

Volume 9, No. 5
October 2011

ISSN: 1545-679X

Information Systems

Education Journal

In this issue:

4 Defining the Content of the Undergraduate Systems Analysis and Design Course as

Measured by a Survey of Instructors

Timothy J. Burns, Ramapo College of New Jersey

18 A Relational Algebra Query Language For Programming Relational Databases

Kirby McMaster, Weber State University

Samuel Sambasivam, Azusa Pacific University
Nicole Anderson, Winona State University

27 The Greening of the Information Systems Curriculum
Patricia Sendall, Merrimack College
Li-Jen Shannon, Sam Houston State College
Alan R Peslak, Penn State University

Bruce Saulnier, Quinnipiac University

46 Determining the Most Suitable E-Learning Delivery Mode for TUT Students
Solomon Adeyemi Odunaike Tshwane University of Technology
Daniel Chuene, Tshwane University of Technology

61 Beyond Introductory Programming: Success Factors for Advanced Programming
Arthur Hoskey, Farmingdale State College
Paula San Millan Maurino, Farmingdale State College

71 Systems in the Foundations of Information Systems Course to Retain Students and
to Support the IS 2010 Model Curricula
Gayla Jo Slauson, Colorado Mesa University

Donald Carpenter, Colorado Mesa University
Johnny Snyder, Colorado Mesa University

77 Culturally Sensitive IS Teaching: Lessons Learned to Manage Motivation Issues
Wenshin Chen, Abu Dhabi University

86 Establishing and Applying Criteria for Evaluating the Ease of Use of Dynamic

Platforms for Teaching Web Application Development
Johnson Dehinbo, Tshwane University of Technology

97 Integrating SAP to Information Systems Curriculum: Design and Delivery

Ming Wang, California State University

105 A Validation Study of Student Differentiation Between Computing Disciplines
Michael Battig, Saint Michael’s College
Muhammad Shariq, American University of Afghanistan

Information Systems Education Journal (ISEDJ) 9 (5)
 October 2011

©2011 EDSIG (Education Special Interest Group of the AITP) Page 2

www.aitp-edsig.org /www.isedj.org

The Information Systems Education Journal (ISEDJ) is a double-blind peer-reviewed
academic journal published by EDSIG, the Education Special Interest Group of AITP, the
Association of Information Technology Professionals (Chicago, Illinois). Publishing frequency is
quarterly. The first year of publication is 2003.

ISEDJ is published online (http://isedjorg) in connection with ISECON, the Information Systems
Education Conference, which is also double-blind peer reviewed. Our sister publication, the
Proceedings of ISECON (http://isecon.org) features all papers, panels, workshops, and
presentations from the conference.

The journal acceptance review process involves a minimum of three double-blind peer reviews,
where both the reviewer is not aware of the identities of the authors and the authors are not
aware of the identities of the reviewers. The initial reviews happen before the conference. At
that point papers are divided into award papers (top 15%), other journal papers (top 30%),
unsettled papers, and non-journal papers. The unsettled papers are subjected to a second
round of blind peer review to establish whether they will be accepted to the journal or not. Those
papers that are deemed of sufficient quality are accepted for publication in the ISEDJ journal.
Currently the target acceptance rate for the journal is about 45%.

Information Systems Education Journal is pleased to be listed in the 1st Edition of Cabell's
Directory of Publishing Opportunities in Educational Technology and Library Science, in both
the electronic and printed editions. Questions should be addressed to the editor at

editor@isedj.org or the publisher at publisher@isedj.org.

2011 AITP Education Special Interest Group (EDSIG) Board of Directors

Alan Peslak

Penn State University

President 2011

Wendy Ceccucci

Quinnipiac University

Vice President

Tom Janicki

Univ of NC Wilmington

President 2009-2010

Scott Hunsinger
Appalachian State University

Membership Director

Michael Smith
High Point University

Secretary

Brenda McAleer
Univ of Maine Augusta

Treasurer

Michael Battig
Saint Michael’s College

Director

George Nezlek
Grand Valley State University

Director

Leslie J. Waguespack Jr
Bentley University

Director

Mary Lind
North Carolina A&T St Univ

Director

Li-Jen Shannon
Sam Houston State Univ

Director

S. E. Kruck
James Madison University

JISE Editor

 Kevin Jetton

Texas State University
FITE Liaison

Copyright © 2011 by the Education Special Interest Group (EDSIG) of the Association of Information Technology
Professionals (AITP). Permission to make digital or hard copies of all or part of this journal for personal or classroom
use is granted without fee provided that the copies are not made or distributed for profit or commercial use. All copies
must bear this notice and full citation. Permission from the Editor is required to post to servers, redistribute to lists, or
utilize in a for-profit or commercial use. Permission requests should be sent to Wendy Ceccucci, Editor,
editor@isedj.org.

http://www.cabells.com/
http://www.cabells.com/
mailto:editor@isedj.org
mailto:publisher@isedj.org
mailto:editor@isedj.org

Information Systems Education Journal (ISEDJ) 9 (5)
 October 2011

©2011 EDSIG (Education Special Interest Group of the AITP) Page 3

www.aitp-edsig.org /www.isedj.org

Information Systems

Education Journal

Editors

Wendy Ceccucci

Senior Editor

Quinnipiac University

Thomas Janicki
Publisher

Univ NC Wilmington

Don Colton
Emeritus Editor

Brigham Young University
Hawaii

Nita Brooks

Associate Editor

Middle Tennessee
State University

Mike Smith
Associate Editor - Cases

High Point University

ISEDJ Editorial Board

Alan Abrahams
Virginia Tech

Mike Battig
Saint Michael’s College

Gerald DeHondt II
Grand Valley State University

Janet Helwig
Dominican University

Mark Jones
Lock Haven University

Cynthia Martincic
Saint Vincent College

Brenda McAleer
University of Maine at Augusta

Monica Parzinger
St. Mary’s University
San Antonio

Doncho Petkov
Eastern Connecticut State Univ.

Samuel Sambasivam
Azusa Pacific University

Mark Segall
Metropolitan State College of

Denver

Li-Jen Shannon
Sam Houston State University

Karthikeyan Umapathy
University of North Florida

Laurie Werner
Miami University

Bruce White
Quinnipiac University

Charles Woratschek
Robert Morris University.

Peter Y. Wu
Robert Morris University

Information Systems Education Journal (ISEDJ) 9 (5)
 October 2011

©2011 EDSIG (Education Special Interest Group of the AITP) Page 61

www.aitp-edsig.org /www.isedj.org

Beyond Introductory Programming:

Success Factors for Advanced Programming

Arthur Hoskey
arthur.hoskey@farmingdale.edu

Paula San Millan Maurino

paula.maurino@farmingdale.edu

Computer Systems Department,

Farmingdale State College
State University of New York

Farmingdale, NY 11735

Abstract

Numerous studies document high drop-out and failure rates for students in computer programming
classes. Studies show that even when some students pass programming classes, they still do not
know how to program. Many factors have been considered to explain this problem including gender,

age, prior programming experience, major, math background, personal attributes, and the

programming language itself. Research in this area has mainly been confined to introductory
programming courses. This study explores the problem at a higher level. It tracks students
longitudinally as they move from the first introductory programming class, to the second introductory
class, and finally, to completion of an advanced programming course. The research question
answered was: What are the factors contributing to the success or lack of success in advanced
programming? The success factors examined were the introductory programming language taken,
number of programming classes taken, track (concentration in the major), math and logic

background, time lapse between the introductory and advanced programming class, instructor,
gender, and general GPA. The factors that influenced student success were found to be the
introductory programming language, time lapse between the introductory and advanced class, general
grade point average, and track. Identification of these factors will help educators to make the best
decisions on how to improve computer curriculum and programs and help students become better
programmers.

Keywords: programming, programming languages, programming success, programming failure,

success factors

1. INTRODUCTION

Farmingdale State College, a campus of the

State University of New York, is a four year
college specializing in applied science and
technology. The college has had in place a
Bachelor of Science Degree in Computer

Programming and Information Systems for the
past eight years. The degree is offered by the

Computer Systems Department in the School of
Business at the college and has five tracks
(concentrations within the major): networking,
database, systems, programming, and web
development. All students are required to take

mailto:arthur.hoskey@farmingdale.edu
mailto:paula.maurino@farmingdale.edu

Information Systems Education Journal (ISEDJ) 9 (5)
 October 2011

©2011 EDSIG (Education Special Interest Group of the AITP) Page 62

www.aitp-edsig.org /www.isedj.org

two semesters of programming at an
introductory level. They are currently offered a
choice of C++ or Visual Basic. In addition, they
are all required to take an additional upper level

programming course in Java. All students
must achieve a ―C‖ or better in both introductory
programming classes to enter the advanced Java
class.

Professors teaching the advanced course have
found that some students entering the advanced
class do not have the entry level programming

skills needed to succeed in the upper-level class.
Many possible explanations have been offered
for this problem. It has been suggested by

some faculty members that students wait too
long to take the advanced course and as a
result, have forgotten what they learned in the

introductory classes. Others state that it is
difficult for students to switch languages and
recommend that all three courses use the same
language. Still others state it is the
introductory language that is at fault. They feel
that Visual Basic is not an appropriate language
for teaching programming and should be

dropped from the curriculum or offered only as
an elective. Some wonder if the fact that
students do not do well in the required math
courses or put off taking them could be related.
Finally, others state that only students in the
programming track do well in the course.

Perhaps students in the other tracks should not

have to take the advanced course.

This study was an exploration of this problem.
We wanted to identify the factors involved in the
apparent loss or lack of programming ability
experienced by some students as well as the
factors leading to success for others. Once

these factors are identified, we will be able to
make the best decisions on how to improve the
program and help our students become better
programmers. As such, our research question
was: What are the factors contributing to the
success or lack of success in advanced
programming?

2. LITERATURE REVIEW

Failure/Drop Out Rates

As we searched the literature, we immediately
realized we were not alone. Numerous studies
document high drop out and failure rates for
programming students (Guzdial & Soloway,
2002; McKinney & Denton, 2004). In a

worldwide study, Bennedsen & Caspersen
(2005) found that 33% of students fail CS1.

Compounding the problem, some students pass,
but do not actually learn to program. In a multi-
national, multi-institutional study of assessment
of programming skills of first year CS students,

students averaged only 22.89 out of a possible
expected 110 points (McCracken, Kolikant,
Almstrum, Laxer, Diaz, Thomas, Guzdial, Utting,
Hagan, & Wilusz, 2001). In a later study that
built on the McCracken work, it was found that
many students lacked the knowledge and skills
that are a precursor to problem solving. They

cannot read or systematically analyze a short
piece of code (Lister, Adams, Fitzgerald, Fone,
Hamer, Lindholm, Mc Cartney, Mostrom,
Sanders, Seppala, Simon & Thomas, 2004).

Introductory Programming

Most of the literature in this area was confined

to studying the problems encountered by
students in introductory classes. The students in
our research study have already completed two
semesters of computing. Yet, some of these
students appear to have the ―shallow and
superficial skills‖ described in a 2005 study of
novice programmers by Lewandowski,

Gutschow, McCartney, Sanders, & Shinners-
Kennedy. In an international study of 500
students and teachers, Lahtinen, Ala-Mutka, &
Jervinen (2005) found that the biggest problem
of novice programmers is not the understanding
of basic concepts, but rather learning to apply

them.

Math/Prior Programming Experience

Many studies seeking to predict achievement in
introductory programming courses have
examined math background, previous
programming experience, and previous
academic background. Previous experience with

programming and a math background seem to
be positively related to success in introductory
programming (Byrne & Lyons, 2001; Bennedsen
& Casperson, 2005; Wilson & Shrock, 2001;
Rountree, Rountree, Robins & Hannah, 2004).
Once again, our students have completed two
semesters of programming already. They are

required to take calculus, but this is not a
prerequisite for any of the programming classes.
Some students procrastinate and put it off.
Others need math remedial classes and cannot
take it until those courses have been completed.

Other Personal Attributes

Some studies have looked at factors such as sex

and age. These demographics do not seem to
affect success in programming although the

Information Systems Education Journal (ISEDJ) 9 (5)
 October 2011

©2011 EDSIG (Education Special Interest Group of the AITP) Page 63

www.aitp-edsig.org /www.isedj.org

numbers of females entering programming is
much lower (Bennedsen & Caspersen, 2005;
Byrne & Lyons, 2001; Wilson & Shrock, 2001).
Other studies have attempted to link

programming success with a student’s grades in
previous coursework, self-efficacy, ―comfort
level‖ , or motivation to get an ―A‖ in the course
(Wilson & Shrock, 2001; Bennedsen &
Caspersen, 2005; Rountree, Rountree, & Robins,
2001; Wiedenbeck, 2005).

Programming Language

Other studies looked at the programming
language used in the classroom. Of these, some
analyzed the languages for their teaching

efficacy (Mannila, Peltomaki, & Salakoski, 2006;
Mannila & de Raadt, 2006; Chen, Monge, &
Simon, 2006; Dehinbo, 2006; Russell, Russell,

Pollacia & Tastle, 2009; McIver & Conway, 1996)
and others looked at the reasons colleges
selected a particular language (Parker, Chao,
Ottaway & Chang, 2006; Bhatnager, 2009).

There was no consensus on the best language to
use. Lahtinen, Ala-Mutka, & Jervinen (2005)
found that the teaching language did not seem

to affect the learning situation. Chen, Monge, &
Simon (2006) concurred. However, McIver &
Conway (1996) found that a substantial part of
the difficulty encountered in programming
classes arises from the structure, syntax, and

semantics of the particular programming
language used. Further, Mannila, Peltomaki &

Salakoski (2006) found that students did just as
well learning a simple language and then moving
on to a more complex one. They also found that
the best languages to use in teaching
programming were the languages designed with
teaching in mind. They agreed with other

researchers, however, that language is selected
for many reasons beyond pedagogical benefit.
In a study of employers and educators by
Bhatnagar (2009), the teaching of more than
one language was recommended.

Major

Lastly, some studies looked at the student’s

major. Prasad & Li (2004) tried to determine if
there were differences between students
majoring in computing and those majoring in
information systems enrolled in the same
computer programming course. They noted that
information systems students had a little more
difficulty with C++, but that the difference was

slight. A student’s major or intended major was
found to be insignificant in a study done by
Bennedsen & Caspersen (2005). Rountree,

Rountree & Robbins (2001) found no difference
in success rates for 472 students in an
introductory programming class in Java for
computer science majors, information science

majors, or non-computer majors.

3. METHODOLOGY

Farmingdale State College’s school records were
used to create a database containing information
about all two hundred students who took Java
Programming from 2005 through the fall 2009
semester. After the statistical analysis for the

years 2005-2009 was complete, we added the
results for the spring 2010 semester. The spring
2010 Java class included 25 additional grades.

The final database contained two hundred and
twenty-five grades for Java. These final grades
constituted our measure of success in the class.

The statistical analysis was performed on the
database of two hundred and twenty-five
students unless indicated otherwise.

The database held information on each student
in the following areas:

 The programming language taken in the
introductory classes

 Whether or not a logic class was taken
before the introductory programming class

 The number of programming classes taken
 Grades in the programming classes
 Overall GPA

 Time elapsed between the introductory
programming classes and the Java class

 The particular professors teaching the
programming classes

 Major or track (concentration within the
Computer Systems Department)

 The type and sequence of math courses
taken

Statistical analysis was performed on the data to
determine relationships, if any, between the
variables and student success in the advanced
Java course. As mentioned previously, success
in the Java course was measured by the
student’s final grade. In particular, we wanted
to determine the following

 Did addition of a logic course to the
curriculum increase success in
programming?

 Did the particular faculty member teaching
the introductory course affect student
success in the advanced Java course?

 Was there a difference in male and female

success rates in the Java class?

Information Systems Education Journal (ISEDJ) 9 (5)
 October 2011

©2011 EDSIG (Education Special Interest Group of the AITP) Page 64

www.aitp-edsig.org /www.isedj.org

 Were students who took more than the
minimum number of programming courses
more successful in the advanced Java
course?

 Did taking the required calculus course
before Java increase success?

 Did the amount of time lapsed between
taking the advanced Java course and
completion of the introductory courses affect
success in the Java class?

 Did students who took Visual Basic in the

introductory courses do better or worse in
the advanced Java class than students who
took C++?

 Did students with a higher general GPA

achieve greater success in the Java class?
 Did students in the programming track

perform better in Java than students in the
systems, web development and networking
tracks?

4. RESULTS

Overview

A summary of our results appears in table 1
below.

Table 1: Summary of Study Results

Independent Variable Difference
In
Java
Grades?

Time Lapse Since Programming 2 Yes

Introductory Programming
Language

Yes

Track (Concentration) Yes

General GPA Yes

Logic Course No

Major No

Faculty No

Gender No

Number of Programming Courses
Taken

 Taken

No

Math Courses Taken No

The independent variables that produced a
difference in the Java grades were: time lapsed
since Programming 2, the introductory language
taken, the track (concentration within the

Computer Systems Department) taken, and

general GPA (grade point average). The
variables that did not produce a difference in the
Java grades were: taking a logic course first,
major, the particular faculty member that taught

the introductory class, gender, number of
programming classes taken, and math courses
taken.

Time Lapse since Programming 2

Students who took Java the semester following
the last introductory programming course had a
higher mean average in the Java class than

students who waited two or three semesters to
take the course. The longer the time lapse, the
more the more the mean average declined. See

figure 1.

Figure 1: Time lapse between Programming 2

and Java and mean averages in Java

Along these same lines, the longer students put
off taking Java after completion of Programming
2, the more likely they were to get below a 2.0
(―D‖ or ―F‖) in the Java class. Of the students

who took Java the following semester after
Programming 2, 10% earned a ―D‖ or ―F‖ (under

a 2.0 out of a possible 4.0). Twenty percent of
students who waited two to three semesters to
take Java after Programming 2, received a grade
of ―D‖ or ―F‖. Twenty-two percent of students
who waited over three semesters received a

grade of ―D‖ or ―F‖. See figure 2.

Information Systems Education Journal (ISEDJ) 9 (5)
 October 2011

©2011 EDSIG (Education Special Interest Group of the AITP) Page 65

www.aitp-edsig.org /www.isedj.org

Figure 2: The number of ―D‖ and ―F‖ grades
increase when students postpone taking Java.

The statistical validity of these findings was

tested using a one-tailed Mann Whitney U Test.
There was a significant statistical difference
when next semester and within 2-3 semesters

were compared. See table 2.

Table 2: Mean Averages of Java students

Grouped by Time Lapse of Next Semester vs.
Within 2 or 3 Semesters

 Next Semester Within 2-3
Semesters

Mean 3.19 2.79

N 61 75

U = 1884

Significance= p<.05

Table 3: Mean Averages of Java Students
Grouped by Time Lapse of Next Semester vs.
Over 3 Semesters
 Next Semester Over 3

Semesters

Mean 3.19 2.58

N 61 45

U = 969.5

Significance= p<.01

There was a highly significant difference when
next semester and over 3 semesters was
compared. See table 3.

Table 4: Mean Averages of Java Students
Grouped by Time Lapse of Next Semester vs.
Over 1 Semester

 Next Semester Over 1

Semester

Mean 3.19 2.71

N 61 120

U = 2853.5

Significance= p<.01

The next semester mean was also compared to
the average means for all students who waited
over one semester and that result was found

very significant. See table 4.

When means for a time lapse of one, two or

three semesters were compared to over three
semesters that was also found statistically
significant. See table 5.

Table 5: Mean Averages of Java Students
Grouped by Time Lapse of 1, 2, or 3 Semesters

vs. Over 3 Semesters

1, 2 or 3
Semesters

Over 3
Semesters

Mean 2.97 2.58

N 136 45

U = 2441.5

Significance= p<.05

The only comparison where a statistical
significance was not found was when two to

three semesters was compared to three
semesters.

Introductory Programming Language

Table 6: Mean Averages of Java Students
Grouped by Introductory Programming
Language Taken from 2005-2009

 C++ VB

Mean 2.80 2.13

N 76 28

U = 818

Significance= p<.05

It was found that students who took C++ for
introductory programming classes were more
successful than students who took Visual Basic

Information Systems Education Journal (ISEDJ) 9 (5)
 October 2011

©2011 EDSIG (Education Special Interest Group of the AITP) Page 66

www.aitp-edsig.org /www.isedj.org

for introductory programming classes using a
one-tailed Mann-Whitney U test.

C++ students in the 2005-2009 group attained
an average grade of 2.80 on a 4.0 scale in Java.

Visual Basic students in the 2005-2009 group
attained a 2.13 grade in Java.

When this data was added to the spring 2010
semester, there was little difference. The C++
average was then 2.78 and the Visual Basic
average 2.0. See table 7.

Table 7: Mean Averages of Java Students
Grouped by Introductory Programming

Language Taken from 2005-2010

 C++ VB

Mean 2.78 2.20

N 90 33

U = 1189

Significance= p<.05

Track/Major

Figure 3: Success in the Java course by track

The Computer Systems Department has five

tracks (concentrations) in a particular area.
Each student selects one track and completes
four courses in that area in addition to taking

the other required courses in the curriculum.
The two introductory programming courses and
the advanced Java course are part of the core
required curriculum, not a particular track. The
five tracks are programming, web development,
networking, systems and database. The
database track was added last semester and as

a result, was not considered in this research
study.

It was found that students in the programming

track were most successful in the Java course,
followed by networking, web development,
undecided, and systems. See figure 3 below
which shows average means on a 4.0 scale for
the four tracks and students who were
undecided.

This difference was found to be highly significant
using both a two-tailed Mann-Whitney U Test
and a one tailed Mann-Whitney U Test. See
tables 8 and 9 below.

Table 8: Comparison of Programming Track vs.

Not Programming Track – Java Means

 Programming
Track

Not
Programming

Track

Mean 3.4 2.53

N 45 180

U = 2579

Significance = p<.01

Table 9: Comparison of Programming Track and

Other Tracks - Java Means

 Prog. Net. Sys. Web

Dev.
Undecided

Mean 3.4 2.73 2.19 2.62 2.38

N 45 56 29 50 32

U

Significance

927.5 298.5 701 445.5

p<.01 p<.01 p<.05 p<.01

The average mean of the systems track students
was then compared to the average mean of all
other tracks combined using a one-tailed Mann

Whitney U Test. The findings were found
significant at p<.01. See table 10.

Occasionally, students from outside the
department take the Java class as an elective.
Some of the other majors that have taken this
course are nursing, bioscience, applied
mathematics, and computer engineering. Also,

it is taken infrequently by non-matriculated
students who do not have a major. There was no
significant difference found between the
Computer Systems majors and non-majors.

Information Systems Education Journal (ISEDJ) 9 (5)
 October 2011

©2011 EDSIG (Education Special Interest Group of the AITP) Page 67

www.aitp-edsig.org /www.isedj.org

Table 10: Comparison of Systems vs. Other
Tracks – Java Means

 Systems All Other Tracks

Mean 2.19 2.78

N 29 196

U = 3622.5

Significance = p<.01

General GPA

The student’s general GPA average in the
semester before the student took the Java

course was compared to the grade the student
earned in the Java class. A highly significant
correlation was found between the student’s
general GPA and the Java grade using the

Pearson product moment correlation coefficient
(n=225, df=223, r = .52, p<.0005).

Logic Course

In an effort to improve performance in its
programming classes, the department changed
its requirements a few years ago to include a
mandatory programming logic course. This logic

course must be taken before the first
programming class. No significant statistical
difference was found between students who did
or did not take the logic class before entering

the first programming class.

Faculty

To determine if the particular faculty member

teaching the introductory courses affected
student success in the advanced Java course, we
broke down the Java classes into groups based
on the particular instructor that taught the
introductory level class. No significant statistical
difference was found in the final Java grades

based on the faculty member who taught the
introductory programming courses.

Gender

Females constituted only 11.60% of the

students in the Java classes. Their mean
average in the Java class was 2.66 out of a
possible 4.0. Males in the Java courses

(88.39%) had a mean average score of 2.7 out
of a possible 4.0. Thus, no significant difference
was found based on gender.

Number of Programming Courses Taken

The college offers a number of additional
programming courses that are not required and

can be taken as electives. Also, students may
take C++ in the introductory courses and Visual
Basic as an elective or vice versa. No significant
statistical difference was found in the final Java

grades for students who took more
programming courses than required.

Math Courses Taken

Students are required to take two mathematics
courses, Calculus and Methods in Operation
Research. These math courses are not
prerequisites for the Java course. It was found

that there was no significant statistical difference
between students who took Calculus before the
advanced Java course and students who took

calculus after the Java Course.

5. DISCUSSION

Based on the literature review, we expected to

find that students who completed the newly
required logic class, took Calculus before Java,
and completed more programming classes than
required would be more successful in advanced
Java than students who did not. These factors,
however, were all found to be statistically
insignificant for our students.

It is surmised that the logic course may help
prepare the students for programming, but not
actually increase their programming ability.
Anecdotally, instructors in the early introductory

classes have stated that it is easier to teach
programming to students after completion of the
logic class. The instructors found that moving

the material covered in the logic course out of
the introductory programming course allowed
them to devote more time to programming and
gave them more time to cover all the required
material. Thus, the course still appears to have
value and will most likely be maintained in the

curriculum.

It appears that the additional programming
courses taken by some students did not help
them succeed in the advanced Java course.
Possibly these additional courses only serve to
reinforce and reiterate material already covered.

Another explanation might be that students may

have difficulty transferring the skills from one
language to another. A more accurate and
comprehensive exploration of this issue will be
undertaken in stage two of this research study.
Stage two will use a qualitative approach with
in-depth student interviews.

As stated previously, students who completed

the required calculus course did not achieve
better results in Java. We were somewhat

Information Systems Education Journal (ISEDJ) 9 (5)
 October 2011

©2011 EDSIG (Education Special Interest Group of the AITP) Page 68

www.aitp-edsig.org /www.isedj.org

surprised at this finding and recommend further
research in this area.

As it appeared in the literature, our study found
no significant difference between the

performance of men and women. We have too
few women entering the field. Those women
that do enter, however, are as successful as
men.

The fact that some of our students take the
introductory programming classes as freshmen
or juniors and then do not take the advanced

Java class until close to graduation has been
mentioned by some faculty as a problem area.
This study validates this concern. Programming

concepts and theory can be easily forgotten if
not reinforced and applied immediately. The
department may also have contributed to this

problem by not offering the course every
semester in the day and evening sessions. This
success factor is relatively easy to implement.
Students need to be advised to take the Java
course immediately after completing
Programming 2 and the department has to offer
the course every semester, day and evening,

with as many sessions as needed.

On the other hand, it may not be the delay itself
that causes the later problems in the advanced
programming classes. It may be that some
students feel insecure with programming itself

and thus delay taking the advanced course
because of these feelings of insecurity. We plan

further investigation in this area using follow-up
student interviews.

The results of the study seem to indicate C++
may provide a better foundation for upper level
programming in Java. There could, however, be
any number of factors to explain this. C++ is

closer in syntax to Java and may make the
transition to that language easier. On the other
hand, it may simply be that the better
programmers tend to take C++ instead of VB.
This is another area that will be well served by
more research of a qualitative nature and
student interviews.

It does not seem surprising that students in the
programming track would do better in Java than
students in the other tracks. Systems students
had the worst Java grades. Systems students
may have already made the decision to avoid or
dislike programming. This brings up the issue of
whether or not all information systems students

need advanced programming. Are we forcing
them to take a course they do not like and do
not do well in? Will programming ever be a part

of their careers? This topic requires further
study outside the realm of this project.

Finally, students that have a better general
grade point average do better in Java. Good

study skills and habits help a student succeed in
any subject. Motivational and psychological
factors are important in all academic fields.
Students who strive for good grades will want
good grades in all their classes. Helping our
students to learn and attain good study habits,
organizational skills, testing practices, etc.

should help students do well in Java as well as
their other courses.

6. CONCLUSIONS

Based on the results of this study, students
should be strongly encouraged to take Java
immediately after completing Programming 2.

Programming concepts and theory can be easily
forgotten if not reinforced and applied
immediately. The department should also do
their part and offer Java in both the spring and
fall semesters for day and evening sessions.

The department should consider mandating C++
as a required introductory language and offer

Visual Basic as an elective. As mentioned
previously, C++ is similar to Java and may
make the transition to Java easier. It will also
make it easier for the instructor if all students
have the same background and entry level skill

sets.

This study did not consider whether all

information systems students need to take
advanced programming. It does suggest that
this matter should be researched and discussed.
How many programming classes are needed for
students who do not intend to become
programmers?

This study was limited to only one college and
this college may be different than other colleges.
The results, therefore, may not be generalizable.
Further research at other schools or a
consortium of other schools would help to
alleviate this limitation.

This study was also limited by its use of final

grades as assessment measures. A student’s
final grade is composed of numerous factors
including class participation, objective tests,
homework, etc. In this study, we were looking
at only one part of this grade — success in
programming. It was hard to weed out that one
factor from the overall picture. In the future, we

plan to give assessment tests in the

Information Systems Education Journal (ISEDJ) 9 (5)
 October 2011

©2011 EDSIG (Education Special Interest Group of the AITP) Page 69

www.aitp-edsig.org /www.isedj.org

programming classes to use as comparison
measures.

In addition, we would like to enhance the
research study by looking at some of the

personal and psychological factors that may
affect a student’s success in the Java class. For
this later study, we would like to conduct a
survey and perform in-depth interviews with
Java students.

7. REFERENCES

Bennedsen, J. & Caspersen, M. E. (2005). An

Investigation of Potential Success Factors for
an Introductory Model-Driven Programming

Course. Proceedings of the First
International Workshop on Computing
Education, Seattle, WA, 155-163.

Bhatnagar, N. (2009). A Study of the Inclusion

of Programming Languages in an
Undergraduate Information Systems
Curriculum. Information Systems Education
Journal, 7 (84).

Byrne, P. & Lyons, G. (2001). The Effect of
Student Attributes on Success in
Programming. Proceedings of ITiCSE 2001,

Canterbury, Kent, ACM Press.

Chen, T., Monge, A. & Simon, B. (2006).
Relationship of Early Programming Language
to Novice Generated Design. ACM SIGCSE

Bulletin, 38(1), 495–499.

Dehinbo, J. (2006). Determining Suitable
Programming Language for the Bachelor of

Technology (IT) Curriculum. Proceedings of
the Information Systems Education
Conference 2006, Dallas, 23.

Guzdial, M. & Soloway, E. (2002). Teaching the
Nintendo Generation to Program.
Communications of the ACM, 45(4), 17-21.

Lahtinen, E., Ala-Mutka, K. & Jarvinen, H.
(2005). A Study of the Difficulties of Novice
Programmers. ACM SIGCSE Bulletin, 37(3),
14-18.

Lewandowski, G., Gutschow, A. McCartney, R.
Sanders, K. & Shinners-Kennedy, D. (2005).
What Novice Programmers Don’t Know.

Proceedings of the First International
Workshop on Computing Education
Research, Seattle, WA, 1–12.

 Lister, R., Adams, E.S., Fitzgerald, S., Fone, W.,
Hamer, J., Lindholm, M., Mc Cartney, R.,
Mostrom, J.E., Sanders, K., Seppala, O.,
Simon, B. & Thomas, L. (2004). A Multi-

National Study of Reading and Tracing Skills
in Novice Programmers. ACM SIGCSE
Bulletin, 36(4), 119-150.

Mannila, L. & de Raadt, M. (2006). An

Objective Comparison of Languages for
Teaching Introductory Programming.
Proceedings of the 6th Baltic Sea Conference
on Computing Education Research, Uppsala,
Sweden. 276, 32-37.

Mannila, L., Peltomaki, M. & Salakoski, T.
(2006). What about a Simple Language?

Analyzing the Difficulties in Learning to
Program. Computer Science Education,
16(3), 211-228.

McCracken, M., Kolikant, Y., Almstrum, V.,
Laxer, G., Diaz, D., Thomas, L., Guzdial, M.,
Utting, I., Hagan, D. & Wilusz, T. (2001). A

Multi-National, Multi-Institutional Study of
Assessment of Programming Skills of First-
Year CS Students. Annual Joint Conference
Integrating Technology into Computer
Science Education. Working Group Reports
from ITiCSE on Innovation and Technology
in Computer Science Education, Canterbury,

UK, 125-180.

McIver, L. & Conway, D. (1996). Seven Deadly
Sins of Introductory Programming Language
Design. Proceedings of the 1996
International Conference on Software

Engineering: Education and Practice (SE-EP
’96), Dunedin, New Zealand, IEEE Computer

Society, 309-316.

McKinney, D. & Denton, L.F. (2004). Houston,
We have a Problem: There’s a Leak in the
CS1 Affective Oxygen Tank. Proceedings of
the 35th SIGCSE Technical Symposium on
Computer Science Education, Norfolk, VA,

ACM Press, 236-239.

Parker, K., Chao, J., Ottaway, T., & Chang, J.
(2006). A Formal Language Selection
Process for Introductory Programming
Courses. Journal of Information Technology
Education, 5, 133-151.

Prasad, C. & Li, X. (2004). Teaching

Introductory Programming to Information
Systems and Computing Majors: Is there a
Difference? Proceedings of the Sixth
Conference on Australasian Computing
Education. Dunedin, New Zealand, 57, 261-
267.

Rountree, N., Rountree, J. & Robins, A. (2001).

Identifying the Danger Zones: Predictors of

Information Systems Education Journal (ISEDJ) 9 (5)
 October 2011

©2011 EDSIG (Education Special Interest Group of the AITP) Page 70

www.aitp-edsig.org /www.isedj.org

Success and Failure in a CS1 Course.
Inroads SIGCSE Bulletin, 34, 121-124.

Rountree, N., Rountree, J. Robins, A. & Hannah,
R. (2004). Interacting Factors that Predict

Success and Failure in a CS1 Course. ACM
SIGCSE Bulletin, 36(4), 101-104.

Russell, J., Russell, B., Pollacia, L. & Tastle, W.
(2009). A Study of the Programming
Languages used in Information Systems and
in Computer Science Curricula. The
Proceedings of the Information Systems

Education Conference 2009, Washington DC
, 26.

Wiedenbeck, S. (2005). Factors Affecting the
Success of Non-Majors in Learning to

Program. Proceedings of the First
International Workshop on Computing
Education Research, Seattle, WA, 13-24.

Wilson, B. & Shrock, S. (2001) Contributing to
Success in an Introductory Computer
Science Course: A Study of Twelve Factors.
ACM SIGCSE Bulletin, 33(1),184-188.

