
Volume 1, Number 51 http://isedj.org/1/51/ December 31, 2003

In this issue:

Question Difficulty Assessment in Intelligent Tutor Systems for
Computer Architecture

Tao Li Samuel E. Sambasivam
Azusa Pacific University Azusa Pacific University
Azusa, CA 91702, USA Azusa, CA 91702, USA

Abstract: Assessing the difficulty of an exercise question is a subjective process and is usually
done by the instructor based on experience. An accurate assessment of the difficulty of exercise
and exam questions is important and will help to better allocate credits to assignments and exams.
Our contribution is in defining a relatively objective approach to assessing question difficulties. Our
approach applies to courses in many disciplines and can be automated with computer software.

Keywords: intelligent tutor, automatic question generation, difficulty assessment, Java, guided
problem solving

Recommended Citation: Li and Sambasivam (2003). Question Difficulty Assessment in
Intelligent Tutor Systems for Computer Architecture. Information Systems Education Journal, 1
(51). http://isedj.org/1/51/. ISSN: 1545-679X. (Also appears in The Proceedings of ISECON
2003: §4112. ISSN: 1542-7382.)

This issue is on the Internet at http://isedj.org/1/51/

ISEDJ 1 (51) Information Systems Education Journal 2

The Information Systems Education Journal (ISEDJ) is a peer-reviewed academic journal
published by the Education Special Interest Group (EDSIG) of the Association of Information
Technology Professionals (AITP, Chicago, Illinois). • ISSN: 1545-679X. • First issue: 2003. •
Title: Information Systems Education Journal. Variant titles: IS Education Journal; IS Ed Journal;
ISEDJ. • Physical format: online. • Publishing frequency: irregular; as each article is approved,
it is published immediately and constitutes a complete separate issue of the current volume. •
Single issue price: free. • Subscription address: subscribe@isedj.org. • Subscription price: free. •
Electronic access: http://isedj.org/ • Contact person: Don Colton (editor@isedj.org)

Editor
Don Colton

Brigham Young Univ Hawaii
Laie, Hawaii

The Information Systems Education Conference (ISECON) solicits and presents each year papers
on topics of interest to IS Educators. Peer-reviewed papers are submitted to this journal.

ISECON Papers Chair
William J. Tastle
Ithaca College

Ithaca, New York

Associate Papers Chair
Mark (Buzz) Hensel

Univ of Texas at Arlington
Arlington, Texas

Associate Papers Chair
Amjad A. Abdullat

West Texas A&M Univ
Canyon, Texas

EDSIG activities include the publication of ISEDJ, the organization and execution of the annual
ISECON conference held each fall, the publication of the Journal of Information Systems Education
(JISE), and the designation and honoring of an IS Educator of the Year. • The Foundation for
Information Technology Education has been the key sponsor of ISECON over the years. • The
Association for Information Technology Professionals (AITP) provides the corporate umbrella under
which EDSIG operates. AITP celebrates its 50th year as a professional society in 2003.

c© Copyright 2003 EDSIG. In the spirit of academic freedom, permission is granted to make and
distribute unlimited copies of this issue in its PDF or printed form, so long as the entire document
is presented, and it is not modified in any substantial way.

c© 2003 EDSIG http://isedj.org/1/51/ December 31, 2003

ISEDJ 1 (51) Li and Sambasivam 3

Question Difficulty Assessment in Intelligent
Tutor Systems for Computer Architecture

Tao Li1 and Sam Sambasivam2

Computer Science Department, Azusa Pacific University
Azusa, CA 91702, USA

Abstract

Assessing the difficulty of an exercise question is a subjective process and is usually done by
the instructor based on experience. An accurate assessment of the difficulty of exercise and
exam questions is important and will help to better allocate credits to assignments and exams.
Our contribution is in defining a relatively objective approach to assessing question difficulties.
Our approach applies to courses in many disciplines and can be automated with computer
software.

Keywords: intelligent tutor, automatic question generation, difficulty assessment, Java,
guided problem solving

1Email: tli@apu.edu, 2 SSambasivam@apu.edu

1. INTRODUCTION

In this paper, we present a system for tutor-
ing computer architecture and a novel and
practical approach for assessing the difficulty
of exercise/exam questions. Although there
has been much research and development
effort for computer assisted learning and
intelligent tutoring, for example [1,2,3], the
difficulty assessment problem has not been
systematically studied. Our approach to as-
sessment can be automated and be embed-
ded in an intelligent distance learning sys-
tem. This approach has been used in our
computer architecture learning assistant
system. We are also considering applying
the same approach to learning systems for
operating system and computer networking.
It is clear to us that our approach is also
applicable to basic physics courses, electron-
ics, etc.

Specifically, our approach is designed for
course subjects that are based on well-
formulated concept hierarchies. We allow a
combination of fixed object composition and
dynamic multiple instantiations of objects.

This approach covers a wide range of
courses. However, it is not readily applicable
to subjects like algorithm design and data
structures that require the development of
good algorithms.

This paper is organized as follows:

• We first give a detailed presentation
of the difficulty assessment problem
and our assessment methods.

• An introduction to our computer ar-
chitecture tutoring system and its
underlying knowledge structures is
next presented.

• Algorithms used in guided learning
and automatic question generation
are discussed. The authors feel that
this discussion is important since the
difficult assessment method is
closely attached to the algorithms.

• A guided problem solving approach
used in our system is also discussed.

• A summary about our system is
given in the end.

c© 2003 EDSIG http://isedj.org/1/51/ December 31, 2003

ISEDJ 1 (51) Li and Sambasivam 4

The system employs a concept graph and an
associated equation hierarchy. Unlike most
educational software that uses a limited set
of assessment questions generated by the
authors or instructors, the key component of
our system is the automatic question gen-
erator that also constructs a data structure
to help the students with guided problem
solving.

2. DIFFICULTY ASSESSMENT

The types of knowledge structures needed in
solving most problems in science and engi-
neering fall into two categories: static struc-
ture and dynamic structure. These two types
of structures are discussed below. We pro-
pose a method for difficulty assessment
when static structures are used. This ap-
proach can be regarded as objective when
other methods are absent in current tutoring
systems.

Problem Solving with Static Knowledge
Structure
Most problem solving in primary and middle
school mathematics can be characterized as
using static knowledge structure since they
typically involve only a few steps using the
basic arithmetic operations. The concepts
involved in physics and chemistry problem
solving are more than those in primary and
middle schools, but the number of steps are
also limited.

Some courses in computer science are simi-
lar to physics and chemistry, for example,
computer architecture and data networking.
The quantitative side of these courses re-
quire only static structures. Although arrays
may be used and the structures are typically
constructed at run-time, these structures are
derived from a moderate size concept graph
that is known. This type of structure is
common in many courses and is the empha-
sis of our paper.

Problem Solving with Dynamic Knowl-
edge Structure
This type of structures is often encountered
in courses such as geometry, calculus, and
engineering courses. Many steps may be
involved in solving a problem, and may for-
mulae and postulates may be required the
process.

In this type of problem solving, a student is
typically given the following resources:

1) A set of operators that can be applied to

perform transforms in problem solving
state space. Each operator has a condi-
tion and a transformation. When the
condition is satisfied in the current state,
the transformation may be applied to
generate a new state.

2) A set of postulates or axioms that form
the basis of the state space. The infer-
ence starts from these.

3) Some heuristic rules or algorithms to
guide the problem solving process.
These rules guide the selection of opera-
tors in each step.

A student with good problem solving skills
typically possesses good heuristics and fol-
lows logical inference.

There is no known static structure defined
for this type of problem solving. This is
partly due to the high complexity of the
state space and the large number of postu-
lates and operators. Efficient heuristic search
is typically used in computer solution of such
problems. Searching for a sequence of steps
that lead to a solution of the Rubic’s Cube
exemplifies this situation. Readers may refer
to an AI text such as (Russell, S. and Peter
Norvig, 2003) for a discussion on heuristic
search.

Static Knowledge Structure in Computer
Architecture
We use the functional concept graph in our
teaching system. This is an extension of the
Conceptual Graph structures [4]. A func-
tional concept graph G consists of a set of
nodes V and a set of directed edges E. The
edges connect the nodes of V. In this paper,
G is always a Directed Acyclic Graph (DAG).

The functional concept graph is a hierarchi-
cal data structure: each node ni of the DAG
is associated with a level li. Node ni may
have a set of incoming edges {ei,1, ei,2, . . .
ei,k}, connecting lower level nodes. A node
without any incoming edge is a source node.
A node is also associated with a value. The
value vi of a node ni is computed by a func-
tion vi = ψi(vi,1, vi,2, . . . , vi,k), where vi,j is
the value of the input node nj connected by
edge ei,j. The set of input nodes form the set
of partners for node ni. Associated with each

c© 2003 EDSIG http://isedj.org/1/51/ December 31, 2003

ISEDJ 1 (51) Li and Sambasivam 5

node ni is also an interval (li,ui), which is
empirically determined by the author of the
tutoring system.

An inverse function φij is defined, when ap-
propriate, for an input edge ei,j such that vi,j
= φij (ei,1, . . . , ei,j-1, ni, ei,j+1, . . . , ei,n). This
value can be assigned to the corresponding
partner node nj. The existence of inverse
functions may bring an extra degree of flexi-
bility and allow the system to generate more
sophisticated questions. An example of a
functional concept graph is shown in Figure
1. A larger concept graph for computer ar-
chitecture is given in Figure 2.

Figure 1. An example of concept graph.

In the example of Figure 1, the weighted
CPU time is defined as the sum of the
weighted program time of the k programs.
The weighted program time γi of program i is
the CPU time of executing the program
times the frequency of execution Fi of the
program. The CPU time Ti is defined as the
product of cycle time Tc and (cycle count +
stall cycles). We denote cycle count by Nc
and stall cycles by Ns. For programs exe-
cuted on the same CPU, the cycle time is the
same.

We extend our knowledge structure to allow
the grouping of input nodes. Specifically, we
have two types of nodes, AND nodes and OR
nodes. To compute the output of an AND
node, all input values must be present. The
equation associated with an AND node
represents a function of all the inputs. On
the other hand, the output is computed with
any one input value at an OR node.

There is a value interval for each node which
needs be specified by the author. A random
number is generated within the interval of a
node if the question generation algorithm
decides to terminate at the node. An AND
group may have a variable number of input
nodes that are created at run-time.

Difficulty Assessment with Static
Knowledge Structure
In this paper, we address the issue of diffi-
culty assessment in problem solving with
static knowledge structures.

Practically, the measuring of the degree of
difficulty is a subjective matter. However, it
is beneficial to make the measuring proce-
dure as objective as possible. Without a
proper knowledge model, it is difficult to re-
alize this goal.

We find, from the experience of using exer-
cise questions from some textbooks, that
students tend to find a question more diffi-
culty when more concepts are involved and
more equations are used in solving a prob-
lem. This is intuitively easy to understand
since it takes more time organize thoughts
when more items are involves and more
steps are needed in solving a problem. Of
course, the complexity of each equation also
adds to the degree of difficulty. But this has
less impact on the overall difficulty.

Hence, we define the degree of difficulty as
D = w1N + w2P + w3M, where N is the
number of conditions given in the questions
(that is, the number of terminal nodes), P is
the number of downward edges in the paths
traversed during question generation, and M
is the number of upward edges traversed
during question generation. We use three
weight factors w1, w2 and w3 to balance be-
tween the path length and the number of
conditions. Typically, w1<w2<w3 because
upward edges traversed represent more dif-
ficult concept association and downward
edges, and the total number of edges, which
corresponds to the number of problem solv-
ing steps involved, carries more information
about the effort needed in problem solving.

This definition of degree of difficulty serves
only as a rough guidance during automatic
question generation. It is by no means a
perfect objective measure. However, it does
help in assessing the student’s understand-
ing of a certain subject. If a student is able

*

+ *

Weighted
Prog1 time

Frequency
of program

CPU time
of program

 cycle time cycle count stall cycles

Weighted
CPU time

Weighted
Prog k time

c© 2003 EDSIG http://isedj.org/1/51/ December 31, 2003

ISEDJ 1 (51) Li and Sambasivam 6

to solve a problem involving most concepts
and equations about a subject, he or she
should have a reasonably good understand-
ing of the subject. We end this section with
the following example.

Example. Consider the weighted CPU time
in Figure 1. Assume that we have three pro-
grams, P1, P2, and P3, under consideration.
The total Weighted CPU Time Φ is given.

For program P1, P2 and P3, the student is
given Ns1, Nc1, Ns2, Nc2, Ns3, and Nc3. In addi-
tion, F1 and F2 are also given. The student is
asked to find F3. This question has 9 given
values (conditions).

To compute F3, one must know γ3 and T3.

Since γ3=F3*T3, F3=γ3/T3. This requires one

upward move to the node for γ3. Now, γ3 can

be computed from Φ, γ1 and γ2 as γ3=Φ-γ1-

γ2. This requires another upward move to
the node for Φ. A total of two upward moves
are needed.

To compute each of T1, T2 and T3, one must
traverse three downward edges. To compute

each of γ1 and γ2, two downward edges are

traversed. From Φ to γ1 and γ2, two down-
ward edges are also traversed. This results
in a total of (3×3+2×2+2)=15 downward
edges.

We assign w1=1, w2=5 and w3=25. The total
complexity of the problem is thus 1×9 +
5×15 + 2×25 = 134.

3. AUTOMATIC QUESTION
GENERATION

Our system contains an automatic question
generator which is able to generate ques-
tions based on the augmented concept
graph. Although not exhaustive, the ques-
tions to be generated in our computer archi-
tecture course typically fall into the following
two types:

• direct evaluation of a result from
given conditions. The result can be
compared against a value or a
range. This requires the construction
of one concept structure and the
evaluation of a single result.

• comparison of two or more results
evaluated from different conditions.
Typically, this requires the building
of two or more concept graphs and
the evaluation of several values. The
values are then compared. This dif-
fers from the previous type only in
the number of concept graphs.

A third type of question requires to find the
relationship between a certain node nc and
some other nodes in the graph and to plot
the values of the node nc with respect to the
values of those other nodes, in a given
range. We do not include this type of ques-
tions in our automatic question generation
algorithm, nor do we include design ques-
tions.

Since the direct evaluation type and the
comparison type differ only in the number of
concept structures, we will concentrate on
question generation with one concept graph.
The discussion of our automatic question
generation algorithm is presented below.
The algorithm is presented for ease of un-
derstanding, but it is not quite complete.

An integer named credit is what we use to
represent complexity. The larger is this
number, the more complex the question is.
We use a queue OPEN to store those nodes
that are not yet expanded. A node is ex-
panded if its descendants are generated. We
assume that each node Ni stores an esti-
mated maximum difficulty Di that is obtained
by downward expanding the concept graph
rooted at this node to the maximum. In ad-
dition, we assume that we have two basic
types of nodes in a concept graph: the array
nodes and the regular nodes. An array node
may have several descendants of the same
class and a result is computed from the de-
scendent values. A regular node has descen-
dants of different classes.

Algorithm QuestionGeneration(credit)
1. Select a node Nr from the entire concept

graph and mark it as “closed”.
2. If Dr < credit, then

 Traverse upward;
 credit = credit–w3;
 Push the parent of Nr to OPEN;
else
 Randomly decide traverse up or down
 to node N;
 Push the descendants of N to OPEN;
 credit = credit–w2* num_descendants;

c© 2003 EDSIG http://isedj.org/1/51/ December 31, 2003

ISEDJ 1 (51) Li and Sambasivam 7

3. Dequeue a node N from OPEN and mark
it as closed.

4. If D >= credit, then
Select a random value in the interval
specified in the node for each node in
OPEN queue;
Finish question generation;

else
Randomly decide traverse up or down
to node Nd;
Push the descendants of Nd to OPEN;
credit = credit-w2*num_descendants;

5. Go go step 3.

Remark: the credit value in fact denotes the
desired question difficulty. The difficulty of
the automatically generated question may
exceed the desired difficulty by a small per-
centage.

A good question generator should possess
these three characteristics: domain consis-
tency, correctness, and completeness of
coverage. Domain consistent algorithms
generate questions that produce results that
are mostly contained in the specified empiri-
cal value intervals. If this is the case for
every node, we say the value domains are
consistent. In other words, if we randomly
choose, for those nodes in the input condi-
tions, the values in the corresponding inter-
val, we expect that the result value to be
computed also lies in the specified interval of
the destination node. Domain consistency
depends on the experience of the system
authors.

A correct question generation algorithm
must not generate questions which are not
solvable based on the given concept graph.
This is important because students often
cannot determine whether or not a question
is solvable and they may waste much time
trying to solve an impossible problem.

When the algorithm is able to generate
questions that exercise every function of the
DAG and relate every concept in the hierar-
chy (in many questions), we say it has a
complete coverage.

Our automatic question generator will not
generate any unsolvable question. In addi-
tion, it provides domain consistency and
completeness. This is a very important point
and the users will not waste time to tackle
an unsolvable problem and will not suffer

from the frustration of not being able to
solve a problem after devoting a significant
amount of time. In addition, it also guaran-
tees that the question generator will provide
a wide variety of questions for the users.

The screen shot of an automatically gener-
ated question is shown in Figure 3.

4. GUIDED PROBLEM SOLVING

One of the major hurdles in building a suc-
cessful tutoring system is the diagnosis of
mistakes made by students. It is extremely
difficult to build a comprehensive knowledge
base that can model unpredictable student
behavior. A typical student model does not
cover many unexpected behavior.

In our opinion, it is too difficult or nearly
impossible to build a student model that
covers all the possible student behavior and
relevant knowledge in problem solving. It is
more convenient to provide the students
with a set of tools (such as definitions and
equations) that they can use in solving prob-
lems of a particular subject. We call this sys-
tem guided problem solving and diagnosis.
Although this may occasionally limit the stu-
dent’s creativity, the pay-off is significant 
the system can diagnose more mistakes a
student makes during problem solving and
provide more sensible advice to the student.

Our guided problem solving algorithm util-
izes the data structure generated by the
automatic question generator. It is essen-
tially the reverse of the question generation
process. The guided learning process is
closely coupled with the graphics interface.

 After a question is automatically generated,
we keep the data structure and the OPEN
queue. If the user chooses to enter guided
learning mode, the system initializes the
user interface so that the equations for the
nodes on the OPEN queue are visible and
other equations are not visible. This helps to
narrow down the search range.

The user may select one equation and put
an answer in there. If the result of calcula-
tion is correct, the system will fill the inter-
mediate result in a table. This helps the user
to remeber intermediate values. The node is
then eliminated from the OPEN queue and

c© 2003 EDSIG http://isedj.org/1/51/ December 31, 2003

ISEDJ 1 (51) Li and Sambasivam 8

the corresponding equation, if not used by
any other node in OPEN, becomes invisible.
When the user enters an incorrect interme-
diate result, the system will inform the user
about the mistake.

This process continues until all the nodes are
removed from the OPEN queue. At this time,
a correct final result is arrived at. A screen
shot of a step in guided problem is shown in
Figure 4.

5. SUMMARY AND CONCLUSION

An objective method for assessing the diffi-
culty of automatically generated questions is
presented here. This method has been ap-
plied to implement a novel intelligent tutor-
ing system for computer architecture learn-
ing. Our system is able to automatically gen-
erate a large variety of questions from the
knowledge base. This approach is applicable
to tutoring many subjects in science and
engineering.

We designed robust algorithms for automatic
question generation in statically structured
systems. We also designed a system guided
learning approach that is closely attached to
the automatic question generator. Part of
the knowledge structure has been imple-
mented. The system with a partial knowl-
edge is working and it demonstrates the fea-
sibility of our approach.

We are formulating an approach to assess
the difficulty of questions that require dy-

namical application of many operators, and
we will apply the approach to solving difficult
questions in geometry.

6. ACKNOWLEDGMENT

The authors wish to acknowledge the effort
of our students for implementing the com-
puter architecture tutoring system.

7. REFERENCES

Frasson, C., G. Gauthier and A. Lesgold

(eds.) (1996). Intelligent Tutoring Sys-
tems, LNCS-1086, 3rd International Con-
ference on Intelligent Tutoring Systems
(ITS’96), Montreal, Canada, June.

Wenger, E. (1987). Artificial Intelligence and

Tutoring Systems, Morgan Kaufmann.

Larkin, J., R. Chabay and C Sheftic (eds.)

(1990). Computer Assisted Instruction
and Intelligent Tutoring Systems: Estab-
lishing Communication and Collabora-
tion, Erlbaum.

Sowa, J. (1984). Conceptual structures: In-

formation Processing in Mind and Ma-
chines, Addison-Wesley, Reading, MA.

Russell, S. and Peter Norvig (2003). Artificial

Intelligence: A Modern Approach, Pren-
tice Hall, Upper Saddle River, NJ.

c© 2003 EDSIG http://isedj.org/1/51/ December 31, 2003

ISEDJ 1 (51) Li and Sambasivam 9

Weighted
harmonic mean Arithmetic

mean

Weighted Exec.
mean

Geometric
mean

Performance
machine time

Frequency of
program i

CPU time i
(program i)

Frequency of
program i

CPU time i
(program i)

Cycle time CPU cycles Memory
stall cycles

CPI

Instruction
Count (IC)

MSC1 MSCn

CPI1f CPInf

IC1 ICn

CPU cycles
for inst 1

CPU cycles
for inst n

CPI1 CPIn

* *+

* +

* +

+

+*

/ /

*

+

MIPSi MFLOPS

Speedup
Overall

Fraction
Enhance

Speedup
Enhance

Figure 2. A larger concept graph.

Figure 3. An Example of Automatically Generated Question

c© 2003 EDSIG http://isedj.org/1/51/ December 31, 2003

ISEDJ 1 (51) Li and Sambasivam 10

Figure 4. An Screen Shot of Guided Problem Solving.

c© 2003 EDSIG http://isedj.org/1/51/ December 31, 2003

ISEDJ 1 (51) Li and Sambasivam 11

Dr. Tao Li is at the Department of Computer
Science, Azusa Pacific University, Azusa, CA 91702.
Dr. Li graduated from the University of Utah in
1985 with a Ph.D in computer science. He taught at
Adelaide University and Monash University in
Australia and Concordia University in Canada. He
has offered a wide range of computer science
courses. Dr. Li has done research in parallel
computing, VLSI design, neural networks and data
networking. He served on the editorial board of
International Journal of Computer-Aided VLSI
Design and on organizing committees of
international conferences as well as session chairs

of international conferences. He was also invited speaker at
conferences and various institutions. His research focus is currently on
intelligent systems for computer science education and on hardware
based systems for networking.

Dr. Samuel E. Sambasivam is the chairman of
the Department of Computer Science of Azusa
Pacific University. Professor Sambasivam has done
extensive research, publications, and presentations
in both computer science and mathematics. His
research interests include optimization methods,
expert systems, Fuzzy Logic, client/server,
Databases, and genetic algorithms. He has taught
computer science and mathematics courses for
over 20 years. Professor Sambasivam has run the
regional Association for Computing Machinery
(ACM) Programming Contest for six years. He has

developed and introduced several new courses for computer science
majors. Professor Sambasivam teaches Database Management
Systems, Information Structures and Algorithm Design, Microcomputer
Programming with C++, Discrete Structures, Client/Server
Applications, Advanced Database Applications, Applied Artificial
Intelligence, JAVA and others courses. Professor Sambasivam
coordinates the Client/Server Technology emphasis for the Department
of Computer Science at Azusa Pacific University.

c© 2003 EDSIG http://isedj.org/1/51/ December 31, 2003

