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Abstract 

 
Assessing the difficulty of an exercise question is a subjective process and is usually done by 
the instructor based on experience. An accurate assessment of the difficulty of exercise and 
exam questions is important and will help to better allocate credits to assignments and exams. 
Our contribution is in defining a relatively objective approach to assessing question difficulties. 
Our approach applies to courses in many disciplines and can be automated with computer 
software. 
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1. INTRODUCTION 
 
In this paper, we present a system for tutor-
ing computer architecture and a novel and 
practical approach for assessing the difficulty 
of exercise/exam questions. Although there 
has been much research and development 
effort for computer assisted learning and 
intelligent tutoring, for example [1,2,3], the 
difficulty assessment problem has not been 
systematically studied. Our approach to as-
sessment can be automated and be embed-
ded in an intelligent distance learning sys-
tem. This approach has been used in our 
computer architecture learning assistant 
system. We are also considering applying 
the same approach to learning systems for 
operating system and computer networking. 
It is clear to us that our approach is also 
applicable to basic physics courses, electron-
ics, etc.  
 
Specifically, our approach is designed for 
course subjects that are based on well-
formulated concept hierarchies. We allow a 
combination of fixed object composition and 
dynamic multiple instantiations of objects. 

This approach covers a wide range of 
courses. However, it is not readily applicable 
to subjects like algorithm design and data 
structures that require the development of 
good algorithms. 
 
This paper is organized as follows: 
 

• We first give a detailed presentation 
of the difficulty assessment problem 
and our assessment methods. 

• An introduction to our computer ar-
chitecture tutoring system and its 
underlying knowledge structures is 
next presented. 

• Algorithms used in guided learning 
and automatic question generation 
are discussed. The authors feel that 
this discussion is important since the 
difficult assessment method is 
closely attached to the algorithms. 

• A guided problem solving approach 
used in our system is also discussed. 

• A summary about our system is 
given in the end. 
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The system employs a concept graph and an 
associated equation hierarchy. Unlike most 
educational software that uses a limited set 
of assessment questions generated by the 
authors or instructors, the key component of 
our system is the automatic question gen-
erator that also constructs a data structure 
to help the students with guided problem 
solving. 
 

2. DIFFICULTY ASSESSMENT 
 
The types of knowledge structures needed in 
solving most problems in science and engi-
neering fall into two categories: static struc-
ture and dynamic structure. These two types 
of structures are discussed below. We pro-
pose a method for difficulty assessment 
when static structures are used. This ap-
proach can be regarded as objective when 
other methods are absent in current tutoring 
systems. 
 
Problem Solving with Static Knowledge 
Structure 
Most problem solving in primary and middle 
school mathematics can be characterized as 
using static knowledge structure since they 
typically involve only a few steps using the 
basic arithmetic operations. The concepts 
involved in physics and chemistry problem 
solving are more than those in primary and 
middle schools, but the number of steps are 
also limited. 
 
Some courses in computer science are simi-
lar to physics and chemistry, for example, 
computer architecture and data networking. 
The quantitative side of these courses re-
quire only static structures. Although arrays 
may be used and the structures are typically 
constructed at run-time, these structures are 
derived from a moderate size concept graph 
that is known. This type of structure is 
common in many courses and is the empha-
sis of our paper. 
 
Problem Solving with Dynamic Knowl-
edge Structure 
This type of structures is often encountered 
in courses such as geometry, calculus, and 
engineering courses. Many steps may be 
involved in solving a problem, and may for-
mulae and postulates may be required the 
process. 
 

In this type of problem solving, a student is 
typically given the following resources:  
 
1) A set of operators that can be applied to 

perform transforms in problem solving 
state space. Each operator has a condi-
tion and a transformation. When the 
condition is satisfied in the current state, 
the transformation may be applied to 
generate a new state. 

2) A set of postulates or axioms that form 
the basis of the state space. The infer-
ence starts from these. 

3) Some heuristic rules  or algorithms to 
guide the problem solving process. 
These rules guide the selection of opera-
tors in each step. 

 
A student with good problem solving skills 
typically possesses good heuristics and fol-
lows logical inference. 
 
There is no known static structure defined 
for this type of problem solving. This is 
partly due to the high complexity of the 
state space and the large number of postu-
lates and operators. Efficient heuristic search 
is typically used in computer solution of such 
problems. Searching for a sequence of steps 
that lead to a solution of the Rubic’s Cube 
exemplifies this situation. Readers may refer 
to an AI text such as (Russell, S. and Peter 
Norvig, 2003) for a discussion on heuristic 
search. 
 
Static Knowledge Structure in Computer 
Architecture 
We use the functional concept graph in our 
teaching system. This is an extension of the 
Conceptual Graph structures [4]. A func-
tional concept graph G consists of a set of 
nodes V and a set of directed edges E. The 
edges connect the nodes of V. In this paper, 
G is always a Directed Acyclic Graph (DAG). 
 
The functional concept graph is a hierarchi-
cal data structure: each node ni of the DAG 
is associated with a level li. Node ni may 
have a set of incoming edges {ei,1, ei,2, . . . 
ei,k}, connecting lower level nodes. A node 
without any incoming edge is a source node. 
A node is also associated with a value. The 
value vi of a node ni is computed by a func-
tion vi = ψi(vi,1, vi,2, . . . , vi,k), where vi,j is 
the value of the input node nj connected by 
edge ei,j. The set of input nodes form the set 
of partners for node ni. Associated with each 
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node ni is also an interval (li,ui), which is 
empirically determined by the author of the 
tutoring system. 
 
An inverse function φij is defined, when ap-
propriate, for an input edge ei,j such that vi,j 
= φij (ei,1, . . . , ei,j-1, ni, ei,j+1, . . . , ei,n). This 
value can be assigned to the corresponding 
partner node nj. The existence of inverse 
functions may bring an extra degree of flexi-
bility and allow the system to generate more 
sophisticated questions. An example of a 
functional concept graph is shown in Figure 
1. A larger concept graph for computer ar-
chitecture is given in Figure 2. 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

Figure 1. An example of concept graph. 
 
In the example of Figure 1, the weighted 
CPU time is defined as the sum of the 
weighted program time of the k programs. 
The weighted program time γi of program i is 
the CPU time of executing the program 
times the frequency of execution Fi of the 
program. The CPU time Ti is defined as the 
product of cycle time Tc and (cycle count + 
stall cycles). We denote cycle count by Nc 
and stall cycles by Ns. For programs exe-
cuted on the same CPU, the cycle time is the 
same. 
 
We extend our knowledge structure to allow 
the grouping of input nodes. Specifically, we 
have two types of nodes, AND nodes and OR 
nodes. To compute the output of an AND 
node, all input values must be present. The 
equation associated with an AND node 
represents a function of all the inputs. On 
the other hand, the output is computed with 
any one input value at an OR node. 
 

There is a value interval for each node which 
needs be specified by the author. A random 
number is generated within the interval of a 
node if the question generation algorithm 
decides to terminate at the node. An AND 
group may have a variable number of input 
nodes that are created at run-time. 
 
Difficulty Assessment with Static 
Knowledge Structure 
In this paper, we address the issue of diffi-
culty assessment in problem solving with 
static knowledge structures. 
 
Practically, the measuring of the degree of 
difficulty is a subjective matter. However, it 
is beneficial to make the measuring proce-
dure as objective as possible. Without a 
proper knowledge model, it is difficult to re-
alize this goal. 

We find, from the experience of using exer-
cise questions from some textbooks, that 
students tend to find a question more diffi-
culty when more concepts are involved and 
more equations are used in solving a prob-
lem. This is intuitively easy to understand 
since it takes more time organize thoughts 
when more items are involves and more 
steps are needed in solving a problem. Of 
course, the complexity of each equation also 
adds to the degree of difficulty. But this has 
less impact on the overall difficulty. 

Hence, we define the degree of difficulty as 
D = w1N + w2P + w3M,  where N is the 
number of conditions given in the questions 
(that is, the number of terminal nodes), P is 
the number of downward edges in the paths 
traversed during question generation, and M 
is the number of upward edges traversed 
during question generation. We use three 
weight factors w1, w2 and w3 to balance be-
tween the path length and the number of 
conditions. Typically, w1<w2<w3 because 
upward edges traversed represent more dif-
ficult concept association  and downward 
edges, and the total number of edges, which 
corresponds to the number of problem solv-
ing steps involved, carries more information 
about the effort needed in problem solving. 

This definition of degree of difficulty serves 
only as a rough guidance during automatic 
question generation. It is by no means a 
perfect objective measure. However, it does 
help in assessing the student’s understand-
ing of a certain subject. If a student is able 
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to solve a problem involving most concepts 
and equations about a subject, he or she 
should have a reasonably good understand-
ing of the subject. We end this section with 
the following example. 

 
Example. Consider the weighted CPU time 
in Figure 1. Assume that we have three pro-
grams, P1, P2, and P3, under consideration. 
The total Weighted CPU Time Φ is given. 
 
For program P1, P2 and P3, the student is 
given Ns1, Nc1, Ns2, Nc2, Ns3, and Nc3. In addi-
tion, F1 and F2 are also given. The student is 
asked to find F3. This question has 9 given 
values (conditions). 
 

To compute F3, one must know γ3 and T3. 

Since γ3=F3*T3, F3=γ3/T3. This requires one 

upward move to the node for γ3. Now, γ3 can 

be computed from Φ, γ1 and γ2 as γ3=Φ-γ1-

γ2. This requires another upward move to 
the node for Φ. A total of two upward moves 
are needed. 
 
To compute each of T1, T2 and T3, one must 
traverse three downward edges. To compute 

each of γ1 and γ2, two downward edges are 

traversed. From Φ to γ1 and γ2, two down-
ward edges are also traversed. This results 
in a total of (3×3+2×2+2)=15 downward 
edges. 
 
We assign w1=1, w2=5 and w3=25. The total 
complexity of the problem is thus 1×9 + 
5×15 + 2×25 = 134. 
 

3. AUTOMATIC QUESTION 
GENERATION 

 
Our system contains an automatic question 
generator which is able to generate ques-
tions based on the augmented concept 
graph. Although not exhaustive, the ques-
tions to be generated in our computer archi-
tecture course typically fall into the following 
two types: 

• direct evaluation of a result from 
given conditions. The result can be 
compared against a value or a 
range. This requires the construction 
of one concept structure and the 
evaluation of a single result. 

• comparison of two or more results 
evaluated from different conditions. 
Typically, this requires the building 
of two or more concept graphs and 
the evaluation of several values. The 
values are then compared. This dif-
fers from the previous type only in 
the number of concept graphs. 

A third type of question requires to find the 
relationship between a certain node nc and 
some other nodes in the graph and to plot 
the values of the node nc with respect to the 
values of those other nodes, in a given 
range. We do not include this type of ques-
tions in our automatic question generation 
algorithm, nor do we include design ques-
tions. 
 
Since the direct evaluation type and the 
comparison type differ only in the number of 
concept structures, we will concentrate on 
question generation with one concept graph. 
The discussion of our automatic question 
generation algorithm is presented below. 
The algorithm is presented for ease of un-
derstanding, but it is not quite complete. 
 
An integer named credit is what we use to 
represent complexity. The larger is this 
number, the more complex the question is. 
We use a queue OPEN to store those nodes 
that are not yet expanded. A node is ex-
panded if its descendants are generated. We 
assume that each node Ni stores an esti-
mated maximum difficulty Di that is obtained 
by downward expanding the concept graph 
rooted at this node to the maximum. In ad-
dition, we assume that we have two basic 
types of nodes in a concept graph: the array 
nodes and the regular nodes. An array node 
may have several descendants of the same 
class and a result is computed from the de-
scendent values. A regular node has descen-
dants of different classes. 
 
Algorithm QuestionGeneration(credit) 
1. Select a node Nr from the entire concept 

graph and mark it as “closed”. 
2. If Dr < credit, then 

  Traverse upward; 
  credit = credit–w3; 
  Push the parent of Nr to OPEN; 
else 
  Randomly decide traverse up or down 
  to node N; 
  Push the descendants of N to OPEN; 
  credit = credit–w2* num_descendants; 
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3. Dequeue a node N from OPEN and mark 
it as closed. 

4. If D >= credit, then 
Select a random value in the interval 
specified in the node for each node in 
OPEN queue; 
Finish question generation; 

else 
Randomly decide traverse up or down 
to node Nd; 
Push the descendants of Nd to OPEN; 
credit = credit-w2*num_descendants; 

5. Go go step 3. 
 
Remark: the credit value in fact denotes the 
desired question difficulty. The difficulty of 
the automatically generated question may 
exceed the desired difficulty by a small per-
centage. 
 
A good question generator should possess 
these three characteristics: domain consis-
tency, correctness, and completeness of 
coverage. Domain consistent algorithms 
generate questions that produce results that 
are mostly contained in the specified empiri-
cal value intervals. If this is the case for 
every node, we say the value domains are 
consistent. In other words, if we randomly 
choose, for those nodes in the input condi-
tions, the values in the corresponding inter-
val, we expect that the result value to be 
computed also lies in the specified interval of 
the destination node. Domain consistency 
depends on the experience of the system 
authors. 
 
A correct question generation algorithm 
must not generate questions which are not 
solvable based on the given concept graph. 
This is important because students often 
cannot determine whether or not a question 
is solvable and they may waste much time 
trying to solve an impossible problem. 
 
When the algorithm is able to generate 
questions that exercise every function of the 
DAG and relate every concept in the hierar-
chy (in many questions), we say it has a 
complete coverage. 
 
Our automatic question generator will not 
generate any unsolvable question. In addi-
tion, it provides domain consistency and 
completeness. This is a very important point 
and the users will not waste time to tackle 
an unsolvable problem and will not suffer 

from the frustration of not being able to 
solve a problem after devoting a significant 
amount of time. In addition, it also guaran-
tees that the question generator will provide 
a wide variety of questions for the users. 

The screen shot of an automatically gener-
ated question is shown in Figure 3. 

 
4. GUIDED PROBLEM SOLVING 

 
One of the major hurdles in building a suc-
cessful tutoring system is the diagnosis of 
mistakes made by students. It is extremely 
difficult to build a comprehensive knowledge 
base that can model unpredictable student 
behavior. A typical student model does not 
cover many unexpected behavior. 

In our opinion, it is too difficult or nearly 
impossible to build a student model that 
covers all the possible student behavior and 
relevant knowledge in problem solving. It is 
more convenient to provide the students 
with a set of tools (such as definitions and 
equations) that they can use in solving prob-
lems of a particular subject. We call this sys-
tem guided problem solving and diagnosis. 
Although this may occasionally limit the stu-
dent’s creativity, the pay-off is significant  
the system can diagnose more mistakes a 
student makes during problem solving and 
provide more sensible advice to the student. 
 
Our guided problem solving algorithm util-
izes the data structure generated by the 
automatic question generator. It is essen-
tially the reverse of the question generation 
process. The guided learning process is 
closely coupled with the graphics interface.  
 
 After a question is automatically generated, 
we keep the data structure and the OPEN 
queue. If the user chooses to enter guided 
learning mode, the system initializes the 
user interface so that the equations for the 
nodes on the OPEN queue are visible and 
other equations are not visible. This helps to 
narrow down the search range. 
 
The user may select one equation and put 
an answer in there. If the result of calcula-
tion is correct, the system will fill the inter-
mediate result in a table. This helps the user 
to remeber intermediate values. The node is 
then eliminated from the OPEN queue and 
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the corresponding equation, if not used by 
any other node in OPEN, becomes invisible.  
When the user enters an incorrect interme-
diate result, the system will inform the user 
about the mistake. 
 
This process continues until all the nodes are 
removed from the OPEN queue. At this time, 
a correct final result is arrived at. A screen 
shot of a step in guided problem is shown in 
Figure 4. 
 

5. SUMMARY AND CONCLUSION 
 
An objective method for assessing the diffi-
culty of automatically generated questions is 
presented here. This method has been ap-
plied to implement a novel intelligent tutor-
ing system for computer architecture learn-
ing. Our system is able to automatically gen-
erate a large variety of questions from the 
knowledge base. This approach is applicable 
to tutoring many subjects in science and 
engineering. 

We designed robust algorithms for automatic 
question generation in statically structured 
systems. We also designed a system guided 
learning approach that is closely attached to 
the automatic question generator. Part of 
the knowledge structure has been imple-
mented. The system with a partial knowl-
edge is working and it demonstrates the fea-
sibility of our approach. 

We are formulating an approach to assess 
the difficulty of questions that require dy-

namical application of many operators, and 
we will apply the approach to solving difficult 
questions in geometry. 
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Figure 2. A larger concept graph. 
 
 

 
 

Figure 3. An Example of Automatically Generated Question 
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Figure 4. An Screen Shot of Guided Problem Solving.
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