INFORMATION SYSTEMS EDUCATION JOURNAL

In this issue:

4 Defining the Content of the Undergraduate Systems Analysis and Design Course as Measured by a Survey of Instructors
Timothy J. Burns, Ramapo College of New Jersey

18 A Relational Algebra Query Language For Programming Relational Databases
Kirby McMaster, Weber State University
Samuel Sambasivam, Azusa Pacific University
Nicole Anderson, Winona State University

27 The Greening of the Information Systems Curriculum
Patricia Sendall, Merrimack College
Li-Jen Shannon, Sam Houston State College
Alan R Peslak, Penn State University
Bruce Saulnier, Quinnipiac University

46 Determining the Most Suitable E-Learning Delivery Mode for TUT Students
Solomon Adeyemi Odunaike Tshwane University of Technology
Daniel Chuene, Tshwane University of Technology

61 Beyond Introductory Programming: Success Factors for Advanced Programming
Arthur Hoskey, Farmingdale State College
Paula San Millan Maurino, Farmingdale State College

71 Systems in the Foundations of Information Systems Course to Retain Students and to Support the IS 2010 Model Curricula
Gayla Jo Slauson, Colorado Mesa University
Donald Carpenter, Colorado Mesa University
Johnny Snyder, Colorado Mesa University

77 Culturally Sensitive IS Teaching: Lessons Learned to Manage Motivation Issues
Wenshin Chen, Abu Dhabi University

86 Establishing and Applying Criteria for Evaluating the Ease of Use of Dynamic Platforms for Teaching Web Application Development
Johnson Dehinbo, Tshwane University of Technology

97 Integrating SAP to Information Systems Curriculum: Design and Delivery
Ming Wang, California State University

105 A Validation Study of Student Differentiation Between Computing Disciplines
Michael Battig, Saint Michael's College
Muhammad Shariq, American University of Afghanistan
The Information Systems Education Journal (ISEDJ) is a double-blind peer-reviewed academic journal published by EDSIG, the Education Special Interest Group of AITP, the Association of Information Technology Professionals (Chicago, Illinois). Publishing frequency is quarterly. The first year of publication is 2003.

ISEDJ is published online (http://isedj.org) in connection with ISECON, the Information Systems Education Conference, which is also double-blind peer reviewed. Our sister publication, the Proceedings of ISECON (http://isecon.org) features all papers, panels, workshops, and presentations from the conference.

The journal acceptance review process involves a minimum of three double-blind peer reviews, where both the reviewer is not aware of the identities of the authors and the authors are not aware of the identities of the reviewers. The initial reviews happen before the conference. At that point papers are divided into award papers (top 15%), other journal papers (top 30%), unsettled papers, and non-journal papers. The unsettled papers are subjected to a second round of blind peer review to establish whether they will be accepted to the journal or not. Those papers that are deemed of sufficient quality are accepted for publication in the ISEDJ journal. Currently the target acceptance rate for the journal is about 45%.

Information Systems Education Journal is pleased to be listed in the 1st Edition of Cabell's Directory of Publishing Opportunities in Educational Technology and Library Science, in both the electronic and printed editions. Questions should be addressed to the editor at editor@isedj.org or the publisher at publisher@isedj.org.

2011 AITP Education Special Interest Group (EDSIG) Board of Directors

Alan Peslak
Penn State University
President 2011

Wendy Ceccucci
Quinnipiac University
Vice President

Tom Janicki
Univ of NC Wilmington
President 2009-2010

Scott Hunsinger
Appalachian State University
Membership Director

Michael Smith
High Point University
Secretary

Brenda McAleer
Univ of Maine Augusta
Treasurer

Michael Battig
Saint Michael’s College
Director

George Nezlek
Grand Valley State University
Director

Leslie J. Waguespack Jr
Bentley University
Director

Mary Lind
North Carolina A&T St Univ
Director

Li-Jen Shannon
Sam Houston State Univ
Director

S. E. Kruck
James Madison University
JISE Editor

Kevin Jetton
Texas State University
FITE Liaison

Copyright © 2011 by the Education Special Interest Group (EDSIG) of the Association of Information Technology Professionals (AITP). Permission to make digital or hard copies of all or part of this journal for personal or classroom use is granted without fee provided that the copies are not made or distributed for profit or commercial use. All copies must bear this notice and full citation. Permission from the Editor is required to post to servers, redistribute to lists, or utilize in a for-profit or commercial use. Permission requests should be sent to Wendy Ceccucci, Editor, editor@isedj.org.
INFORMATION SYSTEMS EDUCATION JOURNAL

Editors

Wendy Ceccucci
Senior Editor
Quinnipiac University

Thomas Janicki
Publisher
Univ NC Wilmington

Don Colton
Emeritus Editor
Brigham Young University Hawaii

Nita Brooks
Associate Editor
Middle Tennessee State University

Mike Smith
Associate Editor - Cases
High Point University

ISEDJ Editorial Board

Alan Abrahams
Virginia Tech

Brenda McAleer
University of Maine at Augusta

Li-Jen Shannon
Sam Houston State University

Mike Battig
Saint Michael’s College

Monica Parzinger
St. Mary’s University
San Antonio

Karthikeyan Umapathy
University of North Florida

Gerald DeHondt II
Grand Valley State University

Laurie Werner
Miami University

Janet Helwig
Dominican University

Bruce White
Quinnipiac University

Mark Jones
Lock Haven University

Doncho Petkov
Eastern Connecticut State Univ.

Charles Woratschek
Robert Morris University

Cynthia Martincic
Saint Vincent College

Samuel Sambasivam
Azusa Pacific University

Peter Y. Wu
Robert Morris University

Mark Segall
Metropolitan State College of Denver

©2011 EDSIG (Education Special Interest Group of the AITP)
Integrating SAP to Information Systems Curriculum: Design and Delivery

Ming Wang
ming.wang@calstatela.edu
Department of Information systems
California State University
Los Angeles, CA 90032, USA

ABSTRACT

Information Systems (IS) education is being transformed from the segmented applications toward the integrated enterprise-wide system software Enterprise Resource Planning (ERP). ERP is a platform that integrates all business functions with its centralized data repository shared by all the business operations in the enterprise. This tremendous change has led to teaching ERP applications becoming an important issue in information systems education. This paper presents a comprehensive approach to teaching SAP which includes the course design, course delivery and learning outcomes. SAP is utilized as an ERP software tool in the course. The course emphasizes on teaching SAP implementation as a whole process of transforming business procedures to organization wide requirements. The paper concludes with suggestions to those who seek to use SAP as a tool to teach ERP in the area of enterprise system integration.

Keywords: ERP, Enterprise Resource Planning, SAP, IS curriculum, business processes

1. INTRODUCTION

ERP systems are generic and packaged software systems that provide comprehensive functionality and business process integration across the enterprise. These enterprise-wide software systems offer significant potential benefits, as suggested by the growing scholarly literature that seeks to conceptualize and measure types of organizational outcomes, business impacts, and return on investment among ERP adopting enterprises. SAP is an ERP product that has been utilized very popularly in the industry and academics. SAP is complex, learning curve is steep and its implementation is critical and challenging for many SAP educators. Unlike other computer applications, SAP includes the multidisciplinary scope of enterprise system concepts that requires internal cross-disciplinary coordination. Learners must acquire and understand cross functional business processes while implementing the SAP software.

There are a number of efforts that have been made to incorporate SAP implementation into IS curriculum (Davis, & Comeau; 2004; Pellerin, R. and Hadaya, P., 2006). Some SAP educators have responded to the challenges by using case teaching approach to recreate the organizational context within which ERP implementations are conducted. The case study approach usually achieves in more process-oriented thinking than traditional or functional teaching approach does. This approach allows students to develop high-order reasoning skills with hands-on experience (Hackney et al. 2003, Fedorowicz et al. 2004) which in turn increases their motivation and interest in the subject. But, these teaching cases rarely allow students to experience all the challenges of the whole process of changing business processes. Instead of teaching solely on configuration activities, IS educators should focus on teaching topics that reflect the complex reality of SAP implementation.

By recognizing the limitations of case teaching methodology, the authors proposed a
A comprehensive framework to teaching SAP implementation which includes SAP infrastructure, implementation methodology, process modeling, business process reengineering and configuration and SAP landscape to corresponding SAP hands-on activities. At the end, the authors conducted an evaluation questionnaire to explore learning outcomes and students' reaction to the course. In the conclusion, the authors offer several suggestions to those who seek to teach enterprise integration education. The paper is intended to serve as a useful teaching resource for those IS educators who are interested in teaching ERP/SAP implementation. The remaining paper is organized in four sections: course design, course content, course activities and conclusion.

2. COURSE DESIGN

The SAP Fundamentals course has been taught to senior undergraduates and graduates in the Department of Information Systems for four quarters during the 2007-2008 year. The goal is to teach students to understand business-centric information system and be able to implement SAP software. After successful completion of this course students should be able to:

- Understand SAP system infrastructure, functionality and components
- Reengineer SAP business process procedures to the organization’s requirements
- Utilize process modeling tools to describe and improve business processes
- Configure an SAP system to meet the business requirements in an organization

The proposed framework for teaching SAP implementation is presented in Appendix I. Introduction of each new SAP topic is followed by a set of SAP hands-on activities. ERP business process concepts are based on the contents in the textbooks (Hayen, 2007; Monk & Wagner 2008). SAP hands-on activities are based on the electronic downloads from the SAP University Alliance Curriculum Innovation Web site.

3. COURSE CONTENT

SAP Infrastructure and Components

SAP infrastructure consists of application modules and business process procedures (BPPs). Each application module is a collection of a number of related business process procedures (BPPs), as illustrated in Figure 1. BPPs are the real programs that provide the functionality of the SAP System. Many of these BPPs are used by more than one of the application modules. Business processes and business functionality found in the organization are built with these application modules and BPPs. The twelve application modules are organized into the following four categories.

- The financial management application modules include Financial Accounting (FI), Controlling (CO), Fixed Asset Management (AM) and Project System (PS).
- The logistic modules include Sales & Distribution (SD), Material Management (MM), Production Planning (PP), Quality Management (QM) and Plant Maintenance (PM).
- The Human Resources (HR) module supports human capital management (HCM), payroll and the planning and control of personnel activities.
- Workflow (WF) and Industry Solutions (IS) are known as the Common Systems. The remaining modules are known as primary application modules, and WF integrates the functionality of these modules.

![Figure 1 Business process procedures (BPPs) shared across application modules](image-url)
various application modules, as illustrated in Figure 2. The following business processes can be used to illustrate the supply chain management processes.

- Manufacturing Planning and Execution.
- Procurement (purchasing).
- Financial/management accounting Customer Sales Order Management

Figure 2 Application modules integrated to business processes

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Sales & Distribution (SD)</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Materials Mgmt. (MM)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Production Planning (PP)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Quality Management (QM)</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plant Maintenance (PM)</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Human Resources (HR)</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Financial Accounting (FI)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Controlling (CO)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Fixed Asset Mgmt. (AM)</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Business Process Reengineering (BPR)

Business Process Reengineering (BPR) transforms organization operations to entirely new and more effective business processes. BPR is primarily cross-functional in its focus. BPR involves questioning assumptions. In the mid 1990s, especially workflow management systems were considered as a significant contributor to improved process efficiency. BPR is usually utilized in the Blueprint Phase.

There are numerous BPR approaches and they each differ according to the magnitude of the change and the change effort involved. Selecting the right model to teach BPR is thus a difficult task. We adopted the model developed by Guha et.al. (1993). This BPR model consists of six phases: 1) Envision new processes, 2) Initiating change, 3) process diagnosis, 4) process redesign, 5) reconstruction and 6) process monitoring.

Business Process Modeling

A process model is a graphical illustration of the business processes. It is a set of communication means that can be utilized by the ERP/SAP team members for BPR in the Blueprint phase. Two types of commonly used graphical representations are the Deployment Flowchart and Event Process Chain (EPC) Diagrams. They can both visually illustrate the process requirements and potential improvements that make the business processes more efficient. The deployment flowchart uses the symbols of basic flowchart representing the flow of goods or data among individual roles or departments of an organization. The deployment flowchart is also referred to as a swimlane chart. Another widely used modeling tool is called the hierarchical modeling flowchart which provides the flexibility of describing processes in more or less details. EPC is another graphical diagram that can be utilized to describe the process driven structure of enterprise systems. Unlike flowcharting, EPC enforces a strict structure using the structure: event-function-event: for an event, its object + past participle; for a function, its verb + object. Figure 3 illustrates an EPC diagram with two XOR connectors showing that a salesperson can submit his/her expense report online (Monk & Wagner, 2008).

Figure 3 Event process chain (EPC) diagram

SAP Configuration

The completed reference model is known as the Enterprise Model when the configuration activities have matched the business
requirements to the processing available in the Reference Structure. The Implementation Guide (IMG) is a SAP system tool for actually making the settings that configure the R/3 System to meet a company’s requirements. The SAP IMG is an integral part of the R/3 System that is used in the configuration of the R/3 System. About 80 percent of a typical SAP system installation is handled by the IMG configuration setting. Another 10 percent are enhancement of ABAP tools and appended structure, while 10 percent are customer developed via ABAP tools.

A Project IMG is a subset of the Reference IMG that contains the documentation for selected IMG components that are implemented as part of the specific configuration project. The Project IMG in Figure 4 facilitates the establishment of the organization arrangement during a company’s configuration by using IMG.

Figure 4 SAP Implementation Guide (IMG)

<table>
<thead>
<tr>
<th>Implementation Guide</th>
<th>Edit</th>
<th>Copy</th>
<th>Additional Information</th>
<th>Utilities</th>
<th>System</th>
<th>Help</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Structure</th>
<th>Organization Structure</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Enterprise Structure</td>
</tr>
<tr>
<td></td>
<td>- Located General</td>
</tr>
<tr>
<td></td>
<td>- Organizational</td>
</tr>
<tr>
<td></td>
<td>- Unit</td>
</tr>
<tr>
<td></td>
<td>Financial Accounting</td>
</tr>
<tr>
<td></td>
<td>- Define company</td>
</tr>
<tr>
<td></td>
<td>- Define Credit</td>
</tr>
<tr>
<td></td>
<td>- Define Control</td>
</tr>
<tr>
<td></td>
<td>- Define Reference</td>
</tr>
<tr>
<td></td>
<td>- Define Business</td>
</tr>
<tr>
<td></td>
<td>- Define Functional</td>
</tr>
<tr>
<td></td>
<td>- Maintain</td>
</tr>
<tr>
<td></td>
<td>- Maintain Management</td>
</tr>
<tr>
<td></td>
<td>Control</td>
</tr>
<tr>
<td></td>
<td>- Maintain</td>
</tr>
<tr>
<td></td>
<td>- Controlling</td>
</tr>
<tr>
<td></td>
<td>- Create Operating</td>
</tr>
<tr>
<td></td>
<td>- Concern</td>
</tr>
<tr>
<td></td>
<td>Logistics - General</td>
</tr>
<tr>
<td></td>
<td>- Define</td>
</tr>
<tr>
<td></td>
<td>- Define sales</td>
</tr>
<tr>
<td></td>
<td>- Define distribution</td>
</tr>
<tr>
<td></td>
<td>- Define maintenance</td>
</tr>
<tr>
<td></td>
<td>- Define sales office</td>
</tr>
<tr>
<td></td>
<td>- Define sales group</td>
</tr>
<tr>
<td></td>
<td>- Maintain</td>
</tr>
<tr>
<td></td>
<td>- Material Management</td>
</tr>
</tbody>
</table>

Organization Structure
The SAP Enterprise Structure can be represented by an organizational diagram in Figure 5, which is a model of the relationships among various SAP system organizational elements.

- This organizational structure is a required prior to any SAP configuration, regardless of the number of applications modules that are implemented for a particular company.
- The available organizational elements are the same whether the SAP R/3 System is being implemented for manufacturing or service related industry.

Figure 5 Organization diagram

ABAP Development Workbench
The ABAP (Advanced Business Application Programming) Development Workbench is an integrated set of fourth-generation tools, which support the implementation of critical client/server applications, or add-ons to standard R/3 System modules. This is where customer developed processes takes place. This toolset is especially suited to R/3 System installations that require enhancements to standard R/3 business applications with customized add-on functionality. The major components of the ABAP Development Workbench include ABAP Programming Language, ABAP Dictionary, ABAP Editor, ABAP Function Library, Data Modeler and R/3 Repository.

ERP Implementation Methodology
Accelerated SAP (ASAP) is a System Development Life Cycle (SDLC) methodology that has been created to guide the rapid implementation of the SAP Enterprise System. It is a computer systems analysis and design methodology and tools provided by SAP AG. This methodology seeks to standardize and expedite the typical SAP implementation. It has proven to be effective when implementing the ERP/SAP solution across industries and different customer environments.

From an academic point of view, the use of the methodology has significant value as it is aligned with industrial standards and procedures defined
in Project Management Body of Knowledge (PMBOK) Guide. The *PMBOK Guide* is an internationally recognized standard (IEEE Std. 1490-2003) that provides the fundamentals of project management as they apply to a wide range of projects, including construction, software, engineering, automotive, etc. This guide is consistent with other management standards such as International Organization for Standardization (ISO) 9000 and the Software Engineering Institute's Capability Maturity Model® Integration (CMMI).

In practice, ASAP makes it easier to assign consulting tasks among different projects effectively and to provide an increased level of consistency. The Solution Manager is the SAP platform that delivers the ASAP methodology.

1. **Project Preparation** – Define the project’s scope. Organize the team, the vendors and hardware.
2. **Business Blueprint** – Define the business process requirements; discuss configuration, discuss data migration.
3. **Realization** – Configure the system, write middleware interfaces, develop ABAP code.
4. **Final Preparation** includes testing and training.
5. **Go Live** – Begin using the system.

System Landscape

The landscaping is the environment where customization activities of configuration are actually performed, tested and released to production. The configuration activities take place in the Development System. The Development System includes customizing client, testing client unit, sandboxing (prototyping) client and developing customer processes. SAP recommends an organization set up its system for development system, quality testing system, and then production system. So each change to the system, such as software upgrades and releases, can be tested fully before being released into production. The transport directory is the mechanism to load and test these changes. The system landscape in Figure 8 contains all the SAP Systems that are installed for an organization. It consists of three systems, whose SAP Systems are linked by transport routes.

4. CLASS ACTIVITIES

SAP technical hands-on activities are discussed in the following four sections.

SAP Navigation

Navigation in the ERP/SAP system is very important for students who have never used the system before. The most obvious learning need in adoption of an ERP system is to acquire operational capability with the software. Navigation and systems operations are concerned with the actual use of the SAP system that focuses on how to utilize the software and perform business transactions. Navigation activities start with log-on to SAP, creation of multiple sessions, and use of title bar, menu bar, status bar, command field, functions of different icons and help.

Implementation Exercises

The laboratory course materials were adapted from the implementation of an integrated business scenario provided by SAP University Alliance. Fitter Snacker scenario is designed to introduce implementation of integrated business processes through configuration of a small manufacturing with production approach called “make-to-stock”. The case introduces students to learn the basics of business process integration by individually configuring a snack bar company in the SAP environment. The Fitter Snacker Client represents the fictitious Fitter Snacker Company that is used as an example in the textbook ((Monk and Wagner, 2007). Exercises for the Fitter Snacker Client match with examples used in the textbook. Students will configure the FI, MM and CO modules of the SAP system using instructions organized into 9 modules. At the end of these modules, students will produce a printout of their G/L accounts, vendors and purchasing information records, respectively, to demonstrate their progress. After completion of Module 9, students will test their configurations with two sets of transaction exercises called Testing Task 1 (TT1) and Testing Task 1 (TT2). In TT1, students perform a range of accounting transactions as a basic test of their FI and CO configuration. In TT2, students complete the transactions to purchase, receive and pay for raw materials, validating their configuration of the MM module. After TT1 and TT2 have been performed, students will configure the PP module using the instructions in Modules 10 and 11, then test this configuration using TT3 and TT4. In TT3, the students set up and run MRP to create planned orders, while in TT4 the students convert planned orders into production orders, which they process to produce 7 cases of completed NRG-A bars. With both TT3 and TT4, the students produce a printout of the Stock/Requirements list for the
appropriate material to validate their configuration. After TT3 and TT4 have been performed, the students will configure the SD module using the instructions in Modules 12 and 13. The SD configuration is validated by TT5, which is a sales order processing exercise that has the students sell snack bars produced in TT4 to a customer configured in Module 13. In TT5, the students hand in a printout of the Document Flow to show they have successfully completed TT5.

Implementation Project
After Fitter Snacker Company is configured, students are assigned to configure the Marshall Muffler Company using the Fitter Snacker documentation modules as a guide and data provided from a preliminary site visit to Marshall Muffler. The primary goal of the configuration project is to produce a customized SAP system that can manage the purchase of raw materials, production and sales of mufflers for the Marshall Muffler Company.

Simulation Game
The Muesli Simulation game provides the SAP environment for students to experience an integrated enterprise system. Students are divided into teams. Each team operates a make-to-stock manufacturing plant that interacts with the suppliers and customers by sending and receiving orders, delivering their products and completing the whole cash-to-cash cycle. Students get the opportunity to make strategic decisions for recipe (product design), sale forecasts, production improvements, timing of production release. At the end of the game, raw materials and finished goods inventory will be sold out at a reduced price. Team members may renegotiate their bank loan with the bank at the end of each quarter. Interest is calculated quarterly and will be charged automatically at the end of a quarter. Customers do not change through out the game, hence you may learn from past their behaviour. The company (team) displaying the highest equity value (shareholder capital) at the end of the simulation wins the game. As a make-to-stock manufacturing company, there are four of processes that must be performed (i) the planning process, (ii) the procurement process, (iii) the production process, and (iv) the sales process. Each process can be decomposed into transactions. To complete the four operational processes mentioned above, a total of fourteen transactions must be performed. Most of the transactions involved in these processes are operational in nature, such as to purchase materials or to deliver finished products (ERPsim, 2008). The four operational processes with fourteen transactions are illustrated in Appendix II.

5. CONCLUSION
The goal of the paper is to propose a comprehensive teaching approach which ties SAP fundamental knowledge to SAP implementation activities. Hands-on experience learning enables students to navigate in some areas of the SAP system, execute tasks, and learn some SAP technical skills, but provide no understanding of why tasks are being performed. The laboratory manuals focus on step by step instruction on task completion, not on business logic (Scott and Sugar, 2004). Thus, hands-on learning experience has limited value unless it reinforced with the in class discussion and review. The combination of hands-on laboratory learning and business process concepts learning via reading, discussion, and case study is powerful and effective approach to learn SAP fundamentals. It is a challenge to balance the two streams and relate the laboratory learning with business process integration in the course.

The purpose of the paper is to shift the teaching focus of SAP implementation from SAP technical issues to organization transformation process. The proposed framework takes into consideration of the various disciplines and different types of competencies needed to effectively transform business processes in an organization. Learning by doing activities make students motivated to learn new materials by themselves. One of the most important features of the comprehensive framework is that it focuses students’ attention on the organization transformation process rather than on the technical aspects of SAP systems only. The paper highlights the needs to tighten the SAP laboratory manuals to the business logic so that the students are able to understand why they are learning the SAP laboratory materials and how the system actually works, rather than simply following the laboratory manuals and learning to operate on the computers.

6. ACKNOWLEDGEMENTS
The authors would like to thank Professor Roger Hayen, Professor Ellen Monk and Professor Bret Wagner for their ERP/SAP textbooks. We are
also grateful to the SAP University Alliance Program for providing us SAP software, server hosting and high quality SAP laboratory materials.

7. REFERENCES

ERPsim 2008 Tutorial Web Site: http://web.hec.ca/erpsim/tutorialerpsim

Scott, Judy E. and Don Sugar (2004), "Perceived Effectiveness of ERP Training Manuals”. Proceedings of the Tenth American Conference on Information systems, New York, pp. 211-3215
Appendix I Proposed framework for teaching ERP/SAP implementation

<table>
<thead>
<tr>
<th>ERP Business Process Concepts</th>
<th>SAP Hands-on Technical Activities</th>
</tr>
</thead>
<tbody>
<tr>
<td>ERP infrastructure and components</td>
<td>SAP interface navigation</td>
</tr>
<tr>
<td>ERP Core business processes</td>
<td>Application modules & business process procedures implementation</td>
</tr>
<tr>
<td>Business process reengineering (BPR)</td>
<td>Application modules Process modeling diagrams</td>
</tr>
<tr>
<td>Implementation methodology roadmap</td>
<td>Accelerated SAP</td>
</tr>
<tr>
<td>Enterprise model and organization structure</td>
<td>Fitter Snacker Configuration: Implementation Guide (IMG)</td>
</tr>
<tr>
<td>General ledger and controlling</td>
<td>Fitter Snacker Configuration: financial accounting</td>
</tr>
<tr>
<td>Organization structure</td>
<td>Business area customization</td>
</tr>
<tr>
<td>ERP Landscape systems</td>
<td>Testing Fitter Snacker configuration</td>
</tr>
<tr>
<td>Integrated business operations</td>
<td>ERPSim Simulation game</td>
</tr>
</tbody>
</table>

Appendix II Four Integrated business processes with 14 transactions (ERPSim, 2008)