an area that is focused on in both
curriculums.

The third common area is utilizing a

methodology for analyzing a business problem
and modeling it using a given technique. While

this is very open in the IS model curriculum to
give schools flexibility on which methodologies
and techniques are used, there is significantly
less flexibility on the accounting side. This is
largely driven by the fact that the accounting
students need to be concerned with both what is
expected of them on the CPA exam and what is

expected within the accounting profession. This
is discussed in more detail in the next section.

The forth area that both disciplines are
concerned with is project management. This
has actually been an area of expanding concern
within the IS profession for a number of years,

and it is certainly one within the accounting
profession for at least one of the same reasons:
the cost of IS projects.

The fifth area of overlap is the examination of
articulation of various systems alternatives to

solve a given business problem. This could
include assessing whether to use a packaged or
custom solution for a given system. Again,
students in each area bring different strengths
to this area based on their training.

Related to the previous area, the sixth are is the

comparison of acquisition alternatives. This
would involve creating an assessment metric
and the applying that metric to the various

alternatives solutions that the company has
selected for that problem.

The seventh area, based on the IS model

curriculum, deals with system security. This is
certainly a primary concern for system auditors
(Walters, 2007), and is something that is
emphasized at multiple points in an accounting
curriculum in the form of audit controls, which
are then coded into the system.

The final area of overlap is that of analyzing and
articulated ethical, cultural and legal issues for
the system and how these impact the feasibility
of the system. Ethical behavior and the

regulations surrounding financial reporting are
two areas that are focused on in the CPA exam,
and therefore in accounting curriculums. With
the advent of legislation such as Sarbanes
Oxley, these concerns are quite directly
translated into systems concerns.

By reviewing this list, it can be seen that there is
at least partial overlap for 8 of the 13 learning
objectives for SAD between IS and accounting.
While this is fairly extensive, it’s also

significantly less than 100%, which can lead to
some issues between the disciplines, and

certainly leads to a different focus when
teaching these classes.

5. DIFFERENCES AND PROBLEMS

While there are a large number of common
areas of learning within the two curriculums,

there are a number of differences as well. This
is where the potential disconnects, and
potentially some problems exist. However, it is
not just the disconnects that can cause
problems. It is also the differences in the
overlap that can create problems as well.

In this section, I explore some of the areas that
are most likely to cause problems. The purpose
of this discussion is to highlight those areas
where disconnects can occur, and help
instructors working with either group (or both
groups) of students identify the topics in their

curriculum that may need to be adjusted.

Financials and the importance thereof
Certainly, financial considerations for new
systems are covered in IS courses on SAD, but
this is frequently not given extensive
consideration. After all, this topic is a subset of

one of the 13 primary learning objectives for the
course, so it is difficult for many instructors to
spend an extensive amount of class time on it.

While this may not be a primary concern for
many IT professionals and professors, it is the
primary concern of accountants and auditors.

These are students who have spent and
extensive amount of class time on
considerations of cost and cash flow. This could
lead to a disconnect between accounting and IS
students, and will certainly change the amount
of time spent on a topic in class.

Information Systems Education Journal (ISEDJ) 10 (5)
 October 2012

©2012 EDSIG (Education Special Interest Group of the AITP) Page 85

www.aitp-edsig.org /www.isedj.org

Scheduling, and the problems associated
with same
Project management is an important topic to
cover, at least in part, within an SAD course.

One of the problems with planning for systems
projects is the inherent uncertainty that can
surround development time for a new project.
This is particularly true if the technology being
utilized is relatively new, or if the problem being
addressed is one that the organization does not
have extensive familiarity with.

Generally speaking, IS students can grasp this
problem very quickly. They have all had to take
programming courses, and they have all had a

program take longer to code than they thought
it would. The same cannot be said for

accounting students, who are not trained as
programmers. They have generally not had the
experience of an “easy” programming problem
occupying an entire weekend.

This can be somewhat addressed depending on
the type of database course the students have

had. MSA students generally have a DB course
as a part of the curriculum, as everything they
need to verify as an auditor is in a database
somewhere, and if they have had to program in
SQL, they can understand the difficulties of
coding. If not, then it is an area that will need
some additional attention in the class.

Differences in approaches to identification
and roll out of new technology
Clearly, one of the functions of a systems
analyst or IT consultant would be to identify new
technologies that could be applied to the

business. It should be expected that IS majors
would have higher levels of technical skills, and
likely a more technical bent, than accounting
majors. It could also be assumed that the
average accounting student will be more
conservative when it comes to the application of
technology, particularly new technology, than

the average IS major. IS students do have a
tendency to be enthusiastic about the use of
technology, while accounting students are

trained to be more focused on issues of cost and
functionality. Thus, while both could be
responsible for the identification of new
technologies to apply to the business, it is

entirely likely that they will have divergent views
on which technologies are suitable for
implementation.

This means that, when discussing this type of
activity in class, the instructor may need to take
a different tack with both groups of students.

OO vs. Business Process Diagrams
As more and more IS shops and programs move
to OO design and build techniques (Satzinger,
Batra & Topi, 2007), there is likely to be a larger
disconnect, as the accounting programs do not
tend to focus on these (Jones & Lancaster,
2001). Part of the reason is that the questions

on this do not appear on the CPA exam, which
tends to focus on much older technology. As an
example of this, my MSA students have told me
that practice questions on the CPA exam in the

technology area include “What is the job title of
the person who feeds the punch cards into the

computer?”, and there is still discussion in the
CPA review books of the role of the Librarian in
checking out code to developers (Gleim, 2009).

Business process design and documentation is
one of the auditors primary focuses, which
makes sense as it is their responsibility to audit

these processes to ensure compliance with
applicable regulations. While this is also an area
which IS classes focus, this is an area that may
get more attention in an MSA class simply
because they will not be working on the
development tasks that may be covered in an IS
class. The disconnect lies with the fact that

accounting classes generally do not focus on
object oriented techniques, which capture
business processes in a different way. They
tend to focus on the “older” business process
diagrams, rather than newer OO techniques.

Why do you care about the development
environment?
Auditors can have a legitimate set of concerns
regarding a development environment from a
control perspective (Hall, 2011). From an audit
standpoint, there is very little that is less
desirable than people being able to make

unrestricted changes to a system without a
control in place. From an IS standpoint, this
means that our students should be prepared for

these types of questions from the auditors and
understand that they have a legitimate interest.
This would include potentially auditing which
developers have access to which areas of the

system.

This also means that, in an accounting class, this
topic will need to be addressed. As noted in the
previous section, the CPA exam has not exactly
kept up with new developments in technology.

Information Systems Education Journal (ISEDJ) 10 (5)
 October 2012

©2012 EDSIG (Education Special Interest Group of the AITP) Page 86

www.aitp-edsig.org /www.isedj.org

This means that the accounting students will
need to be educated about what can be done to
control code in a modern systems development
environment. The same could be said for the

information systems students, who would also
need to understand the differences between a
build and test and production environment, and
why the two should be separate.

Why do you care about my systems
documentation?

Auditors may be required to audit the
documentation vs. the code in a production
system (Hall, 2011). This means that every
change in the production system must be logged

and, more importantly, must match the changes
that are actually in the documentation. This is a

legitimate audit function, and one that could
come up in a systems development project,
particularly in the maintenance phase. This
alone means that audit standards may not line
up with some systems development
methodologies that do not emphasize
documentation of the system (i.e. Agile

methods).

With regulations like Sarbanes-Oxley, it seems
likely that this type of audit is likely to continue
in the future. This emphasizes the importance
of documentation practices for the information
systems student’s, but it means that we must

also educate the accounting students about the
types of documentation and how these are
created. There is the possibility that accounting
students would reject agile methods as a viable
option out of hand because of the reduced
documentation that can accompany such

development techniques. It needs to be made
clear that even using agile methods, it is
possible to create complete systems
documentation.

6. CONCLUSIONS

While both information systems and accounting
programs have a need to teach systems analysis
and design courses, the needs of the students in

each of these classes can be distinctly different.
It is certainly possible to teach to both of these
groups, but it is best to do so using two different
curriculums because of the differences. This

paper has laid out some of the similarities and
differences between these two groups as a
reference point for faculty who need to teach the
same course to these different audiences.

7. REFERENCES

Badua, F. (2008). Pedagogy and the PC: Trends
in the AIS Curriculum. Journal of Education
for Business, 83(5), 7.

Chen, B. (2006). Teaching Systems Analysis and
Design: Bringing the Real World into the
Classroom. Information Systems Education
Journal, 4(84).

Clyde, S. W., & Crane, A. E. (2003). "Design-n-
Code Fests" as Capstone Projects for an
Object-Oriented Software Development

Course. Computer Science Education, 13(4),
16.

Daigle, R. J., Hayes, D. C., & Hughes, K. E. I.
(2007). Assessing Student Learning
Outcomes in the Introductory Accounting
Information Systems Course Using AICPA's

Core Competency Framework. Journal of
Information Systems, 21(1), 22.

Hall, J. A. (2011). Information Technology
Auditing (3 ed.). Mason, OH: Cengage.

Jones, R. A., & Lancaster, K. A. S. (2001).
Process Mapping and Scripting in the
Accounting Information Systems (AIS)

curriculum. Accounting Education, 10(3), 17.

Gleim, I. N. (2009). CPA Review: Business
Environment and Concepts (2010 ed.).

Gainesville, FL: Gleim Publishing, Inc.

Satzinger, J. W., Batra, D., & Topi, H. (2007).
Analysis and Design in the IS Curriculum:
Taking it to the Next Level. Communications

of the Association for Information Systems,
20, 15.

Topi, H., Valacich, J. S., Kaiser, K. M.,
Nunamaker, J. F. J., Sipior, J. C., de Vreede,
G. J., Wright, R. (2007). Revising the IS
Model Curriculum: Rethinking the Approach

and Process. Communications of the
Association for Information Systems, 20, 14.

Topi, H., Valacich, J. S., Wright, R. T., Kaiser, K.
M., Nunamaker, J. F. J., Sipior, J. C., de

Vreede (2010). IS 2010: Curriculum
Guidelines for Undergraduate Degree
Programs in Information Systems. ACM /

AIS.

Walters, L. M. (2007). A Draft of an Information
Systems Security and Control Course.
Journal of Information Systems, 21(1), 27.

Information Systems Education Journal (ISEDJ) 10 (5)
 October 2012

©2012 EDSIG (Education Special Interest Group of the AITP) Page 87

www.aitp-edsig.org /www.isedj.org

Measuring Assurance of Learning Goals:

Effectiveness of Computer Training and
Assessment Tools

Marianne C. Murphy

mmurphy@nccu.edu

Aditya Sharma
asharma@nccu.edu

Mark Rosso

mrosso@nccu.edu

Computer Information Systems,

North Carolina Central University
Durham, NC, 27707, USA

ABSTRACT

Teaching office applications such as word processing, spreadsheet and presentation skills has been
widely debated regarding its necessity, extent and delivery method. Training and Assessment
applications such as MyITLab, SAM, etc. are popular tools for training students and are particularly

useful in measuring Assurance of Learning (AOL) objectives. Meeting these assessment objectives has
become a crucial issue in business schools as it now plays a major role in AACSB accreditation. It is
our contention that these tools are fundamentally necessary to train and assess students to meet
specific objectives that support a particular goal. In our experience, the simulation component of
these tools is not enough to ensure all objectives. In this paper, we describe our experience with the
use of in-the-application assignment projects to supplement the assessment and training simulation in
order to improve final assessments and close the AOL loop.

Keywords: assessment, computer applications

1. INTRODUCTION

Teaching office applications such as word
processing, spreadsheet and presentation skills
has been widely debated regarding necessity,
extent and delivery method. Some contend

that entering freshman should have had
exposure to these applications and require the
passing of an assessment exam (Shannon,
2008). Others believe that high school exposure

does not ensure necessary advanced skills in
applications such as spreadsheets and require
additional training (Hulick & Valentine, 2008).
Traditional training in computer applications has
generally included lecture and lab assignments

in the particular application (Mykytyn, Pearson,
Paul, & Mykytyn, 2008). In more recent years,
many universities have turned to assessment
and training tools such as MyITLab, SAM,
SimNet and SNAP (Hill, 2011; Morris, 2010).

Information Systems Education Journal (ISEDJ) 10 (5)
 October 2012

©2012 EDSIG (Education Special Interest Group of the AITP) Page 88

www.aitp-edsig.org /www.isedj.org

These tools require students to complete various
tasks in a simulated application. The tools are
also debated, as some wonder if students are
really just learning to “click and point” to learn

specific tasks but do not have the ability to
actually apply these learned tasks to solve
business problems (Coleman, Thrasher, &
Atkinson, 2010).

However, many universities not only use these
simulation tools for training but also for
implementing assurance of learning (AOL)

standards mandated by the AACSB. Meeting
these standards has become crucial, as they
now play a major role in the AACSB

accreditation of business schools (AACSB,
2007). Program learning goals must be set,
objectives must be measured across time, and

the results used for continuous improvement
(a.k.a “closing the loop” (Al-Mubaid,
Abeysekera, Kim, Perkins-Hall, & Yue, 2011;
Hollister & Koppel, 2006)).

In this paper, we examine the extent to which
these tools can be useful in attaining AOL
objectives with regard to computer application

skills. After providing a brief overview of the
debate over teaching computer application skills,
we look at how schools have responded with the
use of automated training and assessment tools.
We then relate our own school’s experience with
teaching computer applications, the use of these

automated tools and how we supplemented their

use in implementing the continuous
improvement process necessary for our school’s
maintenance of AACSB accreditation.

2. BACKGROUND

Office Applications

One assessment goal in many business schools

is that students have the ability to use
technology (Hollister & Koppel, 2007). Computer
application skills in word processing,
spreadsheets and presentations are vital for all
business students as they matriculate and in
future employment (Wolk, 2008).

The need for business schools to teach these

skills and/or assess a student’s skill level has
been a subject of discussion in many schools.
One question usually discussed is “shouldn’t
incoming freshman have these skills?” The
answer is that some do but many don’t.
Research indicates that a large percentage of
students are not able to successfully pass a

beginning assessment (Hulick & Valentine,
2008; Shannon, 2008; Kline & Strickland,

2004), even in states where competency in
technology is required for high school graduation
(Grant, Malloy, & Murphy, 2009). This research
also shows that students may overestimate their

ability in office productivity tools. Students have
a much higher perception of their level of skill in
these applications than their actual performance
on assessments (Grant, et al., 2009). Their
study particularly indicated that students did not
possess an adequate set of spreadsheet skills
(as did (Kline & Strickland, 2004)). Thus,

without curricular intervention of some sort,
many students will not take a computer
applications course and therefore continue to
lack critical skills such as spreadsheets.

Assessment Tools

In order to ascertain that students obtain or

have these computer application skills,
universities have turned to training and
assessment tools for test-out and instruction
(Morris, 2010). Assessment and training tools
have become quite popular in business programs
to ensure that students have adequate skills in
office production software, and to assess skill

level and determine placement (Coleman,
Thrasher, & Atkinson, 2010; Tesch, Murphy, &
Crable, 2006). Currently, the most popular tools
include MyITLab, SAM, SimNet and SNAP (Hill,
2011).

These tools offer many benefits:

 Individualized instruction – students can

work on modules that focus on skills in
which they are deficient (Morris, 2010).

 Consistent content across sections in
multi-section courses – this also
encourages consistency of results across
sections (Kline & Strickland, 2004).

 Automated grading is quick, and speeds
the gathering of assessment data
(Merhout, Benamati, Rajkumar, Anderson,
& Marado, 2008).

 Distance learning - automated tools can be
incorporated in online courses relatively
easily (Huan, Shehane, & Ali, 2011).

However, as mentioned earlier, some question
the effectiveness of these tools, and what few
results have been reported have been mixed
(Morris, 2010; Coleman, Thrasher, & Atkinson,
2010; Paranto, Neumann, & Zhang, 2008; Kline
& Strickland, 2004).

Assurance of Learning

The importance of assessment in business
schools has increased significantly since 2003

Information Systems Education Journal (ISEDJ) 10 (5)
 October 2012

©2012 EDSIG (Education Special Interest Group of the AITP) Page 89

www.aitp-edsig.org /www.isedj.org

when the AACSB adopted new standards for
accreditation and reaccreditation. Prior to 2003,
the AACSB had only 10% of the criteria related
to assessment. Currently, one third of the

standards are assessment-related (Pringle &
Michel, 2007).

Assessment has played such an important role in
accreditation because stakeholders in
universities such as state legislators, taxpayers,
parents, donors and the federal government are
requiring direct evidence of student learning

(Bollag, 2006; Suskie, 2004). Computer
application simulation tools can be used to easily
measure relevant AOL objectives. The model in

Figure 1 shows the loop that is referred to by
the phrase “closing the loop”, with regard to
assurance of learning. Simulation tools can fill

the assessment role depicted in Al-Mubaid, et
al.’s (2011) model. See their paper for a
complete description of the assessment process.

Figure 1. Conceptual Model of Assessment

(reprinted from Al-Mubaid, et al., 2011)

3. ASSESSMENT STRATEGY

Teaching Business Applications

At our university, most faculty members in the
school of business agree that a sound curriculum

include a student’s mastery of fundamental
computer applications such as word,
presentation, spreadsheet and database.
However, delivery of training for these tools
continues to be widely debated.

We informally surveyed nine of the largest
schools by enrollment in the North Carolina state

university system. Results show that schools
address this delivery issue in a variety of ways:

 Require all students to take a course.
 Pass an assessment or take a course.

 Incorporate computer application skills
with a Management of Information
Systems (MIS) course.

 Pass an assessment initially or use a self-
study application tool until passing the
assessment.

Additionally, the course and or courses have a

variety of content including:

 One course or assessment that includes

word processing, spreadsheet and
presentation applications (sometimes with
an office database application such as
Microsoft Access).

 Separate courses for word
processing/presentation and
spreadsheet/database.

 An MIS course that includes spreadsheets
only.

 An MIS course that includes spreadsheets
and database applications.

Although this data is limited in scope and size, it
can reasonably be assumed that other business
schools debate the best way to ascertain the
delivery of application skills. Over the past
several years our university has used a variety

of delivery modes. In Fall 2008 and Spring 2009,
we offered one business computer applications

course that included word processing,
spreadsheets and presentation skills and a
separate course that includes office database
applications.

At this writing, our first business computer
applications course includes only spreadsheet

skills. The decision to not teach word processing
and presentation is largely based on student’s
requirement to have these skills in other courses
and their ability to learn these skills on their
own. Additionally, incoming freshman do not
have the ability to complete even basic
spreadsheet tasks (Grant, et al., 2009; Kline &

Strickland, 2004) and these skills are deemed
vital for matriculation and post-graduation
employment.

Students can test out of the first business
computer applications course (Microsoft Excel).
The database application course is an elective.
Our teaching and assessment tool is Pearson’s

MyITLab. All business students are required to
obtain a score of 70% or better on an

Information Systems Education Journal (ISEDJ) 10 (5)
 October 2012

©2012 EDSIG (Education Special Interest Group of the AITP) Page 90

www.aitp-edsig.org /www.isedj.org

assessment or take the business applications
course. This percentage is based on the
business school policy of requiring students to
matriculate with a C or better in all their

coursework. All students who take the course
are required to take the same assessment as a
post-test.

In the Fall of 2008 and Spring of 2009 this
assessment included the testing of 10 MS-Excel
skills, 5 MS-Word skills and 5 MS-PowerPoint
skills. In the Fall of 2009 the pre- and post-test

assessed 20 MS-Excel skills. Seven MS-Excel
skills are persistent during the entire test period
of Fall 2008 to Spring 2011. Each of these tested

skills includes 2-5 tasks. All of the tasks for
each skill must be completed successfully.

AOL Goal

We use this pre- and post-test of all business
students to measure our technology AOL goal.
The criterion for meeting this goal is that 70% of
the students correctly complete each skill tested.
A summary of our AOL report is included in
Appendix A.

Each semester’s post-tests are reviewed and a

strategy to reach our goal of 70% on all skills is
determined. In spite of several strategies, our
post-test results in Fall 2008 through Spring
2009 indicated that, on average, half of the
original 10 tested skills were below standard.

Project Implementation

A criticism of the assessment and application

tools is that students only learn to click and
point in a simulated environment and these skills
do not always translate to “in-the-application”
skills. Project-based courses in business
applications may be more successful (Murray,
Hooper, & Perez, 2007) but are not always

practical in terms of training large numbers of
students.

After the initial introduction of the MyITLab tool,
Pearson Education received numerous requests
for a built-in grader for problem solving projects
that could be performed in the actual

application. In Fall 2009, MyITLab offered an

applications enhancement called Project Grader.
This enhancement offered in-the-application
projects. Students would download a beginning
spreadsheet and perform a variety of tasks in
MS-Excel, upload the completed spreadsheet
and receive a grade based on the correct
completion of those tasks.

In order to determine what effect the projects
would have on the overall performance of
students on the final assessment, we
implemented projects in one section over two

consecutive semesters (Fall 2009, Spring 2010).
Projects were implemented in all sections in the
Fall 2010 semester. Instructors determined how
many projects to include in their section. In
Spring 2011, all sections included 7 projects in
addition to the simulation training. See Appendix
B for the results of these sections.

4. WHAT WE LEARNED

Teaching and/or assessing students in computer
applications skills and measuring our AOL

objectives remain an ongoing process. However,
our experience has taught us that:

 Incoming freshmen do not always have

the necessary computer application skills,
in particular spreadsheet skills.

 Training and Assessment simulation tools
have proven to be an effective method for
training students and measuring AOL
objectives.

 Augmenting simulation training with

projects that require the use of the actual
spreadsheet application improves AOL
measured objectives.

The average compliance improved each
semester except one. However the most

dramatic increases in the percentage of correct
tasks were in the one section using 7 projects in

Fall 2009 (see Table 2). When 3 projects were
used in one section, improvement was noted in
some skills but not in others. When instructors
determined how many projects to implement in
Fall 2010, results were mixed. In Spring 2011,
all sections implemented the 7 projects used in

Fall 2009 and all persistent skills (of the original
10) tested met the standard. Although our data
is not scientific proof that adding projects, in
particularly these 7 projects, increases a
student’s overall skill level, it gives us a base for
improvement. Additionally, we show continued
improvement over time.

Simulation tools are extremely useful especially
in assessing and training computer applications
to large numbers of students. Additionally,
students’ acceptance of this type of training is
high (Baker, 2004). However, simulation training
may not completely prepare students to
successfully apply the skills learned to later

tasks and projects using computer application
skills. Project-based training in-the-application
only is not practical in terms of time and

Information Systems Education Journal (ISEDJ) 10 (5)
 October 2012

©2012 EDSIG (Education Special Interest Group of the AITP) Page 91

www.aitp-edsig.org /www.isedj.org

resources for large numbers of students. In our
experience, a combination of simulation training
and in-the-application training increases the
likelihood that students will be able to complete

any given task in that application.

5. MOVING FORWARD

Our experience supports previous research that
project-based courses in computer application
increases the skill level of the students.
Specifically, the addition of application-based
projects in our courses increased the percentage

of students who could successfully complete the
tasks tested and closed the loop for our
technology AOL goal. Meeting AOL goals for

AACSB accreditation is vital for business schools.
Evaluating our assessment goals every semester
and supplementing simulation training with live

application projects significantly increased our
ability to “close the loop.”

We plan to continue using these projects and
measure the student’s success with the
additional 13 skills in the pre- and post-tests
(please contact author for a list of these skills).
Additionally, based on the pre- and post-tests,

we will adjust the project focus to tasks that
specifically address the desired skill.

6. REFERENCES

AACSB. (2007, November 20). AACSB Assurance
of Learning Standards: An Interpretation.
Retrieved June 25, 2011, from The

Association to Advance Collegiate Schools of
Business:
http://www.aacsb.edu/accreditation/papers/
aolpaper-final-11-20-07.pdf

Al-Mubaid, H., Abeysekera, K., Kim, D., Perkins-
Hall, S., & Yue, K. (2011). A Model for Long

Term Assessment of Computing and
Information Systems Programs. Information
Systems Education Journal, 9(3), 59-67.

Atkinson, J. K., Thrasher, E., & Coleman, P.
(2010). Simulation software's effect on
college students spreadsheet project scores.

Academic and Business Research Institute

Conference. Orlando.

Baker, J. (2004). Spreadsheet Applications:
Prototyping an Innovative Blended Course.
Turkish Online Journal of Distance
Education, 5(1), 1-9.

Bollag, B. (2006, December 6). Fears of Possible
Federal Learning Standards Grow as Liberal-

Arts Accreditor Is Penalized. Retrieved 7 6,

2011, from The Chronicle of Higher
Education:
http://chronicle.com/article/Fears-of-
Possible-Federal/119555/

Coleman, P. D., Thrasher, E. H., & Atkinson, J.
K. (2010). Simulation software's effect on
college students' spreadsheet project scores.
Academic and Business Research Institure
Conference. Orlando: AABRI.

Grant, D., Malloy, A., & Murphy, M. (2009). A
Comparison of Students Perception of their

Computer Skills to their Actual Abilities.
Journal of Information Technology
Education, 8, 141-160.

Hill, T. (2011). Word Grader and Powerpoint
Grader. ACM InRoads, 2(2), 34-36.

Hollister, K., & Koppel, N. (2006). Framework for

meeting AACSB International's assurance of
learning requirements: application to
information technology. Journal of
Informatics Education Research, 8(3), 1-14.

Hollister, K., & Koppel, N. (2007). Curricular
Changes in Response to Assurance of
Learning Results in Information Technology.

IABE-2007 Annual Conference, III, pp. 152-
158. Las Vegas.

Huan, T., Shehane, R., & Ali, a. (2011).
Teaching computer science courses in

distance learning. Journal of Instructional
Pedagogies, 6, 1-14.

Hulick, F., & Valentine, D. (2008). Computer

competency of incoming college students:
yet more bad news. ISECON (pp. 1-7).
Phoenix: EDSIG.

Kline, D., & Strickland, T. (2004). Skill Level
Assessment and Multi-section Standarization
for an Introductory Microcomputer

Applications Course. Issues in Information
Systems, 5(2), 572-578.

Merhout, J., Benamati, J., Rajkumar,
T.,Anderson, P., & Marado, D. (2008).
Implementing direct and indirect assessment

in the MIS curriculum. Communications of
the Association of Information Systems,

23(24), 419-436.

Morris, K. (2010). College and the digital
generation: Assessing and training students
for the technological demands of college by
exploring relationships between computer
self-efficacy and computer proficiency. The

Information Systems Education Journal (ISEDJ) 10 (5)
 October 2012

©2012 EDSIG (Education Special Interest Group of the AITP) Page 92

www.aitp-edsig.org /www.isedj.org

University of Alabama: Unpublished Doctoral
dissertation.

Murray, M., Hooper, J., & Perez, J. (2007). A
project-based approach to assessing student

competency with productivity software.
SIGED-IAIM (pp. 1-14). Montreal, Quebec,
Canada: AIS.

Mykytyn, J., Pearson, A., Paul, S., & Mykytyn, P.
(2008). The use of problem-based learning
to enhance MIS education. Decision Sciences
Journal of Innovative Education, 6(1), 89-

113.

Paranto, S., Neumann, H., & Zhang, L. (2008).

Information systems: performing
application-specific assessment of student
performance. Issues in Information
Systems, 9(1), 87-94.

Pringle, C., & Michel, M. (2007). Assessment
Practices in AACSB-Accredited Business

Schools. Journal of Education for Business,
82(4), 202-211.

Shannon, L. (2008). Information and
Communication Technology Literacy Issues

in Higher Education. Information Systems
Education Journal, 6(23), 3-13.

Suskie, L. (2004). Assessing Student Learning: a
common sense guide. Bolton, MA: JB-Anker.

Tesch, D., Murphy, M., & Crable, E. (2006).
Implementation of a Basic Computer Skills
Assessment Mechanism for Incoming

Freshman. Information Systems Education
Journal, 4(13), 1-11.

Wolk, R. (2008). How important is student
computing ability? The role of information
technology competence in business school
accreditation. Information Systems

Education Journal, 6(39), 1-16.

Information Systems Education Journal (ISEDJ) 10 (5)
 October 2012

©2012 EDSIG (Education Special Interest Group of the AITP) Page 93

www.aitp-edsig.org /www.isedj.org

APPENDIX – A - AOL Summary Results

Date # of students
enrolled

of students
assessed

Below
standard

Post Assessment Action (to close the loop)

Fall 2008 259

Pre-test 201 90% Current Term: 10 trainings, 4 exams.

Post-test 206 50% Next term: demonstrate skills in class at least 3 times in areas where average is less than
70%.

Spring 2009 199

Pre-test 110 90% Current Term: 10 trainings, 4 exams.

Post-test 128 40% Next term plan to demonstrate skills in class at least 3 times in areas where average is less
than 70%. Introduce in-the-application projects in one section as a test.

Fall 2009 302

Pre-test 142 80% Current Term: 10 trainings, 4 exams, 7 projects in one section; 10 trainings, 4 exams in
remaining sections.

Post-test 169 30% Continue to roll out in-the-application projects.

Spring 2010 248

Pre-test 158 90% Current Term: 10 trainings, 4 exams, 3 projects in one section; 10 trainings, 4 exams in
remaining sections.

Post-test 175 20% Continue to roll out in-the-application projects.

Fall 2010 139*

Pre-test 51 100% Current Term: 10 trainings, 4 exams, 3 projects in one section; 10 trainings, 4 exams in
remaining sections.

Post-test 111 10% Projects in all sections. For comparison on this report only original 7 objectives are included.

Spring 2011 122*

Pre-test 80 100% Current Term: 10 trainings, 4 exams, 7 projects in all sections

Post-test 85 0% Projects in all sections and determining that all objectives are covered in the project content.
For comparison on this report only original 7 objectives are included.

 *Not all business students were required to show competency in computer business applications and therefore

enrollment dropped.

Information Systems Education Journal (ISEDJ) 10 (5)
 October 2012

©2012 EDSIG (Education Special Interest Group of the AITP) Page 94

www.aitp-edsig.org /www.isedj.org

Appendix B: Percentage of Compliance with assessment objectives by semester

Objectives (Skill Tested)

Fall

2008

Spring

2009

Fall

2009

Fall

2009

with 7

Projects

Spring

2010

Spring

2010

with

3

Projects

Fall

2010

with 3-7

Projects

Spring

2011

With 7

Projects

 Compute the Gross Pay 51.46% 60.23% 60.00% 74.42% 41.33% 68.00% 69.37% 75.56%

 Use the IF Function 67.96% 63.16% 69.05% 79.07% 52.67% 40.00% 48.65% 73.33%

 Start Microsoft Office Excel 2007 96.12% 98.83% 100.00% 95.35% 100.00% 100.00% 98.20% 94.44%

 Apply Number Formatting 90.29% 92.40% 89.05% 88.37% 94.40% 92.00% 92.79% 95.56%

 Copy the Formulas with the Fill

Handle 86.41% 88.30% 89.05% 93.02% 88.00% 92.00% 91.89% 91.11%

 Insert a Row and Compute Totals 77.18% 80.12% 79.52% 76.74% 82.67% 80.00% 87.39% 86.67%

 Change the Chart Type 67.96% 70.18% 75.24% 69.77% 69.33% 76.00% 76.58% 76.67%

Average Compliance 76.77% 79.03% 80.27% 82.39% 75.49% 80.00% 80.69% 84.76%

Objective not meeting at least

70% compliance 3 2 2 1 3 2 2 0

