
Volume 1, Number 2 http://isedj.org/1/2/ September 8, 2003

In this issue:

Teaching to Foster Implicit Knowledge

Errol Thompson
Massey University

Wellington, New Zealand

Abstract: Michael Polanyi says, “we know more than we can tell.” Polanyi is arguing that there
are many things that we do based on tacit or implicit knowledge. Boisot describes a social learning
cycle where implicit knowledge used in the work place is codified or made explicit so that it can be
passed on to others. Boisot argues that the new learner then absorbs this and gradually internalized
through testing and use in a wide variety of contexts. This becomes part of their way of working
and generates new ’tacit’ knowledge. In software development, the structure of the software is often
dictated by the developer’s experience. If a new development environment is encountered then
the developer will attempt to apply past strategies in the new environment. This paper contends
that in teaching software development skills, we are endeavouring to foster the development of
a ’tacit’ knowledge base that the learner can then apply in future projects. The role of education
becomes one of changing the learner, which is achieved through changing their assumptions or ’tacit’
knowledge base. This paper reviews the literature to explore the ’tacit’ or implicit knowledge as
it applies to information systems topics and discusses initial investigations of how it applies to the
teaching of programming. The particular focus is on the need for the students to develop an implicit
understanding of the topics so that it becomes part of their way of thinking about the subject and
becomes part of their work pattern.

Keywords: tacit knowledge, implicit knowledge, learning

Recommended Citation: Thompson (2003). Teaching to Foster Implicit Knowledge.
Information Systems Education Journal, 1 (2). http://isedj.org/1/2/. ISSN: 1545-679X. (Also
appears in The Proceedings of ISECON 2003: §3233. ISSN: 1542-7382.)

This issue is on the Internet at http://isedj.org/1/2/

ISEDJ 1 (2) Information Systems Education Journal 2

The Information Systems Education Journal (ISEDJ) is a peer-reviewed academic journal
published by the Education Special Interest Group (EDSIG) of the Association of Information
Technology Professionals (AITP, Chicago, Illinois). • ISSN: 1545-679X. • First issue: 2003. •
Title: Information Systems Education Journal. Variant titles: IS Education Journal; IS Ed Journal;
ISEDJ. • Physical format: online. • Publishing frequency: irregular; as each article is approved,
it is published immediately and constitutes a complete separate issue of the current volume. •
Single issue price: free. • Subscription address: subscribe@isedj.org. • Subscription price: free. •
Electronic access: http://isedj.org/ • Contact person: Don Colton (editor@isedj.org)

Editor
Don Colton

Brigham Young Univ Hawaii
Laie, Hawaii

The Information Systems Education Conference (ISECON) solicits and presents each year papers
on topics of interest to IS Educators. Peer-reviewed papers are submitted to this journal.

ISECON Papers Chair
William J. Tastle
Ithaca College

Ithaca, New York

Associate Papers Chair
Mark (Buzz) Hensel

Univ of Texas at Arlington
Arlington, Texas

Associate Papers Chair
Amjad A. Abdullat

West Texas A&M Univ
Canyon, Texas

EDSIG activities include the publication of ISEDJ, the organization and execution of the annual
ISECON conference held each fall, the publication of the Journal of Information Systems Education
(JISE), and the designation and honoring of an IS Educator of the Year. • The Foundation for
Information Technology Education has been the key sponsor of ISECON over the years. • The
Association for Information Technology Professionals (AITP) provides the corporate umbrella under
which EDSIG operates. AITP celebrates its 50th year as a professional society in 2003.

c© Copyright 2003 EDSIG. In the spirit of academic freedom, permission is granted to make and
distribute unlimited copies of this issue in its PDF or printed form, so long as the entire document
is presented, and it is not modified in any substantial way.

c© 2003 EDSIG http://isedj.org/1/2/ September 8, 2003

ISEDJ 1 (2) Thompson 3

Teaching to Foster Implicit Knowledge

Errol Thompson1
Information Systems, Massey University

Wellington, New Zealand

Abstract

Michael Polanyi says, “we know more than we can tell”. Polanyi is arguing that there are
many things that we do based on tacit or implicit knowledge. Boisot describes a social
learning cycle where implicit knowledge used in the work place is codified or made explicit
so that it can be passed on to others. Boisot argues that the new learner then absorbs this
and gradually internalized through testing and use in a wide variety of contexts. This be-
comes part of their way of working and generates new ‘tacit’ knowledge. In software de-
velopment, the structure of the software is often dictated by the developer’s experience. If
a new development environment is encountered then the developer will attempt to apply
past strategies in the new environment. This paper contends that in teaching software de-
velopment skills, we are endeavouring to foster the development of a ‘tacit’ knowledge
base that the learner can then apply in future projects. The role of education becomes one
of changing the learner, which is achieved through changing their assumptions or ‘tacit’
knowledge base. This paper reviews the literature to explore the ‘tacit’ or implicit knowl-
edge as it applies to information systems topics and discusses initial investigations of how
it applies to the teaching of programming. The particular focus is on the need for the stu-
dents to develop an implicit understanding of the topics so that it becomes part of their
way of thinking about the subject and becomes part of their work pattern.

Keywords: tacit knowledge, implicit knowledge, learning

1 E.L.Thompson@massey.ac.nz

1. THEORETICAL BACKGROUND

When Michael Polanyi (1966) argues for tacit
knowledge, he is contending that there are
many things that we do that we would strug-
gle to fully explain to others. We act on a
form of knowledge that is derived from ex-
perience and not necessarily from explicit
learning or codified knowledge. Polanyi ar-
gues for the involvement of the person in the
act of knowing and that our knowledge foun-
dation is based on a rational commitment to
what we perceive as being known. He says,
“I regard knowing as an active comprehen-
sion of things known” (Polanyi 1958: vii).

In the field of knowledge management, it is
recognized that companies operate on un-
written rules and the tacit knowledge of their
employees (Hall 1997). Some of this knowl-
edge is critical to the competitive advantage

of the organization. To avoid loss, organiza-
tions seek to codify this knowledge to make
it more readily available to other employees.
Codification or making explicit does not en-
sure that the knowledge is then passed on,
or becomes part of the way other employees
operate. There needs to be a learning cycle
that ensures that the codified knowledge is
transferred and that those who receive it
begin to apply this knowledge. However,
every employee comes to a task with an ex-
isting knowledge base (their tacit knowl-
edge) of that task. When new knowledge is
imparted, they combine this knowledge to
generate new tacit knowledge that will alter
the way that they approach the task and it
will possibly be different to the original em-
ployee’s tacit knowledge. The cycle of codifi-
cation and knowledge transfer begins again.
This cycle is known as the social learning
cycle (Boisot 1995).

c© 2003 EDSIG http://isedj.org/1/2/ September 8, 2003

ISEDJ 1 (2) Thompson 4

Schön (1983) in arguing for reflection-in-
action contends that the practitioner re-
frames a problem situation in an attempt to
utilize prior experience of a familiar situation.
To achieve this, the practitioner utilizes their
tacit or implicit knowledge of their field of
operation. In the process, the practitioner is
developing their implicit knowledge base to
be able to handle new problem situations.

2. WHAT IS “TACIT” KNOWLEDGE?

Tacit knowledge is that knowledge which a
person uses to accomplish tasks but has not
brought into conscious focus. When chal-
lenged, the practitioner may have difficulty
expressing the knowledge. The practitioner
may even be unaware of the knowledge that
they have utilized and the source of that
knowledge.

An individual’s implicit knowledge base will
direct their initial approach to a task and
their ability to comprehend new situations.
What is expressed as explicit knowledge to-
day may be implicit knowledge in tomorrow’s
activities.

Some examples
A cyclist balances by riding in small arcs. In
initial learning, these are obvious wobbles.
As riding experience increases the tiny
movements to balance the bicycle are no
longer noticeable yet they still happen. The
cyclist’s focus shifts to other technical as-
pects of their riding and the need to balance
becomes an implicit pert of their riding be-
havior. For the competitive cyclist this may
see a change to a focus on cycling technique
as especially how to maintain a higher speed
with lower energy outputs.

The cyclist implements a training program
based on assumptions about how to achieve
the desired competition results. If the initial
training program is based on the assump-
tion, that higher gear ratios increase speed
and later the cyclist discovers that higher
cadence in lower gear ratios enables faster
acceleration and greater endurance then the
cyclist must retrain both his/her body and
mind to the new strategy. A failure, to train
in the intended racing strategy, leads to us-
ing the training strategy when the pressure
is on during racing. Even though the cyclist
may have understood explicitly the new
strategy, the implicit strategy, developed

during training and that has been used in
past racing, will dominate when the race
pressure increases.

The novice programmer struggles with the
basic logic constructs and the structuring
techniques for their program code. The syn-
tactical structure is a constant struggle.
When they read existing program code, their
focus is on the detail and not on the over-
view.

In contrast, experts are able to recognize
patterns that exist in their field of expertise
to apply their experience to the situations
and problems that confront them (Chi et al
1988). This often makes the expert appear
as though they are doing minimal analysis of
the situation before making a decision or
taking action. Experienced programmers rap-
idly understand program code without de-
tailed analysis and without prior knowledge
of the programming language. Solway et al.
(1988) contend that expert programmers
use “programming plans” or schemas to
comprehend program code.

While the novice analyst struggles with iden-
tifying entities and the relationships between
entities, the expert analyst recognizes many
entities in the dialogue of the customer. The
expert also recognizes the patterns to be
applied to the solving of a particular cus-
tomer problem. The implicit knowledge base
of the expert seems to allow the expert to
jump stages in the analysis process. This can
confuse the novice because they do not un-
derstand how the expert came to their con-
clusion.

In test driven development, the expert de-
veloper has an implicit understanding of the
types of tests that should be used to drive
development. Novices, as evidenced through
questions and discussions in agile develop-
ment mailing lists, often write tests that
cover large chunks of code. The novice as a
consequence may recognize the explicit ad-
vantages of a test driven approach but
struggle to realize those advantages in prac-
tice because of the difficulty in identifying
appropriate tests to use. Here the required
implicit knowledge is the appropriate think-
ing patterns to enable the problem space to
be divided into appropriately sized testable
chunks.

c© 2003 EDSIG http://isedj.org/1/2/ September 8, 2003

ISEDJ 1 (2) Thompson 5

Schön’s reflective practitioner (1983) will
utilize those patterns of knowledge that they
have built up from experience. They utilize
these patterns to reframe problems in order
to arrive at a solution. To change the applied
knowledge, the reflective practitioner must
do more than read texts in the field. They
must build a new tacit knowledge base that
incorporates new approaches and ideas
through application to new environments.

Summary
A person’s tacit knowledge base expands and
the focus of their attention changes. The
tacit knowledge base provides the base
know-how and thinking patterns for complet-
ing a task. It provides the applicable pat-
terns to apply. Expanding the implicit knowl-
edge base is fundamental to the develop-
ment of expertise.

3. SOFTWARE DEVELOPMENT

In approaching software development tasks,
experienced developers bring with them a
wealth of knowledge. Some of this knowl-
edge may be expressed explicitly. I would
contend that a large portion of it has become
tacit knowledge. A significant element of this
tacit knowledge is how the expert thinks
about programs and the programming task.
Like the cyclist, it is the tacit knowledge of
software development that the expert relies
on in pressure situations.

Program code is written to known logic pat-
terns and data structures. These patterns
form part of the implicit knowledge toolkit of
the experienced programmer. Where an un-
familiar process is to be implemented, the
programmer will look for examples or use
code generation tools to develop a solution.
The experienced software developer will dis-
sect the problem into smaller chunks and
reframe it using known program patterns.

To bring change, educators need to assist
students to build a tacit knowledge base of
how programs are coded, or change the logic
patterns for writing program code. When
teaching a first programming language, the
educator can focus on the syntax and tech-
niques of the language. Some students will
develop programming skills from this base
but others will struggle to comprehend the
nature of the task. They struggle because
they may have no understanding of the con-

cept of a program, or of the semantics of the
language. Others may struggle because they
have no understanding of the logic patterns
and data structures for the assigned pro-
gramming tasks.

The experienced programmer, when ap-
proaching a new language, takes with them
the coding and data structure patterns or
programming plans that have become im-
plicit in their approach to programming.
However, the experienced programmer will
still struggle with a new language or coding
environment where the coding paradigm or
supporting code libraries do not conform to
their implicit understanding of how programs
are structured (i.e. program plans). This is
reflected in the struggle that some pro-
grammers have in moving from structured
programming environments to object-
oriented or object-based environments.

An example
In a course teaching Pascal programming to
undergraduate students, 50% of the stu-
dents were either withdrawing from the
course or failing to pass the assessments.
Those involved in the course assumed that
programming is difficult to teach.

The course utilized progressive programming
exercises that went from simple programs (a
sequence of input, process, and then output)
and built to complex programs. The students
were introduced through handouts and brief
lectures to each of the required language
constructs. The students seemed to miss the
connection between the use of the constructs
and how to build a program that used them.

The next step in the course development was
to run theory sessions. In these theory ses-
sions, the language constructs were intro-
duced, the logic patterns (Dale and Weems
1992; Thompson 1992), and selected exam-
ples from the progressive programming ex-
ercises worked through. When working
through the examples, emphasis was placed
on the reasoning of the logic patterns. The
lecturer endeavored to make explicit the
thinking behind the construction of the pro-
grams. When a loop was used, the lecturer
would ask, “What needs to be done to initial-
ize the loop control?” or “What needs to get
updated within the loop?”

c© 2003 EDSIG http://isedj.org/1/2/ September 8, 2003

ISEDJ 1 (2) Thompson 6

The results of this teaching process were an
increase (to an 80% pass rate) in the num-
ber of students completing and passing the
course. The only difference in the assess-
ment process was that the students had to
provide proof to the lecturer that they had
completed a set number of the progressive
programming exercises along with a major
assignment and theory test. The assignment
was of the same level of difficulty as the
original assessments and moderated by a
peer lecturer.

The final part of the assessment was a the-
ory test in which the students answered
questions that focused on the theory of pro-
gramming. This enabled the lecturer to test
how well students understood the logic pat-
terns and programming concepts.

Explanation for results
Why should the change in teaching approach
deliver a dramatic change in results? The
process did involve the lecturer making ex-
plicit the thinking processes and logic pat-
terns that were behind the coding approach.
In terms of the social learning cycle (Boisot
1995), this is the codifying and making ex-
plicit steps. The student then completed a
series of progressively harder programming
exercises that used the thinking processes
and logic patterns and forced them to com-
plete repeated practice of the concepts.
These exercises helped the students develop
their implicit understanding of concepts and
application to programming.

Within the teaching approach, there is also
an element of constructivism. The students
as they work on the programming exercises
are revisiting the theory presented by the
lecturer. As a result, they actively construct
their own knowledge base for the task. This
leads to the student developing their own
understanding and way of looking at and
thinking about the programming task (Biggs
1993).

4. LEARNING A NEW PROGRAMMING
LANGUAGE

In the last two years, I have been requested
to teach programming courses for second
and third year classes using programming
languages that I have had minimal knowl-
edge of. Being an experienced software de-
veloper and having learnt a wide range of

languages, the task did not appear to be dif-
ficult. It was reasonably easy to learn the
core language constructs but I stumbled in
endeavoring to teach the languages through
lack of experience with the language, lack of
awareness of the rich object libraries or
frameworks that are now available, and a
lack of awareness of the logic patterns for
object-oriented and event driven code.

My foundation in logic patterns enabled me
to learn the constructs for assignment, con-
ditionals, loops, and procedure calls. Even
the development of simple event driven
screen forms proved relatively easy. I
couldn’t communicate how I thought about
programming in this new environment. I
needed a better base knowledge built from
completing a number of practical program-
ming exercises and from understanding the
design patterns used in developing event
driven code and in the frameworks.

During the teaching of the courses, my
knowledge increased as I endeavored to help
students and to develop a set of progressive
programming exercises. In explanation to
students, I was forced to think about how I
could explain the logic patterns of object-
oriented and event driven programming. My
own strategies for learning programming
languages were being rapidly revised. Past
experience and thinking patterns in proce-
dural and structured programming languages
had not prepared me for the new system
architecture structures of these object-based
and event-driven software development en-
vironments and frameworks.

I needed to be introduced to the design pat-
terns and to make the thinking behind the
design patterns part of my thinking and ap-
proach to teaching. The procedural and
structured programming patterns and think-
ing paradigms are inadequate but not irrele-
vant for the new environments. As I have
developed my own thinking of program and
application architectures for these primarily
object-oriented and event driven environ-
ments, it has become easier to communicate
the thought processes or implicit knowledge
necessary to develop the required program-
ming skills.

c© 2003 EDSIG http://isedj.org/1/2/ September 8, 2003

ISEDJ 1 (2) Thompson 7

5. MODELING

Armour (2000a) describes programming as
the capturing of business knowledge and
encoding it in software. The software devel-
oper acquires knowledge (Armour 2000b)
and models that knowledge in terms of data
structures, processing logic, processing pat-
terns, and the software architecture. Like
Schön’s reflective practitioner (1983), the
software developer has to draw on their ex-
perience of software patterns to develop a
model or representation that accurately cap-
tures the business knowledge.

Students initially have difficulty comprehend-
ing how to encode business knowledge be-
cause often they are struggling to compre-
hend the knowledge requirements of two
domains. They lack the experience or tacit
knowledge base in the software development
tools and techniques to be able to easily ap-
ply these to the new knowledge domain of
the business environment.

As well as lacking a tacit knowledge base of
the data structures, processing patterns, and
software architectures, the learner also lacks
a thinking framework for software develop-
ment and systems. Without the thinking
framework, they are unable to reframe the
business knowledge that they are acquiring
into the programming patterns or system
patterns that can be used to represent the
knowledge.

Pirsig (1974) describes a similar problem
with students not knowing what to write on a
topic other than reflecting back what they
remember they have been told or heard. Pir-
sig argues that they needed to be encour-
aged to trust their own perception and exist-
ing knowledge. They had to be encouraged
to write about what they know from their
own experience. The ingredient missing is
the thinking patterns or cognitive skills to
translate a concept into another form or to
connect concepts with prior knowledge.

A first step in many of these situations is to
help students recognize what they already
know (e.g. their existing understanding of
what a program is outside the software set-
ting). That is the lecturer has to help them
make explicit their tacit knowledge (Collins
1979). The students have to be encouraged
to reconstruct their understandings and to be

confronted with the thinking processes that
enable transformation of concepts.

6. PEDAGOGICAL IMPLICATIONS

Collins et al. (1989) describe the use of cog-
nitive apprenticeship. In cognitive appren-
ticeship, the learner or apprentice is given
the opportunity to observe the process be-
fore being assigned the task. After having
observed the process, the learner attempts
to complete a series of tasks with a decreas-
ing amount of support or with the tasks
growing in increasing complexity but utilizing
the same base concepts or cognitive skills
and tools (Rosson and Carroll 1996).

The cognitive apprenticeship step that is of-
ten missed is the opportunity for the learner
to observe the master at work. A repeated
exercise or prepared solution exercise often
misses the spontaneity of thinking of the
master practitioner and therefore lacks the
realism that enables communication of the
cognitive processes involved. A key part of
the observation is seeing the reasoning that
brought about the solution.

Also the support given to the learner in their
early attempts at the task must foster the
development of the learner’s cognitive skills.
The solution to the task doesn’t help the stu-
dent to understand the reasoning that made
that solution valid. It is the reasoning or cog-
nitive process that is more important for the
learner’s ongoing ability to be able to com-
plete the task.

7. LECTURER ROLE IMPLICATIONS

In this type of environment, the lecturer in-
creasingly moves away from being the
source of the required knowledge to being
the facilitator of learning and to being the
master practitioner. In this role, the lecturer
needs to have an implicit understanding of
the subject matter and the related cognitive
skills. From this knowledge base, they are
able to quickly evaluate a learner’s work,
reframe it into a programming thinking pat-
tern, and raise questions that will encourage
the learner to explore their own understand-
ing and the subject further.

The lecturer needs to be analyzing or reflect-
ing on how programmers think about pro-
gramming and communicating those thinking

c© 2003 EDSIG http://isedj.org/1/2/ September 8, 2003

ISEDJ 1 (2) Thompson 8

processes. This meta-cognitive approach en-
ables the lecturer to stimulate the cognitive
skills of the learner.

What level of knowledge is required by the
lecturer and tutorial staff in order to foster
the development of the higher cognitive
skills? Does a lack of in depth knowledge
cause the lecturer to utilize advice offering
teaching styles that lead to standard solu-
tions? The lack of familiarity may also limit
the lecturer’s ability to model the cognitive
skills that the learner needs to acquire. Fur-
ther research on these aspects is required.

If the lecturer is unable to model the cogni-
tive skills or stimulate the learner to develop
the required cognitive skills then the learner
might be able to complete a specific pro-
gramming task but may fail to be able to
translate that knowledge to a new situation
or to be able to select an appropriate solu-
tion from a range of possible solution options
or to explain their program code. Without
developing the implicit knowledge base and
related cognitive skills, the learner will con-
tinue to struggle with the subject matter and
to be unable to apply the learning in prac-
tice.

8. CONCLUSION

How a programmer thinks about program-
ming is part of their implicit knowledge base.
It is the base from which they can draw solu-
tions and through which they can translate
programming problems to develop an under-
standing of possible solutions. Programming
apprentices or learners have to develop
these cognitive skills and build them into
their implicit knowledge base.

The lecturer must demonstrate and make
explicit these cognitive skills as a first step in
developing the learner’s cognitive skills. Fur-
ther, the lecturer must challenge the learner
to think through to solutions utilizing the
thinking patterns and not simply to look for
example solutions.

9. REFERENCES

Armour, Phillip G. (2000a) “The case for a

new business model: Is software a prod-

uct or a medium?” Communications of
the ACM 43 (8), pp. 19-22.

Armour, Phillip G. (2000b) “The five orders

of ignorance: Viewing software develop-
ment as knowledge acquisition and igno-
rance reduction.” Communications of the
ACM 43 (10), pp. 17-20.

Biggs, John B. (1993) “From theory to prac-

tice: a cognitive systems approach.”
Higher education research and develop-
ment 12 (1), pp. 73-85.

Boisot, Max H. (1995) “Is your firm a crea-

tive destroyer? Competitive learning and
knowledge flows in the technology
strategies of firms.” Research Policy 24,
pp. 489-506.

Chi, Michelene T.H., Robert Glaser and M.J.

Farr (1988) The nature of expertise,
Hillsdale, NJ: Lawrence Erlbaum Associ-
ates.

Collins, Allan. (1979) Explicating the tacit

knowledge in teaching and learning.
Cambridge, MA: Bolt, Beranek and
Newman, Inc.

Collins, Allan, John S. Brown, and Susan E.

Newman (1989) “Cognitive apprentice-
ship: Teaching the crafts of reading,
writing, and mathematics.” In: Resnick,
Lauren B., (Ed.) Knowing, learning, and
instruction: Essays in honor of Robert
Glaser, Hillside, New Jersey: Lawrence
Erlbaum Associates

Dale, Nell and Chip Weems (1992) Introduc-

tion to Pascal and structured design, 3rd
edn Turbo Pascal version. Lexington,
Mass: Heath.

Hall, Richard (1997) “Complex systems,

complex learning, and competence build-
ing.” In: Sanchez, Ron and Aimé Heene
(Eds.) Strategic learning and knowledge
management, pp. 39-64. Chichester:
John Wiley & Sons Ltd

Pirsig, Robert M. (1974) Zen and the art of

motorcycle maintenance, London: Corgi
Books.

c© 2003 EDSIG http://isedj.org/1/2/ September 8, 2003

ISEDJ 1 (2) Thompson 9

Polanyi, Michael (1958) Personal knowledge:
towards a post-critical philosophy, Chi-
cago: Routledge and Kegan Paul Ltd.

Polanyi, Michael (1966) The tacit dimension,

Gloucester, MA: Double Day and Com-
pany.

Rosson, Mary B. and John M Carroll (1996)

“Scaffolded examples for learning object-
oriented design.” Communications of the
ACM 39 (4) pp. 46-47.

Schön, Donald A. (1983) The reflective prac-

titioner: how professionals think in ac-
tion, New York: Basic Books.

Soloway, Elliot, Beth Adelson and Kate Ehr-

lich (1988) “Knowledge and processes in
the comprehension of computer pro-
grams.” In: Chi, Michelene T.H., Robert
Glaser and M.J. Farr, (Eds.) The nature
of expertise, pp. 129-152. Hillsdale, NJ:
Lawrence Erlbaum Associates

Thompson, Errol (1992) CBC-PP100 pro-

gramming principles workbook. Auck-
land, Carrington Polytechnic.

c© 2003 EDSIG http://isedj.org/1/2/ September 8, 2003

ISEDJ 1 (2) Thompson 10

Errol Thompson is a Lecturer in Information
Systems at Massey University and a PhD
candidate. He has twenty years of experience
in the development and support of Information
Systems. He teaches object-oriented
approaches to software development. His
research interests include approaches to
learning, cognitive frameworks in software
development, agile and object-oriented
development methods, and scenario-based

learning environments.

c© 2003 EDSIG http://isedj.org/1/2/ September 8, 2003

