In this issue:

4. **Community-Based Research Approach to Develop an Educational Web Portal**
 Lara Preiser-Houy, California State Polytechnic University
 Carlos J. Navarette, California State Polytechnic University

14 **Exploring Impact of Self-Selected Student Teams and Academic Potential on Student Satisfaction**
 Vic Matta, Ohio University
 Thom Luce, Ohio University
 Gina Ciavarro, Ohio University

24 **Taking it to the Top: A Lesson in Search Engine Optimization**
 Mark Frydenberg, Bentley University
 John S. Miko, St. Francis University

41 **Distance Learning: An Empirical Study**
 Mehdi Sagheb-Tehrani, Bemidji State University

53 **A Financial Technology Entrepreneurship Program for Computer Science Students**
 James P. Lawler, Pace University
 Anthony Joseph, Pace University

60 **Student Perceptions of Instructional Tools in Programming Logic: A Comparison of Traditional versus Alice Teaching Environments**
 Leah Schultz, Tarleton State University

67 **Online Support Services for Undergraduate Millennial Students**
 Marie Pullan, Farmingdale State College

99 **An Enterprise System and a Business Simulation Provide Many Opportunities for Interdisciplinary Teaching**
 Jennifer Kreie, New Mexico State University
 James Shannon, New Mexico State University
 Carlo A. Mora-Monge, New Mexico State University

107 **What Predicts Student Success in Introductory Data Management Classes? An Investigation of Demographic, Personality, Computer-Related, and Interaction Variables**
 Kenneth J. Harris, Indiana University Southeast
 Ranida B. Harris, Indiana University Southeast
 Alysa D. Lambert, Indiana University Southeast
The Information Systems Education Journal (ISEDJ) is a double-blind peer-reviewed academic journal published by EDSIG, the Education Special Interest Group of AITP, the Association of Information Technology Professionals (Chicago, Illinois). Publishing frequency is quarterly. The first year of publication is 2003.

ISEDJ is published online (http://isedjorg) in connection with ISECON, the Information Systems Education Conference, which is also double-blind peer reviewed. Our sister publication, the Proceedings of ISECON (http://isecon.org) features all papers, panels, workshops, and presentations from the conference.

The journal acceptance review process involves a minimum of three double-blind peer reviews, where both the reviewer is not aware of the identities of the authors and the authors are not aware of the identities of the reviewers. The initial reviews happen before the conference. At that point papers are divided into award papers (top 15%), other journal papers (top 30%), unsettled papers, and non-journal papers. The unsettled papers are subjected to a second round of blind peer review to establish whether they will be accepted to the journal or not. Those papers that are deemed of sufficient quality are accepted for publication in the ISEDJ journal. Currently the target acceptance rate for the journal is about 45%.

Information Systems Education Journal is pleased to be listed in the 1st Edition of Cabell's Directory of Publishing Opportunities in Educational Technology and Library Science, in both the electronic and printed editions. Questions should be addressed to the editor at editor@isedj.org or the publisher at publisher@isedj.org.

2011 AITP Education Special Interest Group (EDSIG) Board of Directors

Alan Peslak
Penn State University
President 2011

Wendy Ceccucci
Quinnipiac University
Vice President

Tom Janicki
Univ of NC Wilmington
President 2009-2010

Scott Hunsinger
Appalachian State University
Membership Director

Michael Smith
High Point University
Secretary

Brenda McAleer
Univ of Maine Augusta
Treasurer

Michael Battig
Saint Michael's College
Director

George Nezlek
Grand Valley State University
Director

Leslie J. Waguespack Jr
Bentley University
Director

Mary Lind
North Carolina A&T St Univ
Director

Li-Jen Shannon
Sam Houston State Univ
Director

S. E. Kruck
James Madison University
JISE Editor

Kevin Jetton
Texas State University
FITE Liaison

Copyright © 2011 by the Education Special Interest Group (EDSIG) of the Association of Information Technology Professionals (AITP). Permission to make digital or hard copies of all or part of this journal for personal or classroom use is granted without fee provided that the copies are not made or distributed for profit or commercial use. All copies must bear this notice and full citation. Permission from the Editor is required to post to servers, redistribute to lists, or utilize in a for-profit or commercial use. Permission requests should be sent to Wendy Ceccucci, Editor, editor@isedj.org.

©2011 EDSIG (Education Special Interest Group of the AITP)
A Financial Technology Entrepreneurship Program for Computer Science Students

James P. Lawler
lawlerj@aol.com

Anthony Joseph
ajoseph2@pace.edu

Pace University
New York, New York 10038, USA

Abstract

Education in entrepreneurship is becoming a critical area of curricula for computer science students. Few schools of computer science have a concentration in entrepreneurship in the computing curricula. The paper presents Technology Entrepreneurship in the curricula at a leading school of computer science and information systems, in which students are beginning to learn the theory and practice of skills needed to be business entrepreneurs or opportunists, and not mere scientists. The concentration in entrepreneurship is designed in the current model program in the disciplinary domain of the financial industry. This paper will benefit educators in schools of computer science or schools of business considering enhancement of computing curricula to be contemporary with the demands of industry.

Keywords: computer science, computing curricula, entrepreneurship, interdisciplinarity, technology

1. BACKGROUND

Business firms in industry continue to demand that college graduates have analytical, business and communication skills. In competing for customers globally, firms demand that graduates have creativity and innovation skills. Firms demand that graduates of schools of computer science have such skills and technical skills, in order that they can entrepreneurially furnish competitive edge ideas for processes, products and services improved or infused by computational and informational technology. Graduates of schools of computer science having entrepreneurial skills can invent new products and services if not new technologies. Clearly schools of computer science can begin considering infusing entrepreneurship into the computing curricula for students. Downsizing of firms due to the 2008-2009 Crisis on Wall Street is causing parents and students to consider entrepreneurship as a field (Shaff, 2009). Students in schools of computer science may be employed following graduation by entrepreneurial large-sized firms, but in the economy of 2010 they may be employed frequently by entrepreneurial small-sized firms (Charney and Libecap, 2000) in the event of downsizing of the large-sized firms. The small-sized firms have a disproportional larger number of positions than the large-sized firms. Though 2,000+ colleges in the country have a concentration or a course in entrepreneurship (Wasley, 2008), in order to meet the demand for entrepreneurship skills, the bulk are schools of business or engineering, not schools of computer science. Few schools of computer science have entrepreneurship in computing programs (Gates, 2010), a concern
for which the paper furnishes a Technology Entrepreneurship program.

2. INTRODUCTION

The Seidenberg School of Computer Science and Information Systems of Pace University is beginning a concentration in Technology Entrepreneurship in its Bachelor of Arts in Computer Science program. The concentration is designed for students to learn the practice and theory of skills needed to be business opportunists, and not mere scientists or technologists. The emphasis of the concentration is on the development of cutting edge ideas for marketable processes, products or services, or seedlings, infused by entrepreneurial innovation if not invention of computational or informational technologies, in a pseudo business firm, or if feasible in an actual firm. The focus of the current model program is in learning the disciplinary domain of the practices of financial firms on Wall Street in New York City, inasmuch as the industry expends more on information technology than other industries (The Economist, 2009). New York City is also a hotbed of innovation rivaling the Silicon Valley. Further focus is in inherently learning financial skills frequently lacking in computer science students (McEachern, 2008). Moreover, the program may be replicated to further industry domains. The concentration in Technology Entrepreneurship is essentially a fusion of entrepreneurship, interdisciplinarity, and technology, on a project for a pseudo business firm.

The generic learning steps of the concentration in Technology Entrepreneurship are below for computer science majors (*):

- Define an idea for a business opportunity in a process, product or service that might be further infused by technologies or invention of new technologies;
- Design and develop a process, product or service, or prototype of a process, product or service, in a manner of creativity and innovation that furnishes competitive edge in business opportunity, by integration or invention of solution technologies;
- Design and develop a business plan for communicating the process, product or service, infused by technologies, and the potential for profitability, as a new department of a pseudo business firm or as a new pseudo business firm, for desired funding by potential investors; and
- Design and develop a customized plan for marketing the process, product or service, infused by the technologies, to targeted customers or firms in the marketplace and for sustaining customer or firm relationships; and
- Identify contemporary innovation in informational technologies, such as software-as-service (SaaS) and service-oriented architecture (SOA), which might impact the process, product or service of the new venture.

(*) Finance, management science and mathematics majors may be included in the program.

The outcomes of the concentration in Technology Entrepreneurship are in the learning of analytical, business, communication, creativity and innovation skills on the project – entrepreneurship skills. The students will be learning the practices of entrepreneurship in creative-thinking and problem-solving through the practice and theory of technology learned in the Bachelor of Arts in Computer Science program. The students will be learning to be business opportunists, not mere technologists.

The concentration in Technology Entrepreneurship in the Bachelor of Arts in Computer Science program of Pace University conforms to designs in the literature. The concentration is a “condition of coherence: the blending of elements ... helps to endow [skills] with meaningful connections and greater unity” (Nissani, 1995). Industry demands students skilled in practice and theory (Berryman and Bailey, 1992 & Olssen and Peters, 2005). In the concentration in Technology Entrepreneurship in the Seidenberg School, students will be blending the theory of technology to the practice of it, and the practice of it to the theory (Bransford, Brown, Cocking, Donovan and Pellegrino, 2000). In this concentration of entrepreneurship and interdisciplinarity, students will be inevitably learning to be self-motivated thinkers (Bradbeer, 1999).

3. FOCUS

The concentration in Technology Entrepreneurship in the domain of the financial industry is focused on the below courses of specific study:

Entrepreneurship and Financial Computing, a domain course integrating algorithmic com-
puting, computer science (e.g. C/C++, Java or Matlab), entrepreneurship, finance and financial analysis (e.g. derivatives products) in a project for financial decision-making;

- Entrepreneurship and Technology, a concept course integrating computer science and entrepreneurship in a project for business decision-making;

- Customer Relationship Management (CRM) and Entrepreneurship, a concept course integrating customized marketing and data mining in a project for decision-making on strategy;

- Modeling of Financial Processes, Products and Services through Technologies, a domain course integrating computer science, finance and information systems in projects for decision-making on implementation of prototyped or real software technologies; and

- Special Topics in 21st Technologies and Ventures, a survey course integrating bleeding if not leading edge marketplace technologies that might impact new ventures.

Given the 2008-2009 Crisis on Wall Street, the concentration in Technology Entrepreneurship integrates risk management methods that might lessen misuse of processes, products or technologies that was evident in the lack of integrated monitoring of mortgage-backed securities (Roder, 2009). This concentration in Technology Entrepreneurship in the domain of the financial industry is current in focusing on the practice of specific skills needed for students to be business entrepreneurs or opportunists, instead of focusing on a generic study or theory of entrepreneurship (Gates, 2010).

4. METHOD

The Seidenberg School of Computer Science and Information Systems is anticipating beginning the Technology Entrepreneurship concentration in its Bachelor of Arts in Computer Science program of the university in 2011. Entrepreneurship and Technology is expected to be the first course in spring 2011. Entrepreneurship and Financial Computing and Customer Relationship Management (CRM) and Entrepreneurship are expected to follow Entrepreneurship and Technology in summer 1 and 2 of 2011, and Modeling of Financial Processes, Products and Services through Technologies and Special Topics in 21st Century Technologies and Ventures are expected to follow Customer Relationship Management (CRM) and Entrepreneurship and Entrepreneurship and Financial Computing in fall 2011. Focus is expected to be expanded from the domain of the financial industry into the health industry in Entrepreneurial Health Informatics courses in spring 2012, in the energy industry in Energy Efficiency Entrepreneurship courses in 2013, and in the security industry in Entrepreneurship and National Security courses in 2014-2015, as depicted in Figure 1 in the Appendix.

Students majoring in computer science or information systems may be fast tracked through the concentration, so that they finish the concentration sooner than other undergraduate students of the university that might be in the program.

5. MODEL PROGRAM

The concentration in Technology Entrepreneurship is depicted in the design of the concept course, Entrepreneurship and Technology, essentially an entry course, in Table 1 in the Appendix, as an example of the program.

(The designs of the other courses of the concentration are in finalization by the authors of the paper.)

The deliverable of the Entrepreneurship and Technology course is to be a competition for the best of projects for new pseudo prototype ventures, if not real seedlings or solution ventures, with technologies. The projects for the ventures are to be developed in incubating small (3-5) student teams, which are be mentored by enterprise experts from the Service Corps of Retired Executives (SCORE) of New York City and the MIT Enterprise Forum, both of which have furnished executives retired from industry on other programs in Pace University. The teams are to also be mentored by the instructors of the course, who are the authors of this paper. Instructors, mentors and students are to be frequently interacting in discussion forums of the Blackboard Academic e-Education Suite of the university, if not in meetings, as the students proceed on the projects. Executives may be guest lecturers on lessons learned in industry. The best of the ventures is to be decided by a mentor panel on the 14th week.

Zimmerer, T. and Scarborough, N. (2002), Essentials of Entrepreneurship and Small Business Management, Prentice Hall, is to be the foundational text of Entrepreneurship and Technology.
In Computer Science program may not be finished earlier than 2012. Full inclusion of students will not be fulfilled until then. However, the authors of this essentially research-in-progress paper will be evaluating the learning outcomes of the concentration by Likert measurement of the perceptions of the students and by the performance of the students, as they finish the courses each semester into 2012. Enterprise experts in the financial industry in 2011, and in the health industry in 2012, including mentors of the student teams, will be evaluating the program from perceptions of the results of the teams. From the evaluation results in the semesters, the authors will be improving the concentration in Technology Entrepreneurship in subsequent semesters.

8. CONCLUSION

The paper defines a concentration in Technology Entrepreneurship in the Bachelor of Arts in Computer Science in the curricula of a leading school of computer science and information systems in the country. The concentration describes features of entrepreneurship and interdisciplinarity that may benefit computer science majors and non-computer science majors in marketability of skills. Though the concentration is focused in the financial industry in 2011, the health industry is to be included in 2012, and other industries will be included thereafter. The paper included a syllabus of Entrepreneurship and Technology to be introduced in the spring 2012 semester, but syllabi of the other courses in the concentration in Technology Entrepreneurship will be included in a new paper to be presented in 2011. The paper will benefit educators in other schools of computer science and information systems or even schools of business that are improving curricula to be current with the demands of industry.

9. REFERENCES

Field, A. (2009). Business incubators are growing up: They are broadening their reach to include more tech-savvy, time-pressed entrepreneurs. Business Week, November 16, 076.

McEachern, C. (2008). What makes a good quant?: Quantitative analysts are in high demand on Wall Street, and universities are adapting their programs specifically to meet the financial markets’ needs. Advanced Trading, August, 30-35.

Rodier, M. (2009). Risk management for risky times: Real-time risk management systems and a culture of accountability are necessary to help financial firms avoid the pitfalls that caused the financial crisis. Wall Street and Technology, March/April, 22-23.

Schumpeter (2009). Fish out of water: Policy-makers are turning their minds to the tricky subject of promoting entrepreneurship. The Economist, October 31, 78.

Silo but deadly: Messy IT systems are a neglected aspect of the financial crisis. (2009) The Economist, December 5, 83-84.

Appendix

Figure 1: Bachelor of Arts in Computer Science – Concentration in Technology Entrepreneurship 2011 – 2015*

<table>
<thead>
<tr>
<th>Courses</th>
<th>Disciplinary Domains</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Industry</td>
</tr>
<tr>
<td></td>
<td>Financial Health</td>
</tr>
<tr>
<td></td>
<td>Energy Security</td>
</tr>
<tr>
<td></td>
<td>Technology</td>
</tr>
</tbody>
</table>

Spring, Summer (2) and Fall 2011

- *Entrepreneurship and Financial Computing* (*)
- *Entrepreneurship and Technology*
- *Customer Relationship Management (CRM) and Entrepreneurship*
- *Modeling of Financial Processes, Products and Services through Technologies* (*)
- *Special Topics in 21st Century Technologies and Ventures*

Table 1: Bachelor of Arts in Computer Science – Concentration in Technology Entrepreneurship

Course: *Entrepreneurship and Technology*

<table>
<thead>
<tr>
<th>Week</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Technology Entrepreneur, Capitalism and Opportunity: Innovation and Technology</td>
</tr>
<tr>
<td>2</td>
<td>Technology Entrepreneur, Capitalism and Opportunity: New Venture Story</td>
</tr>
<tr>
<td>3</td>
<td>Competitive Edge Strategy: Venture Strategy</td>
</tr>
<tr>
<td>4</td>
<td>Draft of Project for Venture – Preliminary Presentation and Submission</td>
</tr>
<tr>
<td>5</td>
<td>Innovation Strategies: New Technology Ventures</td>
</tr>
<tr>
<td>6</td>
<td>Risk and Return; Case Study</td>
</tr>
<tr>
<td>7</td>
<td>Venture Planning</td>
</tr>
<tr>
<td>8</td>
<td>Venture Planning: Intellectual Property; Case Study</td>
</tr>
<tr>
<td>9</td>
<td>Enterprise 2.0: Knowledge Management in Venture Planning; Project for Venture – Presentation and Submission</td>
</tr>
<tr>
<td>10</td>
<td>Marketing Planning, Research and Sales</td>
</tr>
<tr>
<td>11</td>
<td>Financial Planning: Profitability of Venture; Case Study</td>
</tr>
<tr>
<td>12</td>
<td>Financial Sourcing of Venture</td>
</tr>
<tr>
<td>13</td>
<td>Regulation of Ventures</td>
</tr>
<tr>
<td>14</td>
<td>Project for Venture – Final Presentation and Submission</td>
</tr>
</tbody>
</table>