
Volume 1, Number 19 http://isedj.org/1/19/ December 26, 2003

In this issue:

Fundamental Patterns for Logic Design

Robert F. Zant
Illinois State University
Normal, IL 61790, USA

Abstract: Students new to information technology are often at a loss as to how to transform a
problem statement into a program design. A number of different approaches have been proposed
to provide students more guidance than is typically found in introductory texts. A new approach
is presented that is based on two fundamental patterns in computing—the Input-Process-Output
pattern and the Initialization-Loop-Termination pattern. An example application of the approach
is presented.

Keywords: IS2002.5, program design, novice programmers, teaching programming, HIPO

Recommended Citation: Zant (2003). Fundamental Patterns for Logic Design. Information
Systems Education Journal, 1 (19). http://isedj.org/1/19/. ISSN: 1545-679X. (Also appears in
The Proceedings of ISECON 2003: §2112. ISSN: 1542-7382.)

This issue is on the Internet at http://isedj.org/1/19/

ISEDJ 1 (19) Information Systems Education Journal 2

The Information Systems Education Journal (ISEDJ) is a peer-reviewed academic journal
published by the Education Special Interest Group (EDSIG) of the Association of Information
Technology Professionals (AITP, Chicago, Illinois). • ISSN: 1545-679X. • First issue: 2003. •
Title: Information Systems Education Journal. Variant titles: IS Education Journal; IS Ed Journal;
ISEDJ. • Physical format: online. • Publishing frequency: irregular; as each article is approved,
it is published immediately and constitutes a complete separate issue of the current volume. •
Single issue price: free. • Subscription address: subscribe@isedj.org. • Subscription price: free. •
Electronic access: http://isedj.org/ • Contact person: Don Colton (editor@isedj.org)

Editor
Don Colton

Brigham Young Univ Hawaii
Laie, Hawaii

The Information Systems Education Conference (ISECON) solicits and presents each year papers
on topics of interest to IS Educators. Peer-reviewed papers are submitted to this journal.

ISECON Papers Chair
William J. Tastle
Ithaca College

Ithaca, New York

Associate Papers Chair
Mark (Buzz) Hensel

Univ of Texas at Arlington
Arlington, Texas

Associate Papers Chair
Amjad A. Abdullat

West Texas A&M Univ
Canyon, Texas

EDSIG activities include the publication of ISEDJ, the organization and execution of the annual
ISECON conference held each fall, the publication of the Journal of Information Systems Education
(JISE), and the designation and honoring of an IS Educator of the Year. • The Foundation for
Information Technology Education has been the key sponsor of ISECON over the years. • The
Association for Information Technology Professionals (AITP) provides the corporate umbrella under
which EDSIG operates. AITP celebrates its 50th year as a professional society in 2003.

c© Copyright 2003 EDSIG. In the spirit of academic freedom, permission is granted to make and
distribute unlimited copies of this issue in its PDF or printed form, so long as the entire document
is presented, and it is not modified in any substantial way.

c© 2003 EDSIG http://isedj.org/1/19/ December 26, 2003

ISEDJ 1 (19) Zant 3

Fundamental Patterns for Logic Design

Robert F. Zant
School of Information Technology

Illinois State University
Normal, IL 61790, USA

Abstract

Students new to information technology are often at a loss as to how to transform a problem
statement into a program design. A number of different approaches have been proposed to
provide students more guidance than is typically found in introductory texts. A new approach
is presented that is based on two fundamental patterns in computing—the Input-Process-
Output pattern and the Initialization-Loop-Termination pattern. An example application of the
approach is presented.

Keywords: IS 2002.5, program design, novice programmers, teaching programming, HIPO

1. INTRODUCTION

Students typically perceive the beginning
programming course as a language course--
that is, they characterize the course as a
"VB," "COBOL," "C++," or "JAVA" course. To
them, learning the syntax and semantics of
the language is a primary focus (Barr,
Holden, Phillips 1999). Instructors, on the
other hand, view the course much more
broadly with the language being just a tool
used to support the other, more important
topics in the course--topics like problem
analysis, program design, and OO concepts.

Perhaps the reason students focus on the
language is precisely because it does
underpin the other topics and it is more
concrete and easier for the students to
learn. However, in designing curriculum,
instructors focus on the non-language topics
because they are seen as the most
important. This relationship between
language and concepts has bred an active
discussion of just how topics should be
organized in the introductory course. One
reason for this difficulty is that the topics
comprise a non-linear set. The more one
knows about each topic, the easier it is to

understand the others. This is often viewed
as comprising a threshold level of knowledge
that must be obtained before "the pieces fall
into place." Once this threshold has been
reached, students suddenly "catch on" and
comprehension replaces confusion. This
phenomenon has been widely recognized as
the problem of closing “the gap between a
problem statement and a programmed
solution” (Lane and VanLehn 2003), as the
student not knowing where to begin (Proulx
2000; Maris, VanLengen, Lucy 2000; Adams
and Frens 2003), and as giving the student
atoms and letting them “figure out how to
build molecules” (Rabb, Rasala, Proulx
2000).

In recognition of this interdependency of
topics, introductory courses should be
designed to repeat concepts to allow the
accumulation of knowledge to take place.
This is often accomplished by covering the
concepts in a spiral approach where the
concepts are repeated, but in more and
more depth. The repetition of concepts
affords students the opportunity to gain the
threshold of knowledge needed but, since
the complexity level is increasing, the
student must be able to make progress or

c© 2003 EDSIG http://isedj.org/1/19/ December 26, 2003

ISEDJ 1 (19) Zant 4

fall hopelessly behind. Ad hoc information
indicates drop rates from 25% to 50% are
not uncommon in the introductory course.
Bouvier recently reported a 40% attrition
rate at the University of Houston-Downtown
(Bouvier 2003).

The dialog concerning the teaching of
introductory programming has been
enlivened in recent years by the advent of
object oriented (OO) concepts and
languages being taught in the course. Some
of the points that have been raised are:

• Entering students already have

experience using sophisticated
software (Wester, Sint, Kluit 1997).

• Past experiences lead students to
expect to work with GUI and
graphics (Rabb, Rasala, Proulx
2000).

• Exercises should be intellectually
stimulating and even exciting
(Hadjerrouit 1998; Rasala 2000).

• Students are most comfortable
working with concrete ideas and
rules that are to be followed (Zant
2001).

• The details associated with learning
and using a language and
development environment can be
overwhelming (Proulx 2000; Wester,
Sint, Kluit 1997).

• Students find logic structures and
OO concepts difficult to master (Stix
and Mosley 2002).

• Debugging is an "enigma wrapped in
a puzzle" (Lang 2002; Hristova,
Misra, Rutter, Mercuri 2003).

• Even students who grasp the details
have difficulty with problem solving.
They are frustrated by the sense of
"not knowing where to begin"
(Proulx 2000).

The remainder of this paper will focus on this
last point. Other proposals for dealing with
this issue will be reviewed and a new
technique using Action Tables and IPO/ILT
Charts will be introduced and its use
demonstrated through an example.

2. OTHER PROPOSALS

A number of proposals have been advanced
to assist students in designing programs.
The proposals seek to provide a "starting

point" and a procedure that can be used by
a novice student in creating a program
design given a problem statement. One,
high-level, approach is to have students
follow a template for the structure of classes
that comprise a program. The Model/View
approach (Kluit, Sint, Wester 1998;
Christensen and Caspersen 2002; Bruce,
Danyluk, Murtagh 2001) decomposes classes
into two categories. The first type, Model
classes, provides the applications
functionality. The second type, View
classes, provides the user interface. The
importance of this approach goes beyond
providing a standard structure for students
to use. In initial assignments, the interface
classes can be provided to students so that
the students are then only responsible for
programming the logic for the required
functionality. This approach spares the
student from becoming involved with the
minutia required for implementing user
interfaces in OO languages.

A related approach is suggested by Koffman
and Wolz (Koffman and Wolz 1999). They
structure programs into an Application class
and one or more Support classes. The
Application class contains the “static main”
method that instantiates a support class and
then contains minimal logic to invoke the
required methods in the Support class. This
approach is combined with the use of an IO
Toolkit (Wolz and Koffman 1999) to simplify,
for the student, the implementation of the
user interface.

Lane and VanLehn propose an approach
reminiscent of the Guild approach of the
master and the apprentice (Lane and
VanLehn 2003). Their approach, Coached
Program Planning (CPP), pairs a tutor and a
student to “collaborate to build a natural-
language-style pseudo-code solution” for a
problem statement. The CPP dialogue
repetitively follows a four-step pattern until
pseudo-code has been developed for all
functional requirements in the problem
statement.

1. identify the next programming goal
2. describe a way for attaining the goal
3. select pseudo-code steps to attain the

goal
4. sequence the pseudo-code steps

appropriately

c© 2003 EDSIG http://isedj.org/1/19/ December 26, 2003

ISEDJ 1 (19) Zant 5

This approach provides students a guide
experienced in problem solving until they
have gained enough experience to
individually design programs.

Adams and Frens suggest the "Where do I
begin?" problem be solved with a procedure
they call object centered design for Java
(Adams and Frens 2003). This is a four-step
process where the student begins by
rewriting the problem statement using key
words such as program, keyboard, and
screen. Step two is to identify the nouns
(objects) in the problem statement followed
by identifying the verbs (operations). The
final step is to apply the operations to the
objects to construct a "static main" method.
I/O classes are provided to simplify the
programming of the user interface.

The Noun/Verb paradigm was extended by
Reichgelt and Kung and embedded in a
process to identify classes, attributes, and
behaviors (Reichgelt and Kung 2002). They
provide a very well-developed process for
analyzing nouns to identify and refine
classes. Students then identify attributes
and the behaviors associated with them.
This methodology gives students an easy
beginning point, that of listing nouns, and
provides detailed steps for refining the
"nouns" into classes.

Bergin integrates the Noun/Verb approach
with design patterns in a nine-step
methodology for designing the class
structure for a problem (Bergin 1998).
Proulx presents a number of design patterns
that are used "to help students focus on
mastering reasoning and design skills"
(Proulx 2000). Maris uses one of those
patterns, the input-process-output pattern,
as the basis for a design tool, a Summary
Table, for students to use to collect, classify,
and compare the components of a problem
statement (Maris, VanLengen, Lucy 2000).
Students place components of a problem
into a table with six columns. The first
column is used to list each major task that
must be accomplished in the problem. For
each task, the remaining columns contain
the input data, its source, the output data,
its source, and the trigger event for the
task. Students may begin with any column
in the table so that the approach allows the
freedom to begin with the components that
the student most easily recognizes. The

Summary Table is used as a starting point
for the student to analyze and gain an
understanding of the problem. Once
sufficient knowledge of the problem has
been obtained, the student switches to other
design techniques such as UML.

3. THE PROPOSED APPROACH

The approach presented here, using Action
Tables and IPO/ILT Charts, integrates two
fundamental patterns in program design.
Unlike techniques such as activity diagrams
that are strictly procedural in nature, Action
Tables and IPO/ILT Charts combine
structural and procedural views of a
problem. This is easier for a student to use
since the student does not have to identify
the precise sequence of actions at the same
time as the actions themselves are
identified. In other words, the student does
not have to initially think procedurally.

The Input-Process-Output (IPO) pattern is,
perhaps, the first pattern to be used in
computing (Gustavson and Choolfaian
2000). The IPO pattern can be applied to a
program as a whole or to a subsection of
code. It is the basis for analysis and design
techniques such as System Flowcharts, HIPO
Charts, and Use Case Diagrams.

Another fundamental pattern of computing is
the Initialization-Loop-Termination (ILT)
pattern. This pattern can also be applied to
an entire program or to a task. The pattern
recognizes that a task typically consists of
some actions that are taken initially,
followed by actions that are carried out
repetitively based on some condition, and
then completed by actions that follow the
loop. The ILT pattern is endemic to such
analysis and design techniques as Program
Flowcharts and Activity Diagrams.

4. ACTION TABLES

An Action Table is a technique that is used to
bridge between analysis and design. It is
used to classify actions along an analysis
dimension and a design dimension. The
student must only identify and classify
required actions in the problem statement.

An Action Table contains three columns. The
first column contains a list of actions to be
performed in the system. The second

c© 2003 EDSIG http://isedj.org/1/19/ December 26, 2003

ISEDJ 1 (19) Zant 6

column classifies each action as input,
process, or output (analysis dimension). The
third column classifies each action as
initialization, loop, or termination (design
dimension).

The Action column is filled in first. The
student reviews the problem statement to
identify the system processing requirements
and rephrases them as individual actions
that must be performed. An "I," "P," or "O"
is entered in the second column for each
action depending on whether it is an input,
processing, or output action. Likewise an "I,"
"L," or "T" is entered in the third column for
each action depending on when the action
must be performed.

If the student is undecided as to how to
classify an action, it is reexamined to
determine if it can be subdivided into two or
more actions. For example, "get interactive
response" may originally be identified as a
single action. But, upon reexamination, it
may be expressed as two actions, "display
prompt" and "get value." The newly
identified actions can then be classified as an
output action for displaying a prompt and as
an input action for getting the value.

After classifying all identified actions, the
table is reviewed along with the system's
requirements to assure that all relevant
actions have been identified and correctly
classified.

5. IPO/ILT CHARTS

An IPO/ILT Chart is a tool used in the design
of a system to classify actions required in
the system and to partially specify the
sequence required for the execution of the
actions. Actions are classified in a two-way
classification scheme that organizes them
generally according to their logical sequence
of execution.

The chart contains three columns for
classifying each action as an Input, a
Process, or an Output action. Often, input
actions logically precede related process
actions that, in turn, logically precede
related output actions. But, this is not
always the case, e.g., when a prompt
message is displayed on a screen (output)
and then the related response is entered

(input) and, finally, processed (process).

The chart contains three rows for classifying
actions: actions performed to initialize a
logic sequence, actions performed within a
loop, or actions performed at the
termination of a logic sequence. This
classification (ILT) is in strict accordance
with the logical precedence for related
actions. That is, all the initialize actions will
be executed before any of the loop actions.
And, all of the loop actions will be completed
before the terminate actions are executed.

The two dimensions of the IPO/ILT Chart
produce nine different categories to aid in
the analysis of actions. To use the chart,
enter each action on the Action Table into
the appropriate cell in the IPO/ILT Chart.
Actions within a cell are entered in the
sequence in which they are to be executed
relative to the other actions in the same cell.
In some cases, the sequence is critical. In
others, the order may not matter. The order
required must be determined given the
statement of the problem. The precise
sequencing of the actions from different cells
into a coherent sequence will be
accomplished after the IPO/ILT Chart is
completed.

Structure of the IPO/ILT Chart

After completing the IPO/ILT Chart, the
entries are reviewed with the Action Table to
confirm that all actions from the table have
been entered correctly. Also, the condition
governing the execution of the loop must be
specified. Both the minimum number of
times the loop will be executed (zero or one)
and the condition under which the loop will
be terminated must be determined. It is not
necessary for all nine cells to contain
actions. One or more cells may be empty.

6. EXAMPLE

The following is an example for calculating
the present value of a stream of annual
returns. A system requirements statement

c© 2003 EDSIG http://isedj.org/1/19/ December 26, 2003

ISEDJ 1 (19) Zant 7

for the problem is given along with a
corresponding Action Table and IPO/ILT
Chart. Some pedagogical implications for the
use of this approach are also given.

System Requirements

Design the logic to calculate the present
value for an investment. Input for the
calculation will be the amount of the initial
investment (C0), the number of years the
investment will be active (n), the net cash
flow for each year (Ci), and the discount
factor (d). The present value is calculated
as:

PV = sum over n [Ci / (1 + d) ** i] - C0

Output will consist of the value of the initial
investment, the discount rate, and the

computed present value of the investment.

Action Table

 ACTION IPO ILT
 ------------------------ --- ---
 Get discount rate I I
 Get number of years I I
 Get cash flow for year I L
 Get initial investment I T
 Display discount rate O I
 Display initial investment O T
 Display present value O T
 sum = zero P I
 i = zero P I
 Add 1 to i P L
 Add Ci / (1+d)**i to sum P L
 Present value = sum - P T
 initial investment

IPO/ILT Chart

The use of the IPO/ILT Chart provides a
focus for discussion of several design
decisions. For example, actions within a
category may have to be executed in a
particular sequence or the sequence of
execution may not matter. In the
Initialize/Process cell either of the two
actions could be done first. But, given that
the exponent in the calculation (i) is
initialized to zero rather than to one, the two
actions in the Loop/Process cell must be
done in the specified order.

The chart also demonstrates that in some
cases there is a choice of categories for an
action. That is, the program would function
well with alternative placements of an
action. In this example, the input action of
reading the "initial investment" could be

done with other input actions in the
Initialize/Input cell rather than where it is in
the Terminate/Input cell. Choices should be
made based on some logical criteria, such as
producing clear and easily maintained code.
In this case the choice was made by placing
actions as late as possible in the logic
sequence, i.e., a just-in-time rule. This will
keep actions that have a sequence
dependency as close together as possible in
the logic and ultimately in the software
code.

Finally, the IPO/ILT Chart offers a
convenient vehicle for discussing the
difference between logical models in the
problem space and in the solution space. In
the example, the initialization of the
variables "sum" and "i" are solution space

c© 2003 EDSIG http://isedj.org/1/19/ December 26, 2003

ISEDJ 1 (19) Zant 8

actions and would not typically appear in the
problem statement and hence would not
appear in an IPO/ILT Chart in "problem
space".

Once the student is satisfied that the
IPO/ILT Chart correctly reflects the logic of
the problem, the next step is to design a
coherent sequence of logic that explicitly
sequences the actions contained in the
IPO/ILT Chart. This detail logic is designed
one row at a time from the IPO/ILT Chart;
first the Initialize row, then the Loop row,
and finally the Terminate row.

Logic within each row is generally developed
starting with actions entered in the Input
cell, then the Process cell, and finally the
Output cell. However, actions within a row
may not always follow this strict logical
sequence. In particular, all actions within
the Process cell will not necessarily logically
precede all actions within the Output cell,
etc. The actions within a row must be
analyzed carefully to determine their logical
sequence.

The resulting sequence of actions can be
expressed in pseudo-code or directly into
code. In developing code from the IPO/ILT
Chart additional statements will have to be
added to the logic depending on the
language used--for example, the declaration
of variables.

7. CONCLUSION

Beginning information systems and
computer science students often find that
they do not know where to begin in
analyzing a problem statement. The
techniques presented in this paper, Action
Tables and IPO/ILT Charts, provide a
methodology for novice computing students
to use in transforming a problem statement
into a program design and ultimately into a
computer program. Traditional techniques
such as flowcharts, data flow diagrams, and
activity charts are strictly procedural in
nature and have not proved easy for
students to use. The methodology presented
requires that students first classify actions.
The cross-classification as both IPO and ILT
provides guidance in the sequencing the
actions. The IPO/ILT Chart provides a
vehicle for discussing design decisions and
for understanding the role of logical models.

8. REFERENCES

Adams, Joel and Jeremy Frens, 2003,

"Object Centered Design for Java:
Teaching OOD in CS-1." ACM
SIGCSE'03, February 19-23, pp. 273-
277.

Barr, Matthew, Sam Holden, Dave Phillips,

and Tony Greening, 1999, "An
Exploration of Novice Programming
Errors in an Object-Oriented
Environment." SIGCSE Bulletin, Vol. 31,
No. 4, pp. 42-46.

Bergin, Joseph, 1998, "Patterns of Object-

Oriented Design for Novices."
HTTP://csis.pace.edu/~bergin/patterns/
design.html.

Bishop, Judith, 1997, "A Philosophy of

Teaching Java." ACM Joint Conference of
IT in CS," pp. 146.

Bouvier, Dennis J., 2003, "Pilot Study: Living

Flowcharts in an Introduction to
Programming Course." ACM SIGCSE'03,
February 19-23, pp. 293-295.

Bruce, Kim B., Andrea Danyluk, and Thomas

Murtagh, 2001, "Event-driven
Programming is Simple Enough for CS
1." ACM ITiCSE'01, pp. 1-4.

Christensen, Henrik Baerbak and Michael E.

Caspersen, 2002, "Frameworks in CS 1 –
a Different Way of Introducing Event-
driven Programming." ACM ITiCSE'02,
June 24-26, pp. 75-79.

Gustavson, Fran and Stephen Choolfaian,

2000 "On a New Teaching Paradigm for
Information Systems." ISECON 2000.

Hadjerrouit, Said, 1998, "A Constructivist

Framework for Integrating the Java
Paradigm into the Undergraduate
Curriculum." ACM ITiCSE'98, pp. 105-
107.

Hristova, Maria, Ananya Misra, Megan

Rutter, and Rebecca Mercuri,
"Identifying and Correcting Java
Programming Errors for Introductory
Computer Science Students." 2003, ACM
SIGCSE'03, February 19-23, pp. 153-
156.

c© 2003 EDSIG http://isedj.org/1/19/ December 26, 2003

ISEDJ 1 (19) Zant 9

Kluit, Peter G., Marleen Sint, and Frank
Wester, 1998, "Visual Programming with
Java: Evaluation of an Introductory
Programming Course." ACM ITiCSE'98,
pp. 143-147.

Koffman, Elliot and Ursula Wolz, 1999, "CS1

Using Java Language Features Gently."
ACM ITiCSE'99, pp. 40-43.

Lane, H. Chad and Kurt VanLehn, 2003,

"Coached Program Planning: Dialogue-
Based Support for Novice Program
Design." ACM SIGCSE'03, February 19-
23, pp. 148-152.

Lang, Bob, 2002, "Teaching New

Programmers: A Java Tool Set as a
Student Teaching Aid." International
Conference on the Principles and
Practice of Programming in Java, pp. 95-
100.

Maris, Jo-Mae, Craig VanLengen, and Rick

Lucy, 2000, "A Design Tool for Novice
Programmers." ISECON 2000.

Proulx, Viera K., 2000, "Programming

Patterns and Design Patterns in the
Introductory Computer Science Course."
ACM SIGCSE 2000, pp. 80-84.

Rabb, Jeff, Richard Rasala, and Viera K.

Proulx, 2000, "Pedagogical Power Tools
for Teaching Java." ACM ITiCSE 2000,
pp. 156-159.

Rasala, Richard, 2000, "Toolkits in First Year

Computer Science: A Pedagogical
Imperative." ACM SIGCSE 2000, pp.
185-191.

Reichgelt, Han and Hsiang-Jui Kung, 2002,

"A Methodology for Teaching Object
Oriented Design and a Preliminary
Evaluation." Proceedings of the 2002
Conference for Information Technology
Curriculum.

Stix, Allen and Pauline Mosley, 2002,

"Cognitive Complexities Confronting
Software Developers Utilizing Object
Technology." ISECON 2002.

Wester, Frank, Marleen Sint, and Peter Kluit,

1997, "Visual Programming with Java:
an Alternative Approach to Introductory

Programming." ACM ITiCSE'97, pp. 57-
58.

Wolz, Ursula, 1997, "Language

Considerations in a Goal-Centered
Approach to CS I and II: Java, C, or
What?" Journal of Computing in Small
Colleges, Vol. 12, No. 5, pp. 12-20..

Wolz, Ursula and Elliot Koffman, 1999,

"simpleIO: A Java Package for Novice
Interactive and Graphics Programming."
ACM ITiCSE'99, pp. 139-142.

Zant, Robert F., 2001, "Problem Analysis

and Program Design Using Subsystems
and Strategies." ISECON 2001.

c© 2003 EDSIG http://isedj.org/1/19/ December 26, 2003

ISEDJ 1 (19) Zant 10

Dr. Robert Zant is a Professor of Information
Systems in the School of Information Technology
at Illinois State University where he served as
chairperson for eight years. He received the PhD
in Economics and Business Administration from the
University of Florida. Dr. Zant has worked in the
information technology field as a computer
operator, programmer, analyst, and as a
management consultant. For the past 30 years
Robert has been a professor of information

systems. He has been very active in information systems curriculum
development and accreditation. He currently serves on the Computing
Accreditation Commission of ABET. His primary teaching and research
interests deal with systems development methodologies. Dr. Zant has
authored numerous articles and papers on systems methodology and
information systems pedagogy.

c© 2003 EDSIG http://isedj.org/1/19/ December 26, 2003

