
Volume 1, Number 18 http://isedj.org/1/18/ December 26, 2003

In this issue:

Integrating Agile Development Methodologies into the Project Capstone
– A Case Study

Christopher G. Jones
Utah Valley State College
Orem, Utah 84058-5999

Abstract: Regardless of program concentration (System Development or Information Security),
all four-year degree Information Systems & Technology majors at Weber State University (WSU)
in Ogden, Utah, are required to take the capstone project management course. Not only does this
mean student preparation levels in system development are uneven due to program emphasis but
with recent changes in the Weber curriculum, students have mixed backgrounds in development
methodology spanning SA/SD and OOAD. This case study describes an attempt to use an agile
methodology to bridge the differences in background by focusing on a common set of analysis, design,
and implementation artifacts.

Keywords: agile development methodology, Crystal Clear, eXtreme programming, IS 2002.10,
light-weight systems analysis and design, project management, senior project capstone

Recommended Citation: Jones (2003). Integrating Agile Development Methodologies into the
Project Capstone A Case Study. Information Systems Education Journal, 1 (18).
http://isedj.org/1/18/. ISSN: 1545-679X. (Also appears in The Proceedings of ISECON 2003:
§2213. ISSN: 1542-7382.)

This issue is on the Internet at http://isedj.org/1/18/

ISEDJ 1 (18) Information Systems Education Journal 2

The Information Systems Education Journal (ISEDJ) is a peer-reviewed academic journal
published by the Education Special Interest Group (EDSIG) of the Association of Information
Technology Professionals (AITP, Chicago, Illinois). • ISSN: 1545-679X. • First issue: 2003. •
Title: Information Systems Education Journal. Variant titles: IS Education Journal; IS Ed Journal;
ISEDJ. • Physical format: online. • Publishing frequency: irregular; as each article is approved,
it is published immediately and constitutes a complete separate issue of the current volume. •
Single issue price: free. • Subscription address: subscribe@isedj.org. • Subscription price: free. •
Electronic access: http://isedj.org/ • Contact person: Don Colton (editor@isedj.org)

Editor
Don Colton

Brigham Young Univ Hawaii
Laie, Hawaii

The Information Systems Education Conference (ISECON) solicits and presents each year papers
on topics of interest to IS Educators. Peer-reviewed papers are submitted to this journal.

ISECON Papers Chair
William J. Tastle
Ithaca College

Ithaca, New York

Associate Papers Chair
Mark (Buzz) Hensel

Univ of Texas at Arlington
Arlington, Texas

Associate Papers Chair
Amjad A. Abdullat

West Texas A&M Univ
Canyon, Texas

EDSIG activities include the publication of ISEDJ, the organization and execution of the annual
ISECON conference held each fall, the publication of the Journal of Information Systems Education
(JISE), and the designation and honoring of an IS Educator of the Year. • The Foundation for
Information Technology Education has been the key sponsor of ISECON over the years. • The
Association for Information Technology Professionals (AITP) provides the corporate umbrella under
which EDSIG operates. AITP celebrates its 50th year as a professional society in 2003.

c© Copyright 2003 EDSIG. In the spirit of academic freedom, permission is granted to make and
distribute unlimited copies of this issue in its PDF or printed form, so long as the entire document
is presented, and it is not modified in any substantial way.

c© 2003 EDSIG http://isedj.org/1/18/ December 26, 2003

ISEDJ 1 (18) Jones 3

Integrating Agile Development Methodologies
into the Project Capstone – A Case Study

Christopher G. Jones1

Business Computer Information Systems
Utah Valley State College

Orem, Utah 84058-5999 U.S.A.

Abstract

Regardless of program concentration (System Development or Information Security), all four-
year degree Information Systems & Technology majors at Weber State University (WSU) in
Ogden, Utah, are required to take the capstone project management course. Not only does
this mean student preparation levels in system development are uneven due to program
emphasis but with recent changes in the Weber curriculum, students have mixed backgrounds
in development methodology spanning SA/SD and OOAD. This case study describes an
attempt to use an agile methodology to bridge the differences in background by focusing on a
common set of analysis, design, and implementation artifacts.

Keywords: agile development methodology, Crystal Clear, eXtreme programming, IS
2002.10, light-weight systems analysis and design, project management, senior project
capstone

1. INTRODUCTION

Weber, a large state university located in the
U.S. intermountain west, offers undergradu-
ate degree programs in Information Systems
as well as an MBA with an IT focus.
Students select from one of two concentra-
tions: System Development or Information
Security. All students, regardless of concen-
tration, take the Senior Project capstone
course.

Over the past couple of years, the Informa-
tion Systems & Technologies Department
(IS&T) has gradually introduced object tech-
nology, primarily through coursework in
object-oriented programming using Java. To
date, however, the Systems Analysis and
Design course (a prerequisite for the Senior
Projects capstone) only includes coverage of
traditional system development methodolo-
gies such as Structured Analysis/Structured

Design (SA/SD). Plans for the 2003-2004
academic year include a move to a new text
with a balanced presentation of traditional
and object-oriented system development
approaches. This paper presents a case
study exploring an approach to teaching the
Project Management Capstone course with
students having multiple system develop-
ment methodology and programming lan-
guage backgrounds. The paper begins by
exploring the challenge of a mixed method-
ology capstone, introduces an Agile Devel-
opment methodology as a possible solution,
and then chronicles deployment of Crystal
Clear, a lightweight systems development
framework. A series of student retrospective
exercises are used to evaluate the effective-
ness of the approach. The paper concludes
with lessons learned from the use of agile
methods for small-team information systems
development.

1jonescg@uvsc.edu

c© 2003 EDSIG http://isedj.org/1/18/ December 26, 2003

ISEDJ 1 (18) Jones 4

2. THE CHALLENGE

Although students registering for IS&T 4730
Senior Project may have met the course
prerequisites, background preparation levels
vary by programming language and
development methodology. Most students
have taken coursework in visual
programming (VB 6.0) and conventional
design (SA/SD) using data modeling (entity-
relationship diagrams (ERDs)). Students in
the Information Security concentration take
additional coursework in networking and
data security while students in the System
Development concentration are exposed to
web development. Approximately 30
percent of the Senior Project students have
taken classes in object-oriented
programming with some exposure to the
Unified Modeling Language (UML) for
program design. None have had experience
with the increasing popular light-weight
development methodologies. While all
students have been exposed to heavy-
weight approaches such as SA/SD or Object-
oriented Analysis and Design (OOAD) with
UML, few have had any practical experience
with either.

Course content for IS&T 4730 follows IS ’97
(Davis et al. 1997) and IS 2002 (Gorgone et
al. 2002) model curriculum coverage of
Project Management and Practice. Using
project management concepts and foun-
dational knowledge in systems, network,
and database design, students work in
teams to develop a significant computer-
based system for real clients. At the end of
the semester, students demonstrate their
completed (and working) systems to the
client and members of the faculty.

The semester time constraint for the course
presents a formidable challenge. How do
you teach 11 learning units on IS 2002.10
project management (Gorgone et al. 2002),
form project teams, help students find and
build a relationship with a client, oversee the
development of entirely new systems, and
provide tutoring on two completely different
system development approaches in only 15
weeks? One approach is to front-load the
course with the Project Management content
and let the students develop at will. This
was the strategy taken Fall 2002.

By the fifth week, the class had covered (a)
introduction to project management, (b)
project integration management, (c) project
scope management, (d) project time
management, (e) using project management
software, (f) a review of structured analysis
structured design and object-oriented
analysis and design, (g) project cost
management, (h) project communications
management, and (i) a comprehensive
project management case. The remaining
topics (project quality management, project
human resource management, project risk
management, and project procurement
management) were sprinkled through the
remaining 10 weeks.

Three problems arose. First, since the first
five weeks of the course were devoted to
project management instruction, when
students turned their attention to
development they found it difficult to
complete a project from start to finish in
only 10 weeks. Second, the quality of the
analysis, design, and implementation arti-
facts generated by students to document the
development process varied dramatically
and were often inconsistent within the two
methodologies (i.e., SA/SD; OOAD). Third,
motivation suffered as students came to
view project documentation as an “after-the-
fact” exercise to satisfy course requirements
rather than as an aid in the development
process itself.

In summary, the challenges facing WSU as it
sought to deliver a successful capstone
experience in project management and
practice were:

• Mixed development backgrounds with

some students exposed to SA/SD and
others to OOAD

• Uneven preparation levels as a result of

differences in the program concentration
selected

• Little practical experience with the

heavy-weight textbook methodologies,
whether traditional or object-oriented

• Project artifacts that placed a drag on

the project momentum rather than
providing additional impetus

c© 2003 EDSIG http://isedj.org/1/18/ December 26, 2003

ISEDJ 1 (18) Jones 5

3. AN AGILE APPROACH TO SENIOR
PROJECTS

Utah is home to the Agile Development
Conference sponsored by the Agile Alliance
in cooperation with the ACM Special Interest
Group on Software Engineering (ACM
SIGSOFT) and AITO (Association Interna-
tionale pour les Technologies Objets). This
annual conference is “aimed at exploring the
human and social issues involved in software
development and the consequences of the
agile approach to developing software”
(Agile n.d.). The Agile movement is best
known for eXtreme Programming, a light-
weight approach to software development
popularized by Kent Beck (Beck 2000). One
of the founding members of the Agile
Alliance, Alistair Cockburn, resides in the
Salt Lake City, Utah area and hosts a
monthly Salt Lake Agile Group. It was at
one of these monthly meetings, that the
group was asked to help address the

challenges of the WSU IS&T 4730 senior
project class, specifically the disparate
development backgrounds and the
burdensome documentation requirements of
heavy-weight methodologies. The group
responded by suggesting Crystal Clear – an
“ultralight-weight” software development
methodology created by Cockburn while
working at IBM (Cockburn 1997, 2001).

Crystal Clear
“Crystal” is a family of development
methodologies tailored to project criticality.
“Crystal Clear”, (circled below in Figure 1 as
D6), is designed for one-to-six person teams
working on projects with low to medium
criticality, where project failure would not
hurt the organization’s bottom line.

According to Cockburn (Cockburn n.d.), the
essence of the Crystal Clear approach to
software development is:

Figure 1 Crystal Family of Agile Methodologies

c© 2003 EDSIG http://isedj.org/1/18/ December 26, 2003

ISEDJ 1 (18) Jones 6

The lead developer and two to five other
developers in a large room or adjacent
rooms, with whiteboards (preferably
printing whiteboards), access to key us-
ers, distractions kept away, delivering
running, tested, usable code to the users
every month or two, periodically reflect-
ing and adjusting their working conven-
tions (p. 7).

Crystal Clear requires a minimum set of
work products (WP) (Table 1). Of the 20
project artifacts, only WP 13 Common Object
Model is currently paradigm specific.
Cockburn (personal communication, January
10, 2003) readily admits WP 13 can be
generalized to all domain data models
including semantic data or entity-
relationship models. For purposes of the
Senior Project course, WP 13 was modified
accordingly and relabeled “Common Domain
Model”. The only other modification to the
work product list was WP 20 User Manual.
Instead of focusing solely on a separate
physical document, the definition of the WP
was expanded to comprise all user
assistance including online manuals and
paperless help systems.

With the minor generalizations to the Crystal
Clear methodology mentioned above, it
appeared that the approach might well
address the course challenges of mixed
paradigms and the overhead of heavy-
weight development methodologies. For this
reason, Spring semester 2003, the modified
Crystal Clear methodology was used as the
standard development approach for two
sections of the Senior Projects capstone.
Section 01 included seven students
organized into two project teams; Section 02
included 18 students in five project teams.
Students were allowed to develop their
Senior Project using either SA/SD or OOAD.
All submitted work products were identical
except WP 13 Common Domain Model.
SA/SD project teams submitted entity-
relationship diagrams while OOAD teams
submitted Unified Modeling Language (UML)
class diagrams.

Agile Development Exercise
To provide students with an end-to-end
overview of lightweight development
methodologies, an exercise in agile
development adapted from Bergin’s eXtreme

Planning activity (Bergin 2000) was
conducted early in the semester. Working in
teams, students designed and “built” a hot
drink maker to the specification of their
“customers”, played by a few members of
the class. For purposes of the exercise,
“built” meant that the development team
was to draw a picture of the desired
machine, incrementally. Students developed
high-level Use Cases to capture system
requirements, worked with their customers
to identify functional priorities, and
prototyped the system with pencil and paper
drawings under short time constraints.
Throughout the exercise, student teams
could consult with the customer to clarify
specifications and validate prototypes.

At the end of the first 25-minute iteration,
students were asked to reflect on the
process and modify team activity accord-
ingly. At the end of the second iteration,
students were asked to reflect on the agile
development exercise as a whole, answering
such questions as:

• Did the developers build what the

customers said they wanted?

• Were the customers happy with the
result?

• Were deadlines met?

Responses varied by section. In Section 01
of the Senior Project class, each developer
team met or exceeded customer expec-
tations, whereas in Section 02, only one
team of the four made the customer
“happy”. The primary difference between
those teams that satisfied the customer and
those that did not was that teams satisfying
the customer tended to include the customer
as part of the development team, referring
to the customer for clarification often.

Overall, the agile exercise was an
appropriate learning activity for helping
students understand the high-commu-
nication levels required of lightweight de-
velopment approaches. Students really
enjoyed the process, bringing incredible
energy and enthusiasm to the simulation.
The only change to be made to activity
would be to reschedule it earlier in the
course rather than during week four.

c© 2003 EDSIG http://isedj.org/1/18/ December 26, 2003

ISEDJ 1 (18) Jones 7

Table 1 Crystal Clear Work Products
No. Work Product Description
1 Mission

statement
A brief description of the system to be built including its purpose and
value in the larger context.

2 Team structure How the team is partitioned to accomplish its work, and what the lines
of agreement and reporting are.

3 Development
methodology

The methodology consists of the roles on the project, the team
structure, the process the team follows, the work products they
maintain, how they review their work and how closely they do that, and
the skills they need among themselves.

4 Release
sequence

A statement or dependency diagram showing, briefly, what the order of
the software releases is and what is in each.

5 Viewing &
release
schedule

For each increment, describes when the users will get to see, and get to
use, the sections of a new system as it comes out in stages.

6 Risk list A list of the top risks facing the project, their likelihood, and fallback
plans.

7 Project status A set of annotations on the project plan. It contains a selected set of
needed accomplishments, which ones are completed, which ones are
underway, and some measure of stability, certainty or progress toward
each.

8 Actor-goal list What types of people/organizations/computer systems/automated
systems will drive the system, or directly care about seeing the function
of the system enacted. What their goal is for each of their interactions,
at several levels (strategic/summary goals and task-level goals).
Correlation between primary actors of the system and goals the system
supports.

9 Annotated use
cases

The functional requirements for the system. A fully dressed Use Case is
written with one of the full templates, identifying actors, scope, level,
trigger condition, precondition, and all the rest of the template header
information, plus project annotation information.

10 Requirements
file

A collection of information indicating what it is that is to be built, who is
intended to use it, how it provides value, and what major constraints
affect the design. Includes Stakeholder List; In-Out Scope Table;
Problem Domain Vocabulary; System Interfaces and Technology
Constraints; Development Processes; Human Backup, Legal, Political,
and Organizational Issues; and, Preliminary Project Plan.

11 System design A large-scale, low precision description of the overall system, from a
technical perspective.

12 Design
sketches

Draft drawings of the system, its components, and their relationships.
Notes regarding design trade-offs and decisions.

13 Common
object model

For the problem domain, the set of entities or events and their related
attributes and behaviors. The relationships between those
entities/events.

14 Screen drafts Screen prototypes, screen navigation flow, and report prototypes.
15 Source code Commented program logic, organized according to the underlying

development paradigm.
16 Packaged

system
The application source, compiled code and/or interpreted code and the
required configuration information, files, directory structure, or registry
data. May be componentized into a binary library, bundled into a self-
describing archive, or packaged into self-installing compressed format.

17 Migration code All one-time code written to migrate existing application data and
behavior to the new system. May involve data conversion and writing
wrappers to encapsulate legacy functionality. Often written in scripting
languages.

18 Test cases A set of inputs and expected results that exercises a component with the
purpose of causing failures.

19 Defect reports Documentation of any event that occurs during the testing process
which requires further investigation.

20 User manual A document describing the application user interface, such that someone
unfamiliar with the system can use it.

c© 2003 EDSIG http://isedj.org/1/18/ December 26, 2003

ISEDJ 1 (18) Jones 8

Reflection Workshops
One of the key differentiators between
traditional and agile approaches is the
emphasis on rapid adaptation of the
methodology during development, in
response to changes in the project
(Abrahamsson, Salo, Ronkainen, and Warsta
2002; Thomas, n.d.). Cockburn refers to
this aspect of agile development as
“periodically reflecting and adjusting their
working conventions” (Cockburn n.d., p. 7).
As part of Crystal Clear, project teams are
encouraged to pause periodically to conduct
“Reflection Workshops.” Key to these work-
shops is an on-going evaluation of team
structure, team process, and working
conventions. Team members are asked to
identify what they would like to keep, where
they are having problems, and what they
would like to do differently in the next phase
of the project.

Following each major project milestone,
students in both sections of Senior Project
conducted reflection workshops. Each stu-
dent was asked to complete a one-page
retrospective on the completed milestone.
In addition, students were asked to
comment on the Crystal Clear approach.

 Analysis Retrospective: Most students
felt the team roles they had adopted were
working well and that the communication
channels were effective. The biggest
problems faced were scope creep, shared
access to team work products, divergent
views and personality differences, and the
time required to learn the technology
specified by the client. For the design
phase, students felt they needed to increase
the number of team meetings, clarify team
member assignments, establish a team
repository for work products, and increase
communication frequency from weekly to
daily.

For the Systems Analysis milestone,
students were to submit WP 1 through 10.
With respect to the Crystal Clear meth-
odology, students found the structure of the
work products helpful but somewhat
burdensome. A few students reported that
they didn’t like the readability of the Crystal
Clear text. Typical student comments
included:

The one thing that I would like to com-
ment on is we have a lot of assignments.
I’m not saying that they aren’t useful,
but they’re time consuming and take a
lot of the focus away from actually work-
ing on the project. I know they’re nec-
essary, but it is hard to complete all the
work products while trying to meet as a
group to complete the project. All of our
schedules are so different and when we
meet together, it’s stressful because
we’re trying to get everything done.

Have less deliverables and more time in
class to work on the actual project. The
work products allow us to visualize and I
can see when this is more productive in
a large project, but we only have 3
months. Feels a lot like busywork, yet I
can see how this is applicable.

 Design Retrospective: Students again
reported that they felt the team roles (after
some role reassignments) were working well
and that the development process was
effective. Increased communication levels
and regular team meetings had improved
information flow. Major problems included
getting all team members to project
meetings, occasional communication lapses,
and a desire to expand the project to include
more technology than the customer
requested.

For the Systems Design milestone, students
were to submit WP 11 through 14. As for
Crystal Clear, most students felt the design
documentation requirements weren’t as
heavy as those for the systems analysis
phase. Some students felt the Crystal Clear
text and the supporting PowerPoint slides
provided by the instructor did not include
enough examples of the various work
products:

Crystal Clear is OK, but I wish that there
were more specific examples. Some of
the deliverables aren’t clear.

 Implementation Retrospective: Dur-
ing the final phase of system development,
students reported that team dynamics,
especially team commitment, enabled the
groups to complete the project on time.
Several students commented on how their
teams “came together nicely”, putting in
“long hours at the last minute to deliver a

c© 2003 EDSIG http://isedj.org/1/18/ December 26, 2003

ISEDJ 1 (18) Jones 9

working system.” A few teams praised the
agile methodology for its adaptability,
enabling them to “change quite a few parts
of the system” late into system construction.
Communication, regular meetings, and a
balanced team composed of members with
complementary skill sets were frequently
mentioned as important drivers for success
during the system implementation phase.

Key problem areas during systems
construction revolved around time, tech-
nology, and team meeting synchronization.
Even with incremental deliverables with
some part of the project due each week,
students felt crunched for time near the end
of the course. “It took longer than ex-
pected” was common a theme, usually
followed by “we underestimated the amount
of time needed.” Students reported trouble
with familiar technology (“we had a difficult
time with DB connectivity”) and issues with
new technology (“unfamiliar language”;
“platform variations”). Finally, as the teams
began to meet more frequently to address
deadline pressures, many team members
reported “trouble synchronizing our sched-
ules.”

For the Systems Implementation milestone,
students were to submit WP 15 through 20.
As the section of the draft Crystal Clear
textbook covering these artifacts was
incomplete, a series of PowerPoint slides was
developed to provide examples of each work
product. For the most part, students had
little trouble with commented source code.
However, because they had minimal
experience in actual deployment, several
project teams struggled with migration code
and systems packaging. Inexperience was
also an issue in testing. Several project
teams approached test plans and defect
reports as an exercise rather than as an
integral part of the development process.

 Crystal Clear Retrospective: At the
end of the course, students were asked to
assess Crystal Clear as an agile methodology
and provide suggestions for improvement.
On the whole students appreciated the
adaptiveness of the agile approach but felt
the methodology could be improved by
reducing the documentation requirements.
Typical comments included:

I feel that this methodology is great be-
cause it gives you direction and help and
yet is flexible to let you change things
along the way.

I really like the Agile concept. At times,
it seemed like there was too much
documentation, but most of it was fairly
necessary.

I think near the end of the course is
when we got most of our work done be-
cause we weren’t concerned with finish-
ing paperwork. I know the documents
are important, but it was difficult to get
things done. Class time really helped us
to organize and take care of the admin-
istrative tasks we had to do.

I really liked the Agile development
methodology. I felt like it presented
enough questions to truly analyze the
project, without it being weighed down
in paperwork. I hope to use it again.

4. LESSONS LEARNED

Integrating an agile approach into the
Project Management course is not only
possible but students appreciate the
flexibility of a lightweight methodology. The
ability to modify the development process
midstream, even under tight time
constraints, enabled project teams to deliver
high priority functionality to the user by
course end. All seven teams deployed
working code that met or exceeded client
expectations. Key lessons learned from this
course experiment were:

• Although agile methodologies evolved

from the Smalltalk community, they
need not be object-centric. A few simple
generalizations to Crystal Clear allowed
students, regardless of background in
SA/SD or OOAD, to generate a fairly
common set of analysis, design, and
implementation artifacts. In fact, except
for WP 13 Common Domain Model, all
documents were universal.

• Even with a reduced documentation set,

students still perceived the Crystal Clear
work products as “busy work” rather
than absolutely essential to the
development process. A possible ex-
planation for this could be due to the

c© 2003 EDSIG http://isedj.org/1/18/ December 26, 2003

ISEDJ 1 (18) Jones 10

structure of course assignments.
Although Crystal Clear only requires 20
artifacts total, students were expected to
complete draft versions of many of the
work products. For example, students
were asked to submit low-precision
annotated Use Cases (Use Case Briefs)
one week and then the following week,
high-precision annotated Uses Cases,
using a documentation template. Rather
than one artifact, students may have
interpreted these as two. In all there
were 31 separately graded classroom
assignments, albeit refinements of
earlier submissions, which could have
easily been misperceived as “excessive
documentation.” In hindsight, it would
appear that the number of “deliverables”
should have been structured to more
closely match the number in the Crystal
Clear methodology. Even then, it might
make sense to restructure the
deliverables into a hierarchy tied to
project management with documents
clustered by phase (i.e. Planning, Analy-
sis, Design, and Implementation).

• Adopting Use Cases as the course

mechanism for specifying functional
requirements necessitated several
lecture sessions of training. Students
conversant with OOAD were familiar with
Use Case briefs (one-paragraph de-
scriptions of functional requirements),
but did not have experience writing fully
annotated Use Cases complete with pre-
and post-conditions, trigger conditions,
actors, scope, process description,
extensions, and sub-variations. Stu-
dents conversant with SA/SD had no
previous exposure to the concept of Use
Cases, whether brief or fully annotated.
To compensate for this knowledge
deficit, students were given lectures on
writing effective Use Cases and asked to
complete several in-class exercises on
writing low- and high-precision Anno-
tated Use Cases.

In conclusion, integrating an agile develop-
ment methodology, such as Crystal Clear,
into a Project Management capstone is
relatively straightforward, requiring no mod-
ifications to the project management pro-
cess, per se. The common document set re-
quired by Clear minimizes developmental
anarchy stemming from student’s disparate

backgrounds in systems analysis and design.
The lightweight approach allows students to
focus on delivering working systems rather
than completing diagrammatic exercises.
However, while students recognize the
importance of analysis and design
documentation in delivering working
systems, they still perceive such
documentation as “busy work”. It appears
that even an “ultralight” approach is too
heavy for those students who just “want to
code.”

5. REFERENCES

Abrahamsson, P., O. Salo, J. Ronkainen, and

J. Warsta (2002). Agile Software Devel-
opment Methods: Review and Analysis.
Oulu, Finland: VTT Publishing. Retrieved
June 15, 2003 from http://

 www.inf.vtt.fi/pdf/

Agile Development Conference Call for Pa-

pers, (n.d.). Retrieved June 12, 2003
 from http://www.poppendieck.com/

papers/CFP.pdf

Beck, K. (2000). Extreme Programming Ex-

plained: Embrace Change. Boston, MA:
Addison-Wesley.

Bergin, J. (2000). “Learning the Planning

Game: An Extreme Exercise.” Retrieved
 June 13, 2003 from http://oopsla.acm.

org/oopsla2k/postconf/Learning_the_Pla
nning_Game.htm

Cockburn, A. (1997). Surviving Object-

oriented Projects. Boston, MA: Addison-
Wesley.

Cockburn, A. (2001). Agile Software Devel-

opment. Boston, MA: Addison-Wesley.

Cockburn, A. (n.d.). Crystal Clear: A Human-

powered Software Development Method-
ology for Small Teams (In Draft). Re-
trieved June 12, 2003 from
http://alistair.cockburn.us/crystal/books
/cc/crystalclear.doc

Davis, G.B., J.T. Gorgone, J.D. Couger, D.L

Feinstein, and H.E. Longenecker, Jr.
(1997). IS '97 Model Curriculum and
Guidelines for Undergraduate Degree
Programs in Information Systems. New
York, NY: Association for Computing Ma-

c© 2003 EDSIG http://isedj.org/1/18/ December 26, 2003

ISEDJ 1 (18) Jones 11

chinery and Park Ridge, IL: Association
of Information Technology Professionals.

Gorgone, J.T., G.B. Davis, J.S. Valacich, H.

Topi, D.L. Feinstein, and H.E. Longe-
necker, Jr. (2002). IS 2002: Model Cur-
riculum and Guidelines for Undergradu-
ate Degree Programs in Information
Systems. Atlanta, GA: Association for In-
formation Systems.

Thomas, S. (n.d.),.“An Agile Comparison.”

Retrieved June 15, 2003 from
http://www.balagan.org.uk/work/agile_c
omparison.htm

c© 2003 EDSIG http://isedj.org/1/18/ December 26, 2003

ISEDJ 1 (18) Jones 12

Christopher G. Jones, holder of the Reed and
Christine Halladay Executive Lecture Professorship,
is a professor of Information Systems in the Utah
Valley State College School of Business. He earned
a B.S. in Business Administration with an
Accounting emphasis from California State
University, Northridge, an M.B.A. in Finance from
Brigham Young University, and a Ph.D. in Business
Information Systems and Education from Utah
State University. He is a licensed CPA in both
California and Utah. He currently teaches systems
analysis and design, and .Net architectures. His

research interests are in e-business; enterprise object-oriented
software development; connected, mobile device platforms; and,
Information Systems education and model curricula.

Business Computer Information Systems
Utah Valley State College
800 West University Parkway
Orem, Utah 84058-5999 USA
E-mail: jonescg@uvsc.edu
Phone: 1-801-863-8308

c© 2003 EDSIG http://isedj.org/1/18/ December 26, 2003

