

Volume 9, No. 4
September 2011

ISSN: 1545-679X

Information Systems

Education Journal

Research Articles:

 4 Creating and Using a Computer Networking and Systems Administration Laboratory

Built Under Relaxed Financial Constraints

Michael P. Conlon, Slippery Rock University
Paul Mullins, Slippery Rock University

11 Teach or No Teach: Is Large System Education Resurging

Aditya Sharma, North Carolina Central University
Marianne C. Murphy, North Carolina Central University

20 Assessing Blackboard: Improving Online Instructional Delivery
Adnan A. Chawdhry, California University of PA
Karen Paullet, American Public University System
Daniel Benjamin, American Public University System

27 Towards an Innovative Web-based Lab Delivery System for a Management

Information Systems Course Delivery
Eric Breimer, Siena College
Jami Colter, Siena College
Robert Yoder, Siena College

37 Computer Ethics: A Slow Fade from Black and White to Shades of Gray
Theresa A. Kraft, University of Michigan – Flint

Judith Carlisle, University of Michigan – Flint

55 Exploring the Connection between Age and Strategies for Learning New Technology
Related
Gabriele Meiselwitz, Towson University
Suranjan Chakraborty, Towson University

63 Selecting a Good Conference Location Based on Participants’ Interest
Muhammed Miah, Southern University at New Orleans

73 Additional Support for the Information Systems Analyst Exam as a Valid Program

Assessment Tool
Donald A. Carpenter, Colorado Mesa University

Johnny Snyder, Colorado Mesa University

Gayla Jo Slauson, Colorado Mesa University
Morgan K. Bridge, Colorado Mesa University

Teaching Case:

80 Solving Relational Database Problems with ORDBMS in an Advanced Database

Course
Ming Wang, California State University

Information Systems Education Journal (ISEDJ) 9 (4)
 September 2011

©2011 EDSIG (Education Special Interest Group of the AITP) Page 2

www.aitp-edsig.org /www.isedj.org

The Information Systems Education Journal (ISEDJ) is a double-blind peer-reviewed
academic journal published by EDSIG, the Education Special Interest Group of AITP, the
Association of Information Technology Professionals (Chicago, Illinois). Publishing frequency is
quarterly. The first year of publication is 2003.

ISEDJ is published online (http://isedjorg) in connection with ISECON, the Information Systems
Education Conference, which is also double-blind peer reviewed. Our sister publication, the
Proceedings of ISECON (http://isecon.org) features all papers, panels, workshops, and
presentations from the conference.

The journal acceptance review process involves a minimum of three double-blind peer reviews,
where both the reviewer is not aware of the identities of the authors and the authors are not
aware of the identities of the reviewers. The initial reviews happen before the conference. At
that point papers are divided into award papers (top 15%), other journal papers (top 30%),
unsettled papers, and non-journal papers. The unsettled papers are subjected to a second
round of blind peer review to establish whether they will be accepted to the journal or not. Those
papers that are deemed of sufficient quality are accepted for publication in the ISEDJ journal.
Currently the target acceptance rate for the journal is about 45%.

Information Systems Education Journal is pleased to be listed in the 1st Edition of Cabell's
Directory of Publishing Opportunities in Educational Technology and Library Science, in both
the electronic and printed editions. Questions should be addressed to the editor at

editor@isedj.org or the publisher at publisher@isedj.org.

2011 AITP Education Special Interest Group (EDSIG) Board of Directors

Alan Peslak

Penn State University

President 2011

Wendy Ceccucci

Quinnipiac University

Vice President

Tom Janicki

Univ of NC Wilmington

President 2009-2010

Scott Hunsinger
Appalachian State University

Membership Director

Michael Smith
High Point University

Secretary

Brenda McAleer
Univ of Maine Augusta

Treasurer

Michael Battig
Saint Michael’s College

Director

George Nezlek
Grand Valley State University

Director

Leslie J. Waguespack Jr
Bentley University

Director

Mary Lind
North Carolina A&T St Univ

Director

Li-Jen Shannon
Sam Houston State Univ

Director

S. E. Kruck
James Madison University

JISE Editor

 Kevin Jetton

Texas State University
FITE Liaison

Copyright © 2011 by the Education Special Interest Group (EDSIG) of the Association of Information Technology
Professionals (AITP). Permission to make digital or hard copies of all or part of this journal for personal or classroom
use is granted without fee provided that the copies are not made or distributed for profit or commercial use. All copies
must bear this notice and full citation. Permission from the Editor is required to post to servers, redistribute to lists, or
utilize in a for-profit or commercial use. Permission requests should be sent to Wendy Ceccucci, Editor,
editor@isedj.org.

http://www.cabells.com/
http://www.cabells.com/
mailto:editor@isedj.org
mailto:publisher@isedj.org
mailto:editor@isedj.org

Information Systems Education Journal (ISEDJ) 9 (4)
 September 2011

©2011 EDSIG (Education Special Interest Group of the AITP) Page 3

www.aitp-edsig.org /www.isedj.org

Information Systems

Education Journal

Editors

Wendy Ceccucci

Senior Editor

Quinnipiac University

Thomas Janicki
Publisher

Univ NC Wilmington

Don Colton
Emeritus Editor

Brigham Young University
Hawaii

Nita Brooks

Associate Editor

Middle Tennessee
State University

George Nezlek
Associate Editor

Grand Valley
State University

Mike Smith
Associate Editor - Cases

High Point University

ISEDJ Editorial Board

Alan Abrahams
Virginia Tech

Mike Battig
Saint Michael’s College

Gerald DeHondt II
Grand Valley State University

Janet Helwig
Dominican University

Mark Jones
Lock Haven University

Cynthia Martincic
Saint Vincent College

Brenda McAleer
University of Maine at Augusta

Monica Parzinger
St. Mary’s University
San Antonio

Doncho Petkov
Eastern Connecticut State Univ.

Samuel Sambasivam
Azusa Pacific University

Mark Segall
Metropolitan State College of

Denver

Li-Jen Shannon
Sam Houston State University

Karthikeyan Umapathy
University of North Florida

Laurie Werner
Miami University

Bruce White
Quinnipiac University

Charles Woratschek
Robert Morris University.

Peter Y. Wu
Robert Morris University

 Information Systems Education Journal (ISEDJ) 9 (4)
 September 2011

©2011 EDSIG (Education Special Interest Group of the AITP) Page 63

www.aitp-edsig.org /www.isedj.org

Selecting a Good Conference Location Based on
Participants’ Interests

Muhammed Miah

mmiah@suno.edu
Department of Management Information Systems

Southern University at New Orleans

Abstract

Selecting a good conference location within budget constraints to attract paper authors and
participants is a very difficult job for the conference organizers. A conference location is also very

important along with other issues such as ranking of the conference. Selecting a bad conference
location may reduce the number of paper submissions and create bad impressions on the conference
to the paper authors and conference participants. The conference location should be selected in such a
way that it can attract authors to submit papers as well as others to participate/attend. In this paper
we discuss how to select a good conference location within budget constraints that can attract many
authors/participants considering participants’ interests. We propose several methods to select the best
location among the available possible locations within budget constraints based on the authors and

participants interests on various features or attributes of the locations. Our problem also has
interesting applications in information systems education as well. We perform evaluation of our
proposed algorithms both on real and synthetic data.

Keywords: selecting conference location, budget constraints, authors and participants interests.

1. INTRODUCTION

Selecting a good location is one of the key issues
in success of a conference in addition to other
important aspects such as budget/cost. It is not
an easy job to select a perfect location for a
conference to attract and satisfy conference

participants; and even harder within budget
constraints. The chance of success of a
conference depends in a major way upon the
choice of the conference location. The location
has to be selected with extreme care, in order to

organize the conference successfully. As one of
the most important ingredients to a successful

conference, choosing the right location is a task
that cannot be taken lightly.

People tend to pick places such as hotels,
resorts, and conference halls to hold
conferences. Numerous factors such as the time
span of the conference, the number of
attendants, overall environment, ambiance of

the location, technology available, surrounding

activities and places, travelling, transportation,
accommodations, etc. have to be taken under
consideration when choosing a location.

Among the possible locations, the organizers
need to select the best one that can satisfy the
participants (e.g., paper authors and other

attendants) in terms of the facilities available in
the location as well as other factors mentioned
above. We will mention participants throughout
the paper which represents paper authors,
workshop organizers, tutorial providers, and all

other attendants.

Participants tend to prefer conference location

based on certain factors such as time of the
year, duration of the conference, minimum
travel, comfortable accommodation, expense,
interesting activities and places to visit available
around, and so on. Participants prefer a
conference location just not for participating and
listening to the presentation, but also to visit

some interesting places nearby and performing

 Information Systems Education Journal (ISEDJ) 9 (4)
 September 2011

©2011 EDSIG (Education Special Interest Group of the AITP) Page 64

www.aitp-edsig.org /www.isedj.org

other activities as well possibly with
accompanying family members, friends,
colleagues, and other conference attendants. So
the participants can express their interests

based on the available features specific to
possible locations and the organizers can choose
the best location that can satisfy as many
participants as possible.

Consider a conference organizer wishes to select
a location from the available set of possible
locations, given the feature preferences of its

potential participants. For example, a conference
location A has the following elements: close to
the beach, WiFi available, restaurant on site,

swimming pool, and accommodation in the same
building. Another location B has the following
elements: close to the mountain, no WiFi

available, free local transportation, and
accommodation may or may not be in the same
building. The potential participants can express
their interests by specifying “yes” or “no” for
each element – where “yes” means interested
on the element and “no” means not interested
or do not care. The purpose of conference

organizer is to select the location A or B based
on these elements to satisfy as many
participants as possible. The conference
organizer can collect the preferences in terms of
survey based on the possible features from the
participants (previous paper authors and

attendants) to select the location in future.

Because of the vast use of internet now-a-days,
it is very easy to collect such preferences online
through online surveys, search queries, on-site
surveys during conference, and other ways.

The problem also has interesting applications in
information systems education such as designing

an information systems course that can attract
students and meets industry demands,
designing a program to meet constantly
changing technological world to produce better
graduates, and so on.

We summarize our major contributions next.

Major Contributions:

1. We define the problem of selecting best
conference location among the available
possible locations within budget
constraints based on participants’
interests.

2. We present several algorithms based on
different semantics.

3. We perform evaluation of our proposed
algorithms both on real and synthetic
data.

The rest of the paper is organized as follows.
Section 2 provides formal problem definitions.
Section 3 discusses details of the proposed
algorithms. In Section 4 we present the result of

extensive experiments, and discuss other
interesting variants in Section 5. We discuss
related work in Section 6 and conclude in
Section 7.

2. PROBLEM FRAMEWORK

In this section we formally define the main
problem for Boolean data. As we discuss in

Section 5, many other variants can be reduced
to this problem. First we provide some useful
definitions.

Available Locations Database: Let D = {t1…tN}
be a collection of Boolean tuples over the
attribute set A = {a1…aM}, where each tuple t is

a bit-vector where a 0 implies the absence of a
feature and a 1 implies the presence of a
feature. A tuple t may also be considered as a
subset of A, where an attribute belongs to t if its
value in the bit-vector is 1. Each tuple t in
database D represents an available possible
conference location.

Survey Log: Let Q = {q1…qS} be collection of
survey results where each tuple q defines a
subset of attributes which represents survey
result from a respondent (participant).

The problem definition is as follows:

Conference Location Selection (CLS)
Problem: Given an available locations database

D, and a survey log Q, select a tuple t from D
such that the number of tuples in Q satisfied by
t is maximized.

The following running example will be used
throughout the paper to illustrate various
concepts.

EXAMPLE 1: Consider a database of possible
available conference locations, which contains a
single database table D with N rows and M
attributes where each tuple represents a
possible location. The table has numerous

attributes that describe details of the location:
Boolean attributes such as On the Beach, WiFi

Available, On-site Accommodation, Close to
Major International Airport, Close to National
Park, National Museum in the Area, etc; numeric
attributes such as Distance from the Airport,
Number of Accommodations available, etc; and
text attributes such as Reviews, and so on.
Figure 1 illustrates such a database (where only

the Boolean attributes are shown) of four

 Information Systems Education Journal (ISEDJ) 9 (4)
 September 2011

©2011 EDSIG (Education Special Interest Group of the AITP) Page 65

www.aitp-edsig.org /www.isedj.org

locations available within the budget constraints.
The figure also illustrates a survey log of five
tuples collected from five respondents or
participants. Now the job is to select a tuple t

from database D that can satisfy as many tuples
from survey log Q as possible 

Locati
on

Beach Wi
Fi

Accomm
odation

Intl.
Airport

t1 1 0 1 0

t2 0 1 0 1

t3 0 1 1 1

t4 1 0 1 1

Available Locations Database D

Tuple
ID

Beach WiFi Accomm
odation

Intl.
Airpor

t

q1 1 1 0 1

q2 0 1 1 0

q3 1 1 1 0

q4 0 1 1 1

q5 1 0 0 1

Survey Log Q

Figure 1. Illustrating EXAMPLE 1

3. PROPOSED ALGORITHMS

In this section we discuss our main algorithmic
results. We propose four algorithms and discuss
them next in detail.

Algorithm based on Maximized Features
Coverage (MFC)

The intuition of this algorithm is that we look for
a tuple in the database of available possible
locations that has maximum sum of scores over
all tuples in the survey log. That means, find a

tuple t in D such that it satisfies as many of the

conditions or features asked by the tuples in Q
as possible. It is a best-effort problem and
hence the algorithm is polynomial time
algorithm. We assume that the scoring function
is an aggregation of the scores of the individual
attributes/features, e.g., the sum of the

attribute contributions. The attribute
contribution could be 1 if it is satisfied or 0
otherwise. For a text database, it could be the
tf-idf weight of a keyword. The tf–idf weight

(term frequency–inverse document frequency) is
a statistical measure used to evaluate how
important a word is to a document in a collection
or corpus, often used in information retrieval

and text mining.

So the algorithm is as follows:

1. First we need to collect the available
possible conference locations within the
budget constraints.

2. We also collect the response on the
possible features of the conference

locations from the participants in the
form of online/onsite survey or other
ways.

3. Then for each possible available location,
we see how many of the cumulative
features are satisfied in the survey log

by the location.
4. We select the location with highest

number of cumulative features satisfied
by it.

Figure 2 displays the pseudocode of the
algorithm MFC.

Figure 2. Pseudocode of Algorithm MFC

Consider the algorithm MFC on the EXAMPLE 1 in
Figure 1. The algorithm needs to select a tuple t

from D that satisfies as many conditions or

features asked by the tuples in Q. For tuple t1,
we can see that it satisfies total 6 cumulative
tuples in Q as follows: 3 (q1, q3, q5) for
attribute/feature Beach, 0 for feature WiFi, 3 for
feature Accommodation (q2, q3, q4), 0 for
feature Intl. Airport; the total (3+0+3+0) = 6

tuples. Similarly the tuple t2 satisfies total 7
cumulative tuples in Q (3 for feature WiFi and 3
for feature Intl. Airport), tuple t3 satisfies total
10 cumulative tuples in Q (3 for feature WiFi, 3

Algorithm: MFC

Let D be the Boolean database of possible
available locations; Q be the survey log, A
(a1…aM) be the attributes in D and Q

For each tuple tj in D
 int count, total = 0;
 For (int i = 1 to M) //for each attribute
 count = # of tuples in Q satisfied
for
 ai = 1

 total += count //Sum count with

total
Return the tuple tj with maximum total

http://en.wikipedia.org/wiki/Document
http://en.wikipedia.org/wiki/Text_corpus
http://en.wikipedia.org/wiki/Information_retrieval
http://en.wikipedia.org/wiki/Text_mining

 Information Systems Education Journal (ISEDJ) 9 (4)
 September 2011

©2011 EDSIG (Education Special Interest Group of the AITP) Page 66

www.aitp-edsig.org /www.isedj.org

for feature Accommodation, and 3 for feature
Intl. Airport), and tuple t4 staisfies total 9
cumulative tuples in Q (3 for features Beach, 3
for feature Accommodation, and 3 for feature

Intl. Airport). So the tuple t3 covers maximum
number of cumulative features (10) asked by
the tuples in Q, so the algorithm MFC selects the
location t3 as the best location among the four
locations (tuples) available in the database D.

Algorithm MFC with Budget Constraints: If
we have a predefined budget limit in advance,

we can eliminate the locations that do not meet
the budget limit and simply employ the
algorithm MFC as discussed above to select the

best location. In case if we do not have a fixed
predefined budget limit and want to maximize
the participants’ satisfaction as well as minimize

the cost, the algorithm MFC can be employed to
tackle the budget constraints as follows:

1. For each available location, algorithm MFC
calculates a score as the total number of
features or attributes covered by the
location divided by the total cost of all
features the location provides.

2. Select the location with the highest score. In
this way, we are considering both the
number of features covered and the total
cost of a location and maximizing the
features covered as well as minimizing the
cost.

Algorithm based on Weighted Maximized

Features Coverage (WMFC)

This algorithm is for the weighted version of the
problem Conference Location Selection (CLS)
described earlier. When participants respond to
a survey and specify the features they like
regarding to a specific location, sometimes they

also want to mention the preference on each
feature they select. A participant might prefer
one feature over another and not the same
preference for all the features. So the survey
can be conducted with option for the participants
to mention the weight for each feature selected
and the sum of the weights for all the features a

participant selects must be equal to one. In this
situation, instead of simply counting the total
number of features; we need to consider the
weight on each feature given by the survey
participants. Figure 3 illustrates a survey log
where five participants mention the weights for
each attribute/feature they like in terms of

weight.

Tuple
ID

Beach WiFi Accomm
odation

Intl.
Airpor

t

q1 .5 .4 0 .1

q2 0 .4 .6 0

q3 .4 .4 .2 0

q4 0 .2 .4 .4

q5 .7 0 0 .3

Survey Log Q’

Figure 3. Survey log based on feature weight

As we can see in Figure 3, the sum of weight for
each row (tuple) is equal to 1, that means a
participants mention weight on each feature

they like and the total weight must be equal to
1.

The algorithm WMFC is as follows:

1. First we need to collect the available
possible conference locations within the
budget constraints.

2. We also collect the response on the

possible features of the conference
locations from the participants in the
form of online/onsite survey or other
ways. The response on each feature

represents the weight mentioned by the
participants.

3. Then for each possible available location,

we sum up the cumulative weights of
features that are satisfied in the survey
log by the location.

4. We select the location with highest
cumulative weight of features satisfied
by it.

Figure 4 displays the pseudocode of the
algorithm WMFC.

Consider the available locations database D in
Figure 1 and the survey log Q’ based on
weighted preference in Figure 2. The algorithm
WMFC needs to select a tuple t from D that it

satisfies as many conditions or features asked

by the tuples in Q’ based on the weighted
preference. For tuple t1, we can see that the
total weights of the features satisfied by the
tuples in Q’ is as follows: total 1.6 for
attribute/feature Beach (.5 for q1, .4 for q3, and
.7 for q5), 0 for WiFi, 1.2 for Accommodation, 0
for Intl. Airport; so the total (1.6+0+1.2+0) =

2.8. Similarly the total weight for the tuple t2 is
2.2 (1.4 for WiFi and .8 for Intl. Airport), total

 Information Systems Education Journal (ISEDJ) 9 (4)
 September 2011

©2011 EDSIG (Education Special Interest Group of the AITP) Page 67

www.aitp-edsig.org /www.isedj.org

weight for the tuple t3 is 3.4 (1.4 for WiFi, 1.2
for Accommodation, and .8 for Intl. Airport), and
total weight for tuple the t4 is 3.6 (1.6 for Beach,
1.2 for Accommodation, and .8 for Intl. Airport).

So the tuple t4 covers maximum features weight
asked by the tuples in Q’, so the algorithm
WMFC selects the location t4 as the best location
among the four locations (tuples) available in
the database D.

Figure 4. Pseudocode of Algorithm WMFC

So, the algorithm MFC is modified to WMFC by

summing up the cumulative weights on the

features instead of just counting them. The two
algorithms are basically the same and WMFC can
also be used for Boolean data (survey log)
where the values or weight of each feature is
either 1 or 0.

Algorithm WMFC with Budget Constraints:
As discussed for algorithm MFC, the algorithm

WMFC also can be employed to tackle the
budget constraint by calculating score for each
available location as the sum of cumulative
weights a location can satisfy divided the total
cost of all features the location provides. Then
select the location with the highest score.

Algorithm based on Survey-Specific Scoring

function (SSF)

We consider Top-k Retrieval via Survey-Specific
Scoring Function. Let Score(q, t) be a scoring
function that returns a real-valued score for any
tuple t. Let k (=1) is an integer associated with
a survey response q. Then R(q) is defined as the

set of top-k tuples in the database with the
highest scores. In our problem, k is equal to 1
as we try to select the best one location among

the available possible locations. Note that tuples
that do not satisfy all attributes specified in the
query may also be returned. An example of a
query specific scoring function is the dot product

of q and t.

Tuple ID Top-1 tuple with scores

q1 t2 (2)

q2 t3 (2)

q3 t1 (2)

q4 t3 (3)

q5 t4 (2)

Figure 5. Results of Top-k (k=1) Retrieval

Consider the EXAMPLE 1 illustrated in Figure 1.
Assume that each tuple in the survey log returns
the top-1 tuple (i.e., k = 1), where the survey-
specific scoring function is the dot product
between a survey response in Q and a tuple in

D. Based on this scoring function, the results of
the execution of the five survey responses are
shown in Figure 5 (score ties have been broken
arbitrarily).

Figure 6. Pseudocode of Algorithm SSF

Once we find the top-1 tuple for each survey
response, the next step of the algorithm SSF is
to find the tuple t with highest cumulative
scores. As we can see in Figure 5 that tuple t3

Algorithm: WMFC

Let D be the Boolean database of possible
available locations; Q be the survey log, A
(a1…aM) be the attributes in D and Q; wi (i
= 1 to M) be the weight given for each

attribute Ai

For each tuple tj in D
 int local_sum, total_sum = 0;
 For (int i = 1 to M) //for each attribute
 local_sum = sum of weights for all

 tuples in Q satisfied for ai = 1
 total_sum += local_sum
Return the tuple tj with maximum
total_sum

Algorithm: SSF

Let D be the Boolean database of possible
available locations; Q be the survey log, A
(a1…aM) be the attributes in D and Q;

Initialize an empty buffer B
 //that will contain top-1 tuples with
 //corresponding scores for each tuple in Q

For each tuple qj in Q
 Find top-1 tuple from D with
 corresponding score
 //score based on the survey-specific scor
 //ing function (dot product betn. Q and D)

 If top-1 tuple found for qj already
 presents in B
 Add (sum) new score with the

 existing score for the
 corresponding tuple in B
 Else
 Insert top-1 tuple found for qj in B
 Return the tuple in B with highest score

 Information Systems Education Journal (ISEDJ) 9 (4)
 September 2011

©2011 EDSIG (Education Special Interest Group of the AITP) Page 68

www.aitp-edsig.org /www.isedj.org

has the highest cumulative scores of 5 (2 for q2
plus 3 for q4). So the algorithm SSF returns
tuple t3 as the best location (tuple) among the
available locations in database D.

Figure 6 displays the pseudocode of the
algorithm SSF.

Algorithm SSF with Budget Constraints: The
algorithm SSF can be employed to tackle the
budget constraint by calculating rank for each
available location as the score calculated by the
algorithm as in Figure 6 divided by the total cost

of all features the location provides. Then select
the location with the highest rank.

Algorithm based on Skyline Semantics
Approach (SSA)

We also consider skyline retrieval semantics for
this problem. Given a set of points, the skyline

comprises the points that are not dominated by
other points. A point dominates another point if
it is as good or better in all dimensions and
better in at least one dimension (Tan, Eng, &
ooi, 2001). We consider skyline for Boolean data
in our problem, but to get a clear picture let
consider a common example in the literature,

“choosing a set of hotels that is closer to the
beach and cheaper than any other hotel in
distance and price attributes respectively from
the database system of the travel agents’
(Borzsonyi, Kossmann, & Stocker, 2001)”.

Figure 7 illustrates this case in 2-D space, where
each point corresponds to a hotel record. The x-

axis and y-axis specify the room price of a hotel
and its distance to the beach respectively.
Clearly, the most interesting hotels are {a, g, i,
n}, called skyline, for which there is no other
hotel in {a, b, . . . , m, n} that is better on both
dimensions. As mentioned earlier, we mainly

consider Boolean skylines (skylines with Boolean
data), where all the attributes asked by a survey
response need not to be present in the tuple to
be returned by the query unlike conjunctive
Boolean retrieval. Consider our running example
in Figure 1. Tuple q1 in the survey log Q asks for
the features Beach, WiFi, and Intl. Airport. The

tuples t2 (for features WiFi and Intl. Airport), t3
(for features WiFi and Intl. Airport), and t4 (for
features Beach and Intl. Airport) from database
D would appear in the skyline as there is no
tuple in D that exactly satisfies the conditions or
features asked by q1.

Figure 7. Skyline Example

The algorithm SSA works as follows:

1. We collect the available locations data
base D and the survey log Q

2. Then we find the skylines (tuples for D)
for each of the survey tuples from the

survey log Q
3. Return the tuple in D that appears in

most of the skylines. The tie is broken
arbitrarily.

For each survey tuple q in the query log we
define the survey skyline S(q) = {s1…sL}, which

is a collection of skyline points. Each skyline
point s defines a subset (i.e., projection) of
attributes for which any data point (tuple)
remains on the skyline. We store the data tuples
from database that appear on the skylines in

skyline log for each survey tuple. A skylines log
contains all the skylines for the survey log.

Figure 8 displays the skyline log for our
EXAMPLE 1 described in Figure 1. There are
several methods proposed for efficient
processing of skyline queries which are
mentioned in related work (Section 6). Any good
skyline processing technique such as (Morse,
Patel, & Jagadish, 2001) can be used here to

find the skylines for the survey log which is
efficient for Boolean data. Once these skylines
have been found, the next step of the algorithm
SSA is to return the tuple that appears in
highest number of skylines.

Tuple ID Skylines (data tuples in
the skyline)

q1 t2, t3, t4

q2 t3

q3 t1 , t3, t4

q4 t3

q5 t4

Figure 8. Skyline Log

From Figure 8, we can see that the tuple t3
appears in highest 4 skylines (for q1, q2, q3, and

n

m
l

j

i

k
h

g

f

c

e

db

a

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10

x (Price)

y (Distance)

skyline point

dominating point

 Information Systems Education Journal (ISEDJ) 9 (4)
 September 2011

©2011 EDSIG (Education Special Interest Group of the AITP) Page 69

www.aitp-edsig.org /www.isedj.org

q4). So the algorithm SSA selects the location t3
as the best location among the four locations
(tuples) available in the database D.

Figure 9 displays the pseudocode of the

algorithm SSA.

Figure 9. Pseudocode of Algorithm SSA

Algorithm SSA with Budget Constraints: The
algorithm SSA can be employed to tackle the
budget constraint by calculating score for each

available location as the number of skylines it
appears on as described above (Figure 9)
divided by the total cost of all features the
location provides. Then select the location with
the highest score.

4. EXPERIMENTS

Our main performance indicator is the time cost

of the proposed algorithms. As algorithm WMFC
and MFC are basically the same, we do not show
the experiment results for WMFC. We evaluate
the time performance of three algorithms MFC,
SSF, and SSA. We do not provide any evaluation
on quality as each of the proposed algorithm is
using different semantics and hence is not

possible to compare them with any single
optimal answer. It is up to the organizers how
they want to satisfy the potential conference
participants. But as mentioned above, we
evaluate their time performance.

System Configuration: We used Microsoft SQL

Server 2000 RDBMS on a Intel Core i7 P4 2.93-
GHZ PC with 3 GB of RAM and 700 GB HDD for

our experiments. Algorithms are implemented in
C#.

Datasets: We used both real and synthetic data
for our experiments. We randomly selected five
(5) available possible locations and selected 30

possible Boolean features/attributes related to
these locations such as On-site accommodation,
WiFi available, Close to international airport, and
so on. We then generated a survey with the
same 30 Boolean attributes to collect data from

the potential participants to express their
interests on the feature/attributes level. In
specific, we use two datasets: (i) REAL: real
survey log, and (ii) SYNTH: synthetic survey log

generated from the real survey log.

Real survey log (REAL): We collected 230 survey
responses for possible future conference location
from university users and friends through an
online survey. The survey was designed with 30
Boolean features such as On-site
accommodation, WiFi available, Close to

international airport, and so on. Users were
asked to select the features they prefer to have
(positive) available in the possible conference

location. The value of each feature/attribute
selected was set as 1 and rest of the values as
0. Users selected 4-6 features on average. WiFi

available and On-site accommodation were the
most popular features.

Synthetic survey log generated from real survey
log (SYNTH): As the real survey log is very
small, it is inappropriate for scalability
experiments. So we generated larger datasets
from the real query log. A total of 100,000

survey responses were generated as follows: at
each step we randomly select a survey response
from the REAL survey log, randomly select two
of its attributes and swap their values (1 to 0
and vice versa).

Figure 10. Time performance of the algorithms

for REAL dataset

Figure 10 shows the time performance of the
three algorithms (MFC, SSF, SSA) for the REAL
dataset. The x-axis represents the algorithms

and y-axis the represents the total time (in
milliseconds) they take. As we can see that even
the algorithm SSF is little faster than the other
two algorithms, all the three algorithms are
really very close in terms of performance. As
mentioned above that the REAL dataset is very

0

20

40

60

80

MFC SSF SSA

Time in milliseconds

Algorithm: SSA

Let D be the Boolean database of possible

available locations; Q be the survey log, S
be the skyline log for Q and D;

Find skyline log S

// skylines for Q and D

Return the tuple that appears in highest
 number of skylines in S

 Information Systems Education Journal (ISEDJ) 9 (4)
 September 2011

©2011 EDSIG (Education Special Interest Group of the AITP) Page 70

www.aitp-edsig.org /www.isedj.org

small with only 230 survey responses, it is not
feasible to compare the performance of the
algorithms. So we also conduct experiment on
larger SYNTH dataset discussed next.

Figure 11. Time performance of the algorithms
for SYNTH dataset

Figure 11 shows the time performance of the

three algorithms for the SYNTH dataset. The x-
axis represents the algorithms and the y-axis
the represents the total time (in milliseconds)
they take. As we can see that the algorithm SSA
is little slower than the other two (MFC and SSF)
and algorithms MFC and SSF take almost same
time to run the experiment. The algorithm SSA

is slower because we did not use any advanced

algorithm to generate skyline log (skylines of
each survey response). For this experiment we
use the naïve approach comparing each tuple in
the locations database for each survey response
in the survey log to generate the skyline log. As
mentioned in Section 4, the performance of the

algorithm SSA can be improved by applying any
effective technique to generate the skylines such
as technique prposed by Morse, Patel, &
Jagadish (2001).

The time performances in Figures 10 and 11 are
shown in milliseconds and we can see that in

fact there is not much difference in the
performance of the algorithms. So, any of the
algorithms can be used. But one thing to

remember that each of these algorithms uses
different semantics such as – algorithm MFC
uses maximum cumulative coverage of features
among all the survey responses, algorithm SSF

uses survey-specific scoring function, and
algorithm SSA uses skylines semantics
approach. So the algorithms can select different
locations based on the semantics used. In our
experiment, among the available 5 locations
(numbered 1, 2, 3, 4, 5), the algorithms MFC

and SSA selected location number 1 as the best
location whereas the algorithm SSF selected
location number 4 as the best location. Now, it is
up to the organizers which algorithm they want

to use based on how they want to satisfy the
potential conference participants.

5. OTHER PROBLEM VARIANTS

In this section we discuss some other interesting
problem variants.

Problem Variant with Categorical Data

We consider categorical databases, which are

natural extensions of Boolean databases where
each attribute ai can take one of several values

from a multi-valued categorical domain Domi. A
survey over a categorical database is a set of
features of the form ai = xi, xi  Domi. We can

define problem variants for categorical data
corresponding to the ones for Boolean data
discussed earlier.

Each categorical column ai can be replaced by
|Domi| Boolean columns, and consequently a
categorical database/survey log with M
attributes is replaced by a Boolean
database/survey log with 

 Mi

iDom
1

Boolean

attributes.

Problem Variant with Numeric Data

We also consider numeric databases. We

consider surveys that specify ranges over a

subset of attributes. The above problem variants

for Boolean data have corresponding versions for

numeric databases. For example, features may

be specified with ranges on price, distance from

the airport, number of on-site accommodations

available, etc, and the returned results may be

ranked by price.

Problems involving numeric ranges can be
reduced to Boolean problem instances as
follows. We first execute each survey response
in the survey log, and reduce Q to Q” by

eliminating survey response for which the new
tuple has no chance of entering into the top-k

results. Then, for each numeric attribute ai in Q”,
we replace it by a Boolean attribute bi as follows:
if the ith range condition of tuple q in Q’’ contains
the ith value of tuple t in locations database D,

then assign 1 to bi for tuple q, else assign 0 to bi

for tuple q (i.e., each survey response has
effectively been reduced to a Boolean row in a
Boolean survey log Q”). The tuple t in locations
database D can be converted to a Boolean tuple
consisting of all 1’s.

0

200

400

600

800

1000

MFC SSF SSA

Time in milliseconds

 Information Systems Education Journal (ISEDJ) 9 (4)
 September 2011

©2011 EDSIG (Education Special Interest Group of the AITP) Page 71

www.aitp-edsig.org /www.isedj.org

Problem Variant with Text Data

A text database consists of a collection of
documents, where each document is modeled as
a bag of words as is common in Information

Retrieval. Tuples or survey responses are sets of
keywords, with top-k retrieval via query-specific
scoring functions, such as the tf-idf-based BM25
scoring function (Robertson & Walker, 1994).
The Boolean problem discussed above can be
directly mapped to a corresponding problem for
text data if we view a text database as a

Boolean database with each distinct keyword
considered as a Boolean attribute. All the
algorithms developed for Boolean data can be

used for text data. However, if we view each
distinct keyword in the text corpus (or survey
log) as a distinct Boolean attribute, the

dimension of the Boolean database is enormous.
Consequently, none of the algorithms described
above might be feasible for text data. We may
need to develop new effective algorithms for
text data and we plan to work on this in the
future. In the future, we also intend to develop
more effective algorithms for other data types

described above such as categorical and
numerical data.

Dependencies among Features/Attributes

Another problem variant arises when there are
dependencies among the features/attributes.

E.g., if a location has the WiFi feature available,
it must also have Internet feature. We tackle

this by removing the unsatisfiable tuples (survey
responses) from the survey log and using the
dependencies to optimize the algorithms.

6. RELATED WORK

Optimal product design or positioning is a well
studied problem in Operations Research and

Marketing which seems similar to our problem.
Shocker & Srinivasan (1974) first represented
products and consumer preferences as points in
a joint attribute space. After that, several
approaches and algorithms (Albers & Brockhoff,
1977 & 1980, Albritton & McMullen, 2007,
Gavish, Horsky, & Srikanth, 1983, Gruca &

Klemz, 2003, Kohli & Krishnamurti, 1989) have
been developed to design/position a new
product. Works in this domain require direct
involvement (one or two step) of consumers and
users are usually shown a set of existing
alternative products to choose or set
preferences. Like our work, users in fact do not

get to select the attributes or features they like.
Also we do not show the available locations to
the users/participants instead collect their

preferences on possible features level. We use
previous user survey logs and it is easy to
collect the preferences for large number of
Internet users nowadays.

We use skyline semantics in one of our proposed
algorithms, SSA. Several techniques have been
proposed for efficient skyline query processing
(Borzsonyi & Stocker, 2001, Kossmann, Ramsak,
& Rost, 2002, Papadias, Tao, Fu, & Seeger,
2003, Tan, Eng, & Ooi, 2001, Sarkas, Das,
Koudas, & Tung, 2008). Skyline computation

over low cardinality domains (Morse, Patel, &
Jagadish, 2001) also considers skyline for
Boolean data as well. One main difference of our

work with the existing works is that our goal is
not to propose a method for processing or
maintaining the skylines, instead we use

skylines as a semantic where a new
tuple/location can be satisfied to maximum
number of potential participants.

Miah, Das, Hristidis, & Mannila (2008) tackled a
related problem of maximizing the visibility of an
existing object by selecting a subset of its
attributes to be advertised. The main problem

was: given a query log with conjunctive query
semantics and a new tuple, select a subset of
attributes to retain for the new tuple so that it
will be retrieved by the maximum number of
queries. In this paper, we consider selecting a
location (tuple) from the given locations, and not

selecting subset of attributes/features.

7. CONCLUSIONS AND FUTURE WORK

In this work, we investigate the problem of
selecting a good conference location within
budget constraints considering participants’
interests on the features a location might have.
The goal is to satisfy as many potential

participants as possible to attract them to
submit papers, arrange workshops, giving
tutorials, and attend the conference. The
problem also has interesting applications in
information systems education such as designing
an information systems course that can attract
students and meets industry demands. We

develop several effective algorithms that work
well in practice as well as for large data. We
evaluate the algorithms both on real and
synthetic data. In the future we plan to develop
effective algorithms for different data types such
as text, categorical and numerical data.

 Information Systems Education Journal (ISEDJ) 9 (4)
 September 2011

©2011 EDSIG (Education Special Interest Group of the AITP) Page 72

www.aitp-edsig.org /www.isedj.org

8. REFERENCES

Albers S., & Brockhoff K. (1977). A procedure
for new product positioning in an attribute
space. European Journal of Operational

Research, 1(4) 230-238.

Albers S., & Brockhoff K. (1980). Optimal
Product Attributes in Single Choice Models.
Journal of the Operational Research Society,
31, 647–655.

David M. Albritton, Patrick R. McMullen. (2007),
Optimal product design using a colony of

virtual ants. European Journal of Operational
Research, 176(1), 498-520.

Borzsonyi S., Kossmann D, & Stocker K. (2001).
The Skyline Operator. IEEE International
Conference in Data and Knowledge
Engineering (ICDE).

Gavish B, Horsky D., & Srikanth K. (1983). An
Approach to the Optimal Positioning of a
New Product. Management Science, 29(11)
1277-1297.

Gruca, S. T., & Klemz, R. B. (2003). Optimal
new product positioning: A genetic algorithm
approach. European J. of Operational

Research, 146(3), 621-633.

Kohli, R., & Krishnamurti, R. (1989). Optimal

product design using conjoint analysis:
Computational complexity and algorithms.
European Journal of Operational Research,
40, 186–195.

Kossmann, D., Ramsak, F., & Rost, R. (2002).
Shooting Stars in the Sky: an Online
Algorithm for Skyline Queries. Very Large
Databases (VLDB).

Miah, M., Das, G., Hristidis, V., & Mannila, H.
(2008). Standing Out in a Crowd: Selecting
Attributes for Maximum Visibility. IEEE
International Conference in Data and
Knowledge Engineering (ICDE), 356-365.

Morse, D. M., Patel, & M. J., Jagadish, H. V.
(2007). Efficient Skyline Computation over

Low-Cardinality Domains. Very Large
Databases (VLDB).

Papadias, D., Tao, Y., Fu, G., & Seeger, B.
(2003). An Optimal and Progressive
Algorithm for Skyline Queries. ACM SIGMOD.

Robertson, S. E., & Walker, S.. (1994). Some

simple effective approximations to the 2-
Poisson model for probabilistic weighted
retrieval. ACM SIGIR.

Shocker, A. D., & Shrinivasan, V. (1974). A
consumer-based methodology for the
identification of new product ideas,
Management Science, 20(6), 921-937.

Sarkas, N., Das, G., Koudas, N., & Tung, A. K.
H. (2008). Categorical skylines for streaming
data. ACM SIGMOD, 239-250

Tan, K.-Lee, Eng, P.-Kwang, & Ooi, B. C. (2001).
Efficient Progressive Skyline Computation.
Very Large Databases (VLDB).

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/h/Hristidis:Vagelis.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/m/Mannila:Heikki.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/m/Morse:Michael_D=.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/j/Jagadish:H=_V=.html
http://www.informatik.uni-trier.de/~ley/db/conf/vldb/vldb2007.html#MorsePJ07
http://www.informatik.uni-trier.de/~ley/db/conf/vldb/vldb2007.html#MorsePJ07

